-
1
-
-
70449713952
-
The NIH human microbiome project
-
The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al.The NIH human microbiome project. Genome Res. 2009; 19(12):2317-23. doi:10.1101/gr.096651.109.
-
(2009)
Genome Res.
, vol.19
, Issue.12
, pp. 2317-2323
-
-
-
2
-
-
84861961018
-
Tackling the microbiome
-
Hood L. Tackling the microbiome. Science. 2012; 336(6086):1209. doi:10.1126/science.1225475.
-
(2012)
Science
, vol.336
, Issue.6086
, pp. 1209
-
-
Hood, L.1
-
3
-
-
83255181845
-
The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011
-
Gilbert JA, Bailey M, Field D, Fierer N, Fuhrman JA, Hu B, et al.The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011. Standards Genomic Sci. 2011; 5(2):243-7. doi:10.4056/sigs.2134923.
-
(2011)
Standards Genomic Sci.
, vol.5
, Issue.2
, pp. 243-247
-
-
Gilbert, J.A.1
Bailey, M.2
Field, D.3
Fierer, N.4
Fuhrman, J.A.5
Hu, B.6
-
4
-
-
84876058250
-
Variable selection for sparse dirichlet-multinomial regression with an application to microbiome data analysis
-
Chen J, Li H. Variable selection for sparse dirichlet-multinomial regression with an application to microbiome data analysis. Ann Appl Stat. 2013; 7(1):418-42. doi:10.1214/12-aoas592.
-
(2013)
Ann Appl Stat.
, vol.7
, Issue.1
, pp. 418-442
-
-
Chen, J.1
Li, H.2
-
5
-
-
84890309776
-
A logistic normal multinomial regression model for microbiome compositional data analysis
-
Xia F, Chen J, Fung WK, Li H. A logistic normal multinomial regression model for microbiome compositional data analysis. Biometrics. 2013; 69(4):1053-63. doi:10.1111/biom.12079.
-
(2013)
Biometrics
, vol.69
, Issue.4
, pp. 1053-1063
-
-
Xia, F.1
Chen, J.2
Fung, W.K.3
Li, H.4
-
6
-
-
66249145772
-
Statistical methods for detecting differentially abundant features in clinical metagenomic samples
-
White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009; 5(4):1000352. doi:10.1371/journal.pcbi.1000352.
-
(2009)
PLoS Comput Biol.
, vol.5
, Issue.4
, pp. 1000352
-
-
White, J.R.1
Nagarajan, N.2
Pop, M.3
-
7
-
-
84888865593
-
Differential abundance analysis for microbial marker-gene surveys
-
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013; 10(12):1200-2. doi:10.1038/nmeth.2658.
-
(2013)
Nat Methods
, vol.10
, Issue.12
, pp. 1200-1202
-
-
Paulson, J.N.1
Stine, O.C.2
Bravo, H.C.3
Pop, M.4
-
8
-
-
79959383523
-
Metagenomic biomarker discovery and explanation
-
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W, et al.Metagenomic biomarker discovery and explanation. Genome Biol. 2011; 12(6):60. doi:10.1186/gb-2011-12-6-r60.
-
(2011)
Genome Biol.
, vol.12
, Issue.6
, pp. 60
-
-
Segata, N.1
Izard, J.2
Waldron, L.3
Gevers, D.4
Miropolsky, L.5
Garrett, W.6
-
9
-
-
84865175815
-
Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation
-
Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al.Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infectious Diseases. 2012; 55(7):905-14. doi:10.1093/cid/cis580.
-
(2012)
Clin Infectious Diseases
, vol.55
, Issue.7
, pp. 905-914
-
-
Taur, Y.1
Xavier, J.B.2
Lipuma, L.3
Ubeda, C.4
Goldberg, J.5
Gobourne, A.6
-
10
-
-
29144464937
-
UniFrac: a new phylogenetic method for comparing microbial communities
-
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005; 71(12):8228-35. doi:10.1128/aem.71.12.8228-8235.2005.
