메뉴 건너뛰기




Volumn 53, Issue 2, 2011, Pages 107-118

Support vector methods for survival analysis: A comparison between ranking and regression approaches

Author keywords

Cancer prognosis; Concordance index; Support vector machines; Survival analysis

Indexed keywords

CANCER PROGNOSIS; CENSORED OBSERVATIONS; CLASSICAL APPROACH; CLINICAL DATA; CONCORDANCE INDEX; CONVEX OPTIMIZATION TECHNIQUES; DATA SETS; EMPIRICAL EVIDENCE; HAZARD RATIO; HIGH DIMENSIONAL DATA; HIGH-DIMENSIONAL; INEQUALITY CONSTRAINT; MACHINE-LEARNING; NEW MODEL; PROPORTIONAL HAZARDS MODEL; RANKING PROBLEMS; STATISTICAL MODELS; STRUCTURAL RISK MINIMIZATION; SUPPORT VECTOR; SUPPORT VECTOR METHOD; SURVIVAL ANALYSIS; SURVIVAL DATA; SURVIVAL MODEL; TRANSFORMATION MODEL;

EID: 80052431188     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2011.06.006     Document Type: Article
Times cited : (152)

References (29)
  • 2
    • 0002266120 scopus 로고
    • Partial likelihood in transformation models with censored data
    • Dabrowska D.M., Doksum K.A. Partial likelihood in transformation models with censored data. Scandinavian Journal of Statistics 1988, 15(1):1-23.
    • (1988) Scandinavian Journal of Statistics , vol.15 , Issue.1 , pp. 1-23
    • Dabrowska, D.M.1    Doksum, K.A.2
  • 3
    • 0001401162 scopus 로고
    • On a correspondence between models in binary regression and survival analysis
    • Doksum K., Gasko M. On a correspondence between models in binary regression and survival analysis. International Statistical Review 1990, 58:243-252.
    • (1990) International Statistical Review , vol.58 , pp. 243-252
    • Doksum, K.1    Gasko, M.2
  • 4
    • 77956889312 scopus 로고
    • Analysis of transformation models with censored data
    • Cheng S.C., Wei L.J., Ying Z. Analysis of transformation models with censored data. Biometrika 1995, 82(4):835-845.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 835-845
    • Cheng, S.C.1    Wei, L.J.2    Ying, Z.3
  • 5
    • 0031475524 scopus 로고    scopus 로고
    • Predicting survival probabilities with semiparametric transformation models
    • Cheng S.C., Wei L.J., Ying Z. Predicting survival probabilities with semiparametric transformation models. Journal of the American Statistical Association 1997, 92(437):227-235.
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.437 , pp. 227-235
    • Cheng, S.C.1    Wei, L.J.2    Ying, Z.3
  • 11
    • 47049127967 scopus 로고    scopus 로고
    • Sparse kernel methods for high-dimensional survival data
    • Evers L., Messow C.M. Sparse kernel methods for high-dimensional survival data. Bioinformatics 2008, 24(14):1632-1638.
    • (2008) Bioinformatics , vol.24 , Issue.14 , pp. 1632-1638
    • Evers, L.1    Messow, C.M.2
  • 13
    • 66749147047 scopus 로고    scopus 로고
    • Support vector regression for censored data (SVRc): a novel tool for survival analysis
    • IEEE computer society, California, F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu (Eds.)
    • Khan F.M., Zubek V.B. Support vector regression for censored data (SVRc): a novel tool for survival analysis. Proceedings of the Eighth IEEE International Conference on Data Mining (ICDM) 2008, 863-868. IEEE computer society, California. F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu (Eds.).
    • (2008) Proceedings of the Eighth IEEE International Conference on Data Mining (ICDM) , pp. 863-868
    • Khan, F.M.1    Zubek, V.B.2
  • 15
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers P.H., Marx B.D. Flexible smoothing with B-splines and penalties. Statistical Science 1996, 11:89-121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.1    Marx, B.D.2
  • 16
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved akaike information criterion
    • Hurvich C.M., Simonoff J.S., Tsai C.L. Smoothing parameter selection in nonparametric regression using an improved akaike information criterion. Journal of the Royal Statistical Society: Series B 1998, 60:271-293.
    • (1998) Journal of the Royal Statistical Society: Series B , vol.60 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.L.3
  • 18
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A 1909, 209:415-446.
    • (1909) Philosophical Transactions of the Royal Society A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 22
    • 0016312195 scopus 로고
    • A log gamma model and its maximum likelihood estimation
    • Prentice R.L. A log gamma model and its maximum likelihood estimation. Biometrika 1974, 61(3):539-544.
    • (1974) Biometrika , vol.61 , Issue.3 , pp. 539-544
    • Prentice, R.L.1
  • 23
    • 0019216788 scopus 로고
    • Prognostic variables for survival in a randomized comparison of treatments for prostatic cancer
    • Byar D., Green S. Prognostic variables for survival in a randomized comparison of treatments for prostatic cancer. Bulletin du Cancer 1980, 67:477-490.
    • (1980) Bulletin du Cancer , vol.67 , pp. 477-490
    • Byar, D.1    Green, S.2
  • 25
    • 0028080742 scopus 로고
    • Randomized 2×2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients
    • Schumacher M., Basert G., Bojar H., Huebner K., Olschewski M., Sauerbrei W., et al. Randomized 2×2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. Journal of Clinical Oncology 1994, 12:2086-2093.
    • (1994) Journal of Clinical Oncology , vol.12 , pp. 2086-2093
    • Schumacher, M.1    Basert, G.2    Bojar, H.3    Huebner, K.4    Olschewski, M.5    Sauerbrei, W.6
  • 26
    • 0033474286 scopus 로고    scopus 로고
    • Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials
    • Sauerbrei W., Royston P. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. Journal of the Royal Statistical Society Series A 1999, 162(1):71-94.
    • (1999) Journal of the Royal Statistical Society Series A , vol.162 , Issue.1 , pp. 71-94
    • Sauerbrei, W.1    Royston, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.