-
1
-
-
0034736564
-
Validation, calibration, revision and combination of prognostic survival models
-
van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Stat Med. 2000; 19:3401-15.
-
(2000)
Stat Med.
, vol.19
, pp. 3401-3415
-
-
van Houwelingen, H.C.1
-
3
-
-
77950389784
-
Reporting performance of prognostic models in cancer: a review
-
Mallett S, Royston P, Waters R, Dutton S, Altman DG. Reporting performance of prognostic models in cancer: a review. BMC Med. 2010; 8(1):21.
-
(2010)
BMC Med.
, vol.8
, Issue.1
, pp. 21
-
-
Mallett, S.1
Royston, P.2
Waters, R.3
Dutton, S.4
Altman, D.G.5
-
4
-
-
0030069896
-
Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
Harrell F, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996; 15:361-87.
-
(1996)
Stat Med.
, vol.15
, pp. 361-387
-
-
Harrell, F.1
Lee, K.L.2
Mark, D.B.3
-
5
-
-
1542506052
-
Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer
-
Royston P, Parmar MK, Sylvester R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Stat Med. 2004; 23(6):907-26.
-
(2004)
Stat Med.
, vol.23
, Issue.6
, pp. 907-926
-
-
Royston, P.1
Parmar, M.K.2
Sylvester, R.3
-
6
-
-
0034728356
-
What do we mean by validating a prognostic model?
-
Altman DG, Royston P. What do we mean by validating a prognostic model?Stat Med. 2000; 19(4):453-73.
-
(2000)
Stat Med.
, vol.19
, Issue.4
, pp. 453-473
-
-
Altman, D.G.1
Royston, P.2
-
7
-
-
63349099495
-
Prognostic models: a methodological framework and review of models for breast cancer
-
Altman DG. Prognostic models: a methodological framework and review of models for breast cancer. Cancer Invest. 2009; 27(3):235-43.
-
(2009)
Cancer Invest.
, vol.27
, Issue.3
, pp. 235-243
-
-
Altman, D.G.1
-
8
-
-
79955762500
-
Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data
-
Simon RM, Subramanian J, Li M-C, Menezes S. Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief Bioinf. 2011; 12(3):203-14.
-
(2011)
Brief Bioinf.
, vol.12
, Issue.3
, pp. 203-214
-
-
Simon, R.M.1
Subramanian, J.2
Li, M.-C.3
Menezes, S.4
-
9
-
-
34547892291
-
Efron-type measures of prediction error for survival analysis
-
Gerds TA, Schumacher M. Efron-type measures of prediction error for survival analysis. Biometrics. 2007; 63(4):1283-7.
-
(2007)
Biometrics
, vol.63
, Issue.4
, pp. 1283-1287
-
-
Gerds, T.A.1
Schumacher, M.2
-
10
-
-
38349089209
-
Stratification bias in low signal microarray studies
-
Parker BJ, Günter S, Bedo J. Stratification bias in low signal microarray studies. BMC Bioinf. 2007; 8(1):326.
-
(2007)
BMC Bioinf.
, vol.8
, Issue.1
, pp. 326
-
-
Parker, B.J.1
Günter, S.2
Bedo, J.3
-
11
-
-
79951755788
-
An evaluation of resampling methods for assessment of survival risk prediction in high-dimensional settings
-
Subramanian J, Simon R. An evaluation of resampling methods for assessment of survival risk prediction in high-dimensional settings. Stat Med. 2011; 30(6):642-53.
-
(2011)
Stat Med.
, vol.30
, Issue.6
, pp. 642-653
-
-
Subramanian, J.1
Simon, R.2
-
13
-
-
0029584326
-
Importance of events per independent variable in proportional hazards analysis i. background, goals, and general strategy
-
Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis i. background, goals, and general strategy. J Clin Epidemiol. 1995; 48(12):1495-501.
-
(1995)
J Clin Epidemiol.
, vol.48
, Issue.12
, pp. 1495-1501
-
-
Concato, J.1
Peduzzi, P.2
Holford, T.R.3
Feinstein, A.R.4
-
14
-
-
33847382959
-
Relaxing the rule of ten events per variable in logistic and cox regression
-
Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007; 165(6):710-8.