-
(2005)
Appl Environ Microbiol.
, vol.71
, Issue.12
, pp. 8228-8235
-
-
Lozupone, C.1
Knight, R.2
-
11
-
-
84865082160
-
Associating microbiome composition with environmental covariates using generalized UniFrac distances
-
Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, et al.Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012; 28(16):2106-13. doi:10.1093/bioinformatics/bts342.
-
(2012)
Bioinformatics
, vol.28
, Issue.16
, pp. 2106-2113
-
-
Chen, J.1
Bittinger, K.2
Charlson, E.S.3
Hoffmann, C.4
Lewis, J.5
Wu, G.D.6
-
12
-
-
84896842823
-
Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics
-
Beck D, Foster JA. Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics. PLoS One. 2014; 9(2):87830. doi:10.1371/journal.pone.0087830.
-
(2014)
PLoS One
, vol.9
, Issue.2
, pp. 87830
-
-
Beck, D.1
Foster, J.A.2
-
13
-
-
79251625980
-
Supervised classification of human microbiota
-
Knights D, Costello EK, Knight R. Supervised classification of human microbiota. FEMS Microbiol Rev. 2011; 35(2):343-59. doi:10.1111/j.1574-6976.2010.00251.x.
-
(2011)
FEMS Microbiol Rev.
, vol.35
, Issue.2
, pp. 343-359
-
-
Knights, D.1
Costello, E.K.2
Knight, R.3
-
14
-
-
84923857557
-
A comprehensive evaluation of multicategory classification methods for microbiomic data.
-
Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, et al.A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome. 2013; 1(11). doi:10.1186/2049-2618-1-11.
-
(2013)
Microbiome
, vol.1
, Issue.11
-
-
Statnikov, A.1
Henaff, M.2
Narendra, V.3
Konganti, K.4
Li, Z.5
Yang, L.6
-
15
-
-
83355174923
-
Optimized application of penalized regression methods to diverse genomic data
-
Waldron L, Pintilie M, Tsao M-SS, Shepherd FA, Huttenhower C, Jurisica I. Optimized application of penalized regression methods to diverse genomic data. Bioinformatics. 2011; 27(24):3399-406. doi:10.1093/bioinformatics/btr591.
-
(2011)
Bioinformatics
, vol.27
, Issue.24
, pp. 3399-3406
-
-
Waldron, L.1
Pintilie, M.2
Tsao, M.-S.S.3
Shepherd, F.A.4
Huttenhower, C.5
Jurisica, I.6
-
16
-
-
84897843060
-
Identification of important regressor groups, subgroups and individuals via regularization methods: application to gut microbiome data
-
Garcia TP, Müller S, Carroll RJ, Walzem RL. Identification of important regressor groups, subgroups and individuals via regularization methods: application to gut microbiome data. Bioinformatics. 2014; 30(6):831-7. doi:10.1093/bioinformatics/btt608.
-
(2014)
Bioinformatics
, vol.30
, Issue.6
, pp. 831-837
-
-
Garcia, T.P.1
Müller, S.2
Carroll, R.J.3
Walzem, R.L.4
-
17
-
-
84985997789
-
Variable selection in regression with compositional covariates
-
Lin W, Shi P, Feng R, Li H. Variable selection in regression with compositional covariates. Biometrika. 2014; 101(4):785-797. doi:10.1093/biomet/asu031.
-
(2014)
Biometrika
, vol.101
, Issue.4
, pp. 785-797
-
-
Lin, W.1
Shi, P.2
Feng, R.3
Li, H.4
-
19
-
-
84893874008
-
An Introduction to Statistical Learning: with Applications
-
R, 1st edn. New York, NY, USA: Springer Series in Statistics, Springer;
-
James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: with Applications in R, 1st edn. New York, NY, USA: Springer Series in Statistics, Springer; 2013. doi:10.1007/978-1-4614-7138-7.
