메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

A strategy to build and validate a prognostic biomarker model based on RT-qPCR gene expression and clinical covariates

Author keywords

Cross validation; Model optimism; Performance estimation; Prognostic survival model; RT qPCR gene expression measurement

Indexed keywords

BIOMARKERS; DESIGN; GENES; POLYMERASE CHAIN REACTION; POPULATION STATISTICS; STABILITY CRITERIA; STATISTICAL TESTS;

EID: 84926314737     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0537-9     Document Type: Article
Times cited : (7)

References (40)
  • 1
    • 0034736564 scopus 로고    scopus 로고
    • Validation, calibration, revision and combination of prognostic survival models
    • van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Stat Med. 2000; 19:3401-15.
    • (2000) Stat Med. , vol.19 , pp. 3401-3415
    • van Houwelingen, H.C.1
  • 3
    • 77950389784 scopus 로고    scopus 로고
    • Reporting performance of prognostic models in cancer: a review
    • Mallett S, Royston P, Waters R, Dutton S, Altman DG. Reporting performance of prognostic models in cancer: a review. BMC Med. 2010; 8(1):21.
    • (2010) BMC Med. , vol.8 , Issue.1 , pp. 21
    • Mallett, S.1    Royston, P.2    Waters, R.3    Dutton, S.4    Altman, D.G.5
  • 4
    • 0030069896 scopus 로고    scopus 로고
    • Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell F, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996; 15:361-87.
    • (1996) Stat Med. , vol.15 , pp. 361-387
    • Harrell, F.1    Lee, K.L.2    Mark, D.B.3
  • 5
    • 1542506052 scopus 로고    scopus 로고
    • Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer
    • Royston P, Parmar MK, Sylvester R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Stat Med. 2004; 23(6):907-26.
    • (2004) Stat Med. , vol.23 , Issue.6 , pp. 907-926
    • Royston, P.1    Parmar, M.K.2    Sylvester, R.3
  • 6
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman DG, Royston P. What do we mean by validating a prognostic model?Stat Med. 2000; 19(4):453-73.
    • (2000) Stat Med. , vol.19 , Issue.4 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 7
    • 63349099495 scopus 로고    scopus 로고
    • Prognostic models: a methodological framework and review of models for breast cancer
    • Altman DG. Prognostic models: a methodological framework and review of models for breast cancer. Cancer Invest. 2009; 27(3):235-43.
    • (2009) Cancer Invest. , vol.27 , Issue.3 , pp. 235-243
    • Altman, D.G.1
  • 8
    • 79955762500 scopus 로고    scopus 로고
    • Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data
    • Simon RM, Subramanian J, Li M-C, Menezes S. Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief Bioinf. 2011; 12(3):203-14.
    • (2011) Brief Bioinf. , vol.12 , Issue.3 , pp. 203-214
    • Simon, R.M.1    Subramanian, J.2    Li, M.-C.3    Menezes, S.4
  • 9
    • 34547892291 scopus 로고    scopus 로고
    • Efron-type measures of prediction error for survival analysis
    • Gerds TA, Schumacher M. Efron-type measures of prediction error for survival analysis. Biometrics. 2007; 63(4):1283-7.
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1283-1287
    • Gerds, T.A.1    Schumacher, M.2
  • 10
    • 38349089209 scopus 로고    scopus 로고
    • Stratification bias in low signal microarray studies
    • Parker BJ, Günter S, Bedo J. Stratification bias in low signal microarray studies. BMC Bioinf. 2007; 8(1):326.
    • (2007) BMC Bioinf. , vol.8 , Issue.1 , pp. 326
    • Parker, B.J.1    Günter, S.2    Bedo, J.3
  • 11
    • 79951755788 scopus 로고    scopus 로고
    • An evaluation of resampling methods for assessment of survival risk prediction in high-dimensional settings
    • Subramanian J, Simon R. An evaluation of resampling methods for assessment of survival risk prediction in high-dimensional settings. Stat Med. 2011; 30(6):642-53.
    • (2011) Stat Med. , vol.30 , Issue.6 , pp. 642-653
    • Subramanian, J.1    Simon, R.2
  • 13
    • 0029584326 scopus 로고
    • Importance of events per independent variable in proportional hazards analysis i. background, goals, and general strategy
    • Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis i. background, goals, and general strategy. J Clin Epidemiol. 1995; 48(12):1495-501.
    • (1995) J Clin Epidemiol. , vol.48 , Issue.12 , pp. 1495-1501
    • Concato, J.1    Peduzzi, P.2    Holford, T.R.3    Feinstein, A.R.4
  • 14
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and cox regression
    • Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and cox regression. Am J Epidemiol. 2007; 165(6):710-8.
    • (2007) Am J Epidemiol. , vol.165 , Issue.6 , pp. 710-718
    • Vittinghoff, E.1    McCulloch, C.E.2
  • 15
    • 84888361072 scopus 로고    scopus 로고
    • Sample size requirements for training high-dimensional risk predictors
    • Dobbin KK, Song X. Sample size requirements for training high-dimensional risk predictors. Biostatistics. 2013; 14(4):639-52.
    • (2013) Biostatistics , vol.14 , Issue.4 , pp. 639-652
    • Dobbin, K.K.1    Song, X.2
  • 17
    • 24944534978 scopus 로고    scopus 로고
    • Real-time pcr for mrna quantitation
    • Wong ML, Medrano JF. Real-time pcr for mrna quantitation. Biotechniques. 2005; 39(1):75.
    • (2005) Biotechniques , vol.39 , Issue.1 , pp. 75
    • Wong, M.L.1    Medrano, J.F.2
  • 18
    • 45449087921 scopus 로고    scopus 로고
    • qbase relative quantification framework and software for management and automated analysis of real-time quantitative pcr data
    • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qbase relative quantification framework and software for management and automated analysis of real-time quantitative pcr data. Genome Biol. 2007; 8(2):19.