-
(2007)
Am J Epidemiol.
, vol.165
, Issue.6
, pp. 710-718
-
-
Vittinghoff, E.1
McCulloch, C.E.2
-
15
-
-
84888361072
-
Sample size requirements for training high-dimensional risk predictors
-
Dobbin KK, Song X. Sample size requirements for training high-dimensional risk predictors. Biostatistics. 2013; 14(4):639-52.
-
(2013)
Biostatistics
, vol.14
, Issue.4
, pp. 639-652
-
-
Dobbin, K.K.1
Song, X.2
-
17
-
-
24944534978
-
Real-time pcr for mrna quantitation
-
Wong ML, Medrano JF. Real-time pcr for mrna quantitation. Biotechniques. 2005; 39(1):75.
-
(2005)
Biotechniques
, vol.39
, Issue.1
, pp. 75
-
-
Wong, M.L.1
Medrano, J.F.2
-
18
-
-
45449087921
-
qbase relative quantification framework and software for management and automated analysis of real-time quantitative pcr data
-
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qbase relative quantification framework and software for management and automated analysis of real-time quantitative pcr data. Genome Biol. 2007; 8(2):19.
-
(2007)
Genome Biol.
, vol.8
, Issue.2
, pp. 19
-
-
Hellemans, J.1
Mortier, G.2
De Paepe, A.3
Speleman, F.4
Vandesompele, J.5
-
19
-
-
84876053703
-
Information theory and an extension of the maximum likelihood principle
-
New York: Springer.
-
Akaike H. Information theory and an extension of the maximum likelihood principle. In: Selected Papers of Hirotugu Akaike. New York: Springer: 1998. p. 199-213.
-
(1998)
Selected Papers of Hirotugu Akaike
, pp. 199-213
-
-
Akaike, H.1
-
20
-
-
0031015557
-
The lasso method for variable selection in the cox model
-
Tibshirani R. The lasso method for variable selection in the cox model. Stat Med. 1997; 16(4):385-95.
-
(1997)
Stat Med.
, vol.16
, Issue.4
, pp. 385-395
-
-
Tibshirani, R.1
-
21
-
-
34548151636
-
Adaptive lasso for cox's proportional hazards model
-
Zhang HH, Lu W. Adaptive lasso for cox's proportional hazards model. Biometrika. 2007; 94(3):691-703.
-
(2007)
Biometrika
, vol.94
, Issue.3
, pp. 691-703
-
-
Zhang, H.H.1
Lu, W.2
-
22
-
-
0036117466
-
Variable selection for cox's proportional hazards model and frailty model
-
Fan J, Li R. Variable selection for cox's proportional hazards model and frailty model. Ann Stat. 2002; 30(1):74-99.
-
(2002)
Ann Stat.
, vol.30
, Issue.1
, pp. 74-99
-
-
Fan, J.1
Li, R.2
-
23
-
-
0004509186
-
Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling
-
Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. Appl Stat. 1994; 43(3):429-67.
-
(1994)
Appl Stat.
, vol.43
, Issue.3
, pp. 429-467
-
-
Royston, P.1
Altman, D.G.2
-
24
-
-
0028572354
-
Penalized likelihood in cox regression
-
Verweij PJ, Van Houwelingen HC. Penalized likelihood in cox regression. Stat Med. 1994; 13(23-24):2427-36.
-
(1994)
Stat Med.
, vol.13
, Issue.23-24
, pp. 2427-2436
-
-
Verweij, P.J.1
Van Houwelingen, H.C.2
-
26
-
-
0033619170
-
Assessment and comparison of prognostic classification schemes for survival data
-
Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med. 1999; 18(17-18):2529-45.
-
(1999)
Stat Med.
, vol.18
, Issue.17-18
, pp. 2529-2545
-
-
Graf, E.1
Schmoor, C.2
Sauerbrei, W.3
Schumacher, M.4
-
27
-
-
0015980662
-
Covariance analysis of censored survival data
-
Breslow N. Covariance analysis of censored survival data. Biometrics. 1974; 30(1):89-99.