-
(2013)
-
-
James, G.1
Witten, D.2
Hastie, T.3
Tibshirani, R.4
-
20
-
-
0000245743
-
Statistical modeling: The two cultures (with comments and a rejoinder by the author)
-
Breiman L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat Sci. 2001; 16(3):199-231. doi:10.1214/ss/1009213726.
-
(2001)
Stat Sci.
, vol.16
, Issue.3
, pp. 199-231
-
-
Breiman, L.1
-
23
-
-
0001259111
-
Bayesian model averaging: A tutorial
-
Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: A tutorial. Stat Sci. 1999; 14(4):382-417. doi:10.1214/ss/1009212814.
-
(1999)
Stat Sci.
, vol.14
, Issue.4
, pp. 382-417
-
-
Hoeting, J.A.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.T.4
-
24
-
-
0031526204
-
Approaches for bayesian variable selection
-
George EI, McCulloch RE. Approaches for bayesian variable selection. Statistica Sinica. 1997; 7:339-73.
-
(1997)
Statistica Sinica
, vol.7
, pp. 339-373
-
-
George, E.I.1
McCulloch, R.E.2
-
25
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning. 2001; 45(1):5-32. doi:10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
26
-
-
0004103979
-
Data Analysis and Regression
-
A Second Course in Statistics, Student. edn. Reading, MA: Addison-Wesley Publishing Company
-
Mosteller F, Tukey JW. Data Analysis and Regression - A Second Course in Statistics, Student. edn. Reading, MA: Addison-Wesley Publishing Company; 1977.
-
(1977)
-
-
Mosteller, F.1
Tukey, J.W.2
-
27
-
-
79954997618
-
Statistics for High-Dimensional Data
-
Methods, Theory and Applications, 1st edn. Springer, Heidelberg, Germany: Springer Series in Statistics
-
Bühlmann P, van de Geer S. Statistics for High-Dimensional Data: Methods, Theory and Applications, 1st edn. Springer, Heidelberg, Germany: Springer Series in Statistics; 2011. doi:10.1007/978-3-642-20192-9.
-
(2011)
-
-
Bühlmann, P.1
van de Geer, S.2
-
28
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B, Stat Methodology. 2005; 67(2):301-20. doi:10.1111/j.1467-9868.2005.00503.x.
-
(2005)
J R Stat Soc Ser B, Stat Methodology
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
29
-
-
84863304598
-
R: A Language and Environment for Statistical Computing.
-
Accessed on 07 February, 2015.
-
R Development Core Team. R: A Language and Environment for Statistical Computing. 2014. http://www.R-project.org/. Accessed on 07 February, 2015.
-
(2014)
-
-
-
30
-
-
84954204436
-
regeval A systematic evaluation of high-dimensional, ensemble based regression for exploring large model spaces in microbiome analyses.
-
Accessed on 07 February, 2015.
-
Shankar J. regeval: A systematic evaluation of high-dimensional, ensemble based regression for exploring large model spaces in microbiome analyses. GitHub. 2014. http://github.com/openpencil/regeval. Accessed on 07 February, 2015.
-
(2014)
GitHub.
-
-
Shankar, J.1
-
31
-
-
0003684449
-
The Elements of Statistical Learning
-
Data Mining, Inference, and Prediction, 2nd edn. Springer, New York, NY, USA: Springer Series in Statistics
-
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York, NY, USA: Springer Series in Statistics; 2013. doi:10.1007/978-0-387-84858-7.
-
(2013)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
32
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Software. 2010; 33(1):1-22.
-
(2010)
J Stat Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
33
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B, Stat Methodology. 1996; 58(1):267-88. doi:10.2307/2346178.
-
(1996)
J R Stat Soc Ser B, Stat Methodology
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
34
-
-
3242708140
-
Least angle regression
-
Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Stat. 2004; 32(2):407-99. doi:10.1214/009053604000000067.
-
(2004)
Ann Stat.