    • (2007) Genome Biol. , vol.8 , Issue.2 , pp. 19
    • Hellemans, J.1    Mortier, G.2    De Paepe, A.3    Speleman, F.4    Vandesompele, J.5
  • 19
    • 84876053703 scopus 로고    scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • New York: Springer.
    • Akaike H. Information theory and an extension of the maximum likelihood principle. In: Selected Papers of Hirotugu Akaike. New York: Springer: 1998. p. 199-213.
    • (1998) Selected Papers of Hirotugu Akaike , pp. 199-213
    • Akaike, H.1
  • 20
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • Tibshirani R. The lasso method for variable selection in the cox model. Stat Med. 1997; 16(4):385-95.
    • (1997) Stat Med. , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 21
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive lasso for cox's proportional hazards model
    • Zhang HH, Lu W. Adaptive lasso for cox's proportional hazards model. Biometrika. 2007; 94(3):691-703.
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 22
    • 0036117466 scopus 로고    scopus 로고
    • Variable selection for cox's proportional hazards model and frailty model
    • Fan J, Li R. Variable selection for cox's proportional hazards model and frailty model. Ann Stat. 2002; 30(1):74-99.
    • (2002) Ann Stat. , vol.30 , Issue.1 , pp. 74-99
    • Fan, J.1    Li, R.2
  • 23
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling
    • Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. Appl Stat. 1994; 43(3):429-67.
    • (1994) Appl Stat. , vol.43 , Issue.3 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 24
    • 0028572354 scopus 로고
    • Penalized likelihood in cox regression
    • Verweij PJ, Van Houwelingen HC. Penalized likelihood in cox regression. Stat Med. 1994; 13(23-24):2427-36.
    • (1994) Stat Med. , vol.13 , Issue.23-24 , pp. 2427-2436
    • Verweij, P.J.1    Van Houwelingen, H.C.2
  • 26
    • 0033619170 scopus 로고    scopus 로고
    • Assessment and comparison of prognostic classification schemes for survival data
    • Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of prognostic classification schemes for survival data. Stat Med. 1999; 18(17-18):2529-45.
    • (1999) Stat Med. , vol.18 , Issue.17-18 , pp. 2529-2545
    • Graf, E.1    Schmoor, C.2    Sauerbrei, W.3    Schumacher, M.4
  • 27
    • 0015980662 scopus 로고
    • Covariance analysis of censored survival data
    • Breslow N. Covariance analysis of censored survival data. Biometrics. 1974; 30(1):89-99.
    • (1974) Biometrics , vol.30 , Issue.1 , pp. 89-99
    • Breslow, N.1
  • 28
    • 0033936550 scopus 로고    scopus 로고
    • Time-dependent roc curves for censored survival data and a diagnostic marker
    • Heagerty PJ, Lumley T, Pepe MS. Time-dependent roc curves for censored survival data and a diagnostic marker. Biometrics. 2000; 56(2):337-44.
    • (2000) Biometrics , vol.56 , Issue.2 , pp. 337-344
    • Heagerty, P.J.1    Lumley, T.2    Pepe, M.S.3
  • 29
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2010; 26(3):392-8.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van de Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 31
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: application to the cox regression model
    • Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the cox regression model. Stat Med. 1992; 11(16):2093-109.
    • (1992) Stat Med. , vol.11 , Issue.16 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 33
    • 0031735051 scopus 로고    scopus 로고
    • Use of the sofa score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study
    • Vincent J-L, De Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al.Use of the sofa score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998; 26(11):1793-800.
    • (1998) Crit Care Med. , vol.26 , Issue.11 , pp. 1793-1800
    • Vincent, J.-L.1    De Mendonça, A.2    Cantraine, F.3    Moreno, R.4    Takala, J.5    Suter, P.M.6
  • 34
    • 84880047310 scopus 로고    scopus 로고
    • Mixed modeling and sample size calculations for identifying housekeeping genes
    • Dai H, Charnigo R, Vyhlidal CA, Jones BL, Bhandary M. Mixed modeling and sample size calculations for identifying housekeeping genes. Stat Med. 2013; 32(18):3115-25.
    • (2013) Stat Med. , vol.32 , Issue.18 , pp. 3115-3125
    • Dai, H.1    Charnigo, R.2    Vyhlidal, C.A.3    Jones, B.L.4    Bhandary, M.5
  • 35
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: the 632+ bootstrap method
    • Efron B, Tibshirani R. Improvements on cross-validation: the 632+ bootstrap method. J Am Stat Assoc. 1997; 92(438):548-60.
    • (1997) J Am Stat Assoc. , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 36
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • Van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Stat Med. 1999; 18(6):681-94.
    • (1999) Stat Med. , vol.18 , Issue.6 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 38
    • 48249126832 scopus 로고    scopus 로고
    • How should variable selection be performed with multiply imputed data?
    • Wood AM, White IR, Royston P. How should variable selection be performed with multiply imputed data?. Stat Med. 2008; 27(17):3227-46.
    • (2008) Stat Med. , vol.27 , Issue.17 , pp. 3227-3246
    • Wood, A.M.1    White, I.R.2    Royston, P.3
  • 40
    • 84883135749 scopus 로고    scopus 로고
    • Variable selection for multiply-imputed data with application to dioxin exposure study
    • Chen Q, Wang S. Variable selection for multiply-imputed data with application to dioxin exposure study. Stat Med. 2013; 32(21):3646-59.
    • (2013) Stat Med. , vol.32 , Issue.21 , pp. 3646-3659
    • Chen, Q.1    Wang, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.