-
(1974)
Biometrics
, vol.30
, Issue.1
, pp. 89-99
-
-
Breslow, N.1
-
28
-
-
0033936550
-
Time-dependent roc curves for censored survival data and a diagnostic marker
-
Heagerty PJ, Lumley T, Pepe MS. Time-dependent roc curves for censored survival data and a diagnostic marker. Biometrics. 2000; 56(2):337-44.
-
(2000)
Biometrics
, vol.56
, Issue.2
, pp. 337-344
-
-
Heagerty, P.J.1
Lumley, T.2
Pepe, M.S.3
-
29
-
-
77949507309
-
Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
-
Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2010; 26(3):392-8.
-
(2010)
Bioinformatics
, vol.26
, Issue.3
, pp. 392-398
-
-
Abeel, T.1
Helleputte, T.2
Van de Peer, Y.3
Dupont, P.4
Saeys, Y.5
-
31
-
-
0027081755
-
A bootstrap resampling procedure for model building: application to the cox regression model
-
Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the cox regression model. Stat Med. 1992; 11(16):2093-109.
-
(1992)
Stat Med.
, vol.11
, Issue.16
, pp. 2093-2109
-
-
Sauerbrei, W.1
Schumacher, M.2
-
33
-
-
0031735051
-
Use of the sofa score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study
-
Vincent J-L, De Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al.Use of the sofa score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998; 26(11):1793-800.
-
(1998)
Crit Care Med.
, vol.26
, Issue.11
, pp. 1793-1800
-
-
Vincent, J.-L.1
De Mendonça, A.2
Cantraine, F.3
Moreno, R.4
Takala, J.5
Suter, P.M.6
-
34
-
-
84880047310
-
Mixed modeling and sample size calculations for identifying housekeeping genes
-
Dai H, Charnigo R, Vyhlidal CA, Jones BL, Bhandary M. Mixed modeling and sample size calculations for identifying housekeeping genes. Stat Med. 2013; 32(18):3115-25.
-
(2013)
Stat Med.
, vol.32
, Issue.18
, pp. 3115-3125
-
-
Dai, H.1
Charnigo, R.2
Vyhlidal, C.A.3
Jones, B.L.4
Bhandary, M.5
-
35
-
-
0031536511
-
Improvements on cross-validation: the 632+ bootstrap method
-
Efron B, Tibshirani R. Improvements on cross-validation: the 632+ bootstrap method. J Am Stat Assoc. 1997; 92(438):548-60.
-
(1997)
J Am Stat Assoc.
, vol.92
, Issue.438
, pp. 548-560
-
-
Efron, B.1
Tibshirani, R.2
-
36
-
-
0033616909
-
Multiple imputation of missing blood pressure covariates in survival analysis
-
Van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999; 18(6):681-94.
-
(1999)
Stat Med.
, vol.18
, Issue.6
, pp. 681-694
-
-
Van Buuren, S.1
Boshuizen, H.C.2
Knook, D.L.3
-
38
-
-
48249126832
-
How should variable selection be performed with multiply imputed data?
-
Wood AM, White IR, Royston P. How should variable selection be performed with multiply imputed data?. Stat Med. 2008; 27(17):3227-46.
-
(2008)
Stat Med.
, vol.27
, Issue.17
, pp. 3227-3246
-
-
Wood, A.M.1
White, I.R.2
Royston, P.3
-
39
-
-
84984835578
-
Validation of prediction models based on lasso regression with multiply imputed data
-
Musoro JZ, Zwinderman AH, Puhan MA, ter Riet G, Geskus RB. Validation of prediction models based on lasso regression with multiply imputed data. BMC Med Res Methodology. 2014; 14(1):116.
-
(2014)
BMC Med Res Methodology
, vol.14
, Issue.1
, pp. 116
-
-
Musoro, J.Z.1
Zwinderman, A.H.2
Puhan, M.A.3
ter Riet, G.4
Geskus, R.B.5
-
40
-
-
84883135749
-
Variable selection for multiply-imputed data with application to dioxin exposure study
-
Chen Q, Wang S. Variable selection for multiply-imputed data with application to dioxin exposure study. Stat Med. 2013; 32(21):3646-59.
-
(2013)
Stat Med.
, vol.32
, Issue.21
, pp. 3646-3659
-
-
Chen, Q.1
Wang, S.2
|