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
35
-
-
84887450255
-
Sparsity by Worst-Case Quadratic Penalties.
-
arXiv preprint. Accessed on 07 February, 2015,Accessed on 07 February, 2015. arXiv:1210.2077 Code:
-
Grandvalet Y, Chiquet J, Ambroise C. Sparsity by Worst-Case Quadratic Penalties. arXiv preprint. 2012. http://arxiv.org/abs/1210.2077 Accessed on 07 February, 2015. arXiv:1210.2077 Code: http://r-forge.r-project.org/projects/quadrupen/ Accessed on 07 February, 2015.
-
(2012)
-
-
Grandvalet, Y.1
Chiquet, J.2
Ambroise, C.3
-
36
-
-
21144482574
-
A rank statistics approach to the consistency of a general bootstrap
-
Mason DM, Newton MA. A rank statistics approach to the consistency of a general bootstrap. Ann Stat. 1992; 20(3):1611-24. doi:10.1214/aos/1176348787.
-
(1992)
Ann Stat.
, vol.20
, Issue.3
, pp. 1611-1624
-
-
Mason, D.M.1
Newton, M.A.2
-
37
-
-
0001018767
-
Exchangeably weighted bootstraps of the general empirical process
-
Praestgaard J, Wellner JA. Exchangeably weighted bootstraps of the general empirical process. Ann Probability. 1993; 21(4):2053-86. doi:10.1214/aop/1176989011.
-
(1993)
Ann Probability
, vol.21
, Issue.4
, pp. 2053-2086
-
-
Praestgaard, J.1
Wellner, J.A.2
-
38
-
-
0041079362
-
A remark on the difference between sampling with and without replacement
-
Freedman D. A remark on the difference between sampling with and without replacement. J Am Stat Assoc. 1977; 72(359):681-1. doi:10.1080/01621459.1977.10480637.
-
(1977)
J Am Stat Assoc.
, vol.72
, Issue.359
, pp. 681-681
-
-
Freedman, D.1
-
39
-
-
0043289776
-
Analyzing bagging
-
Bühlmann P, Yu B. Analyzing bagging. Ann Stat. 2002; 30(4):927-61. doi:10.1214/aos/1031689014.
-
(2002)
Ann Stat.
, vol.30
, Issue.4
, pp. 927-961
-
-
Bühlmann, P.1
Yu, B.2
-
40
-
-
33750494541
-
On bagging and nonlinear estimation
-
Friedman JH, Hall P. On bagging and nonlinear estimation. J Stat Planning Inference. 2007; 137(3):669-83. doi:10.1016/j.jspi.2006.06.002.
-
(2007)
J Stat Planning Inference
, vol.137
, Issue.3
, pp. 669-683
-
-
Friedman, J.H.1
Hall, P.2
-
41
-
-
84923934006
-
Stochastic search for semiparametric linear regression models.
-
Banerjee M, Bunea F, Huang J, Koltchinskii V, Maathuis MH, (eds.) From Probability to Statistics and Back: High-Dimensional Models and Processes - A Festschrift in Honor of Jon A. Wellner. Beachwood, Ohio, USA: Institute of Mathematical Statistics
-
Dümbgen L, Samworth RJ, Schuhmacher D. Stochastic search for semiparametric linear regression models. In: Banerjee M, Bunea F, Huang J, Koltchinskii V, Maathuis MH, (eds.) From Probability to Statistics and Back: High-Dimensional Models and Processes - A Festschrift in Honor of Jon A. Wellner. Beachwood, Ohio, USA: Institute of Mathematical Statistics: 2013. p. 78-90. doi:10.1214/12-IMSCOLL907.
-
(2013)
, pp. 78-90
-
-
Dümbgen, L.1
Samworth, R.J.2
Schuhmacher, D.3
-
42
-
-
56449120785
-
Bolasso: model consistent lasso estimation through the bootstrap.
-
Proceedings of the 25th International Conference on Machine Learning. ICML '08. New York, New York, USA: ACM Press
-
Bach FR. Bolasso: model consistent lasso estimation through the bootstrap. In: Proceedings of the 25th International Conference on Machine Learning. ICML '08. New York, New York, USA: ACM Press: 2008. p. 33-40. doi:10.1145/1390156.1390161.
-
(2008)
, pp. 33-40
-
-
Bach, F.R.1
-
43
-
-
85051172121
-
BoomSpikeSlab: MCMC for spike and slab regression. R package version 0.5.2 CRAN.
-
Accessed on 07 February, 2015.
-
Scott SL. BoomSpikeSlab: MCMC for spike and slab regression. R package version 0.5.2 CRAN. 2014. http://CRAN.R-project.org/package=BoomSpikeSlab Accessed on 07 February, 2015.
-
(2014)
-
-
Scott, S.L.1
-
44
-
-
84905485554
-
Predicting the present with bayesian structural time series
-
Scott SL, Varian HR. Predicting the present with bayesian structural time series. Int J Math Modell Numer Optimisation. 2014; 5(1/2):4. doi:10.1504/ijmmno.2014.059942.
-
(2014)
Int J Math Modell Numer Optimisation
, vol.5
, Issue.1-2
, pp. 4
-
-
Scott, S.L.1
Varian, H.R.2
-
45
-
-
84923856788
-
Inferring causal impact using Bayesian structural time-series models.
-
press. Accessed on 07 February, 2015.
-
Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL. Inferring causal impact using Bayesian structural time-series models. Ann Appl Stat. 2014. In press. http://www.e-publications.org/ims/submission/AOAS/user/submissionFile/17112?confirm=ef7e4bee. Accessed on 07 February, 2015.
-
(2014)
Ann Appl Stat.
-
-
Brodersen, K.H.1
Gallusser, F.2
Koehler, J.3
Remy, N.4
Scott, S.L.5
-
46
-
-
42349089655
-
Mixtures of g priors for bayesian variable selection
-
Liang F, Paulo R, Molina G, Clyde MA, Berger JO. Mixtures of g priors for bayesian variable selection. J Am Stat Assoc. 2008; 103(481):410-23. doi:10.1198/016214507000001337.
-
(2008)
J Am Stat Assoc.
, vol.103
, Issue.481
, pp. 410-423
-
-
Liang, F.1
Paulo, R.2
Molina, G.3
Clyde, M.A.4
Berger, J.O.5
-
47
-
-
84897965802
-
AUC optimization vs. error rate minimization.
-
Cortes C, Mohri M. AUC optimization vs. error rate minimization. In: Thrun S, Saul LK, Schölkopf B, Thrun S (eds.) Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press: 2004. p. 313-20.
-
(2004)
In: Thrun S, Saul LK, Schölkopf B, Thrun S (eds.) Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press
, pp. 313-320
-
-
Cortes, C.1
Mohri, M.2
-
48
-
-
80054956305
-
Epidemiology, clinical characteristics, and outcome of candidemia: experience in a tertiary referral center in the UK
-
Das I, Nightingale P, Patel M, Jumaa P. Epidemiology, clinical characteristics, and outcome of candidemia: experience in a tertiary referral center in the UK. Int J Infectious Dis. 2011; 15(11):e759-63. doi:10.1016/j.ijid.2011.06.006.
-
(2011)
Int J Infectious Dis.
, vol.15
, Issue.11
, pp. e759-e763
-
-
Das, I.1
Nightingale, P.2
Patel, M.3
Jumaa, P.4
-
49
-
-
84878699314
-
Genetic susceptibility to candida infections
-
Smeekens SP, van de Veerdonk FL, Kullberg BJ, Netea MG. Genetic susceptibility to candida infections. EMBO Mol Med. 2013; 5(6):805-13. doi:10.1002/emmm.201201678.
-
(2013)
EMBO Mol Med
, vol.5
, Issue.6
, pp. 805-813
-
-
Smeekens, S.P.1
van de Veerdonk, F.L.2
Kullberg, B.J.3
Netea, M.G.4
-
50
-
-
84865605029
-
A review of candida species causing blood stream infection
-
Giri S, Kindo AJ. A review of candida species causing blood stream infection. Indian J Med Microbiol. 2012; 30(3):270-8. doi:10.4103/0255-0857.99484.
-
(2012)
Indian J Med Microbiol.
, vol.30
, Issue.3
, pp. 270-278
-
-
Giri, S.1
Kindo, A.J.2
-
51
-
-
83455254035
-
Diagnosis of invasive candidiasis in the ICU
-
Eggimann P, Bille J, Marchetti O. Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care. 2011; 1(1):37. doi:10.1186/2110-5820-1-37.
-
(2011)
Ann Intensive Care
, vol.1
, Issue.1
, pp. 37
-
-
Eggimann, P.1
Bille, J.2
Marchetti, O.3
-
52
-
-
52449129099
-
Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories
-
Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen K. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infection. 2008; 14(10):908-34. doi:10.1111/j.1469-0691.2008.02070.x.
-
(2008)
Clin Microbiol Infection
, vol.14
, Issue.10
, pp. 908-934
-
-
Woo, P.C.Y.1
Lau, S.K.P.2
Teng, J.L.L.3
Tse, H.4
Yuen, K.5
-
53
-
-
84859972408
-
Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List: Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi
-
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al.Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List: Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Nat Acad Sci USA. 2012; 109(16):6241-6. doi:10.1073/pnas.1117018109.
-
(2012)
Proc Nat Acad Sci USA
, vol.109
, Issue.16
, pp. 6241-6246
-
-
Schoch, C.L.1
Seifert, K.A.2
Huhndorf, S.3
Robert, V.4
Spouge, J.L.5
Levesque, C.A.6
-
54
-
-
84923856787
-
YAP: A Computationally Efficient Workflow for Taxonomic Analyses of Bacterial 16S and Fungal ITS Sequences.
-
Accessed on 07 February, 2015.
-
Szpakowski S. YAP: A Computationally Efficient Workflow for Taxonomic Analyses of Bacterial 16S and Fungal ITS Sequences. GitHub. 2013. http://github.com/shpakoo/YAP. Accessed on 07 February, 2015.
-
(2013)
GitHub
-
-
Szpakowski, S.1
-
55
-
-
77953071298
-
Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem
-
Scott JG, Berger JO. Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem. Ann Stat. 2010; 38(5):2587-619. doi:10.1214/10-AOS792.
-
(2010)
Ann Stat
, vol.38
, Issue.5
, pp. 2587-2619
-
-
Scott, J.G.1
Berger, J.O.2
-
56
-
-
84901298344
-
Unraveling the outcome of 16S rDNA-based taxonomy analysis through mock data and simulations
-
May A, Abeln S, Crielaard W, Heringa J, Brandt BW. Unraveling the outcome of 16S rDNA-based taxonomy analysis through mock data and simulations. Bioinformatics. 2014; 30(11):1530-8. doi:10.1093/bioinformatics/btu085.
-
(2014)
Bioinformatics
, vol.30
, Issue.11
, pp. 1530-1538
-
-
May, A.1
Abeln, S.2
Crielaard, W.3
Heringa, J.4
Brandt, B.W.5
-
57
-
-
84923856786
-
Modelling interactions in high-dimensional data with Backtracking.
-
arXiv preprint. Accessed on 07 February, 2015.
-
Shah RD. Modelling interactions in high-dimensional data with Backtracking. arXiv preprint. 2013. http://arxiv.org/abs/1208.1174. Accessed on 07 February, 2015.
-
(2013)
-
-
Shah, R.D.1
-
59
-
-
84894542017
-
The cluster elastic net for High-Dimensional regression with unknown variable grouping
-
Witten DM, Shojaie A, Zhang F. The cluster elastic net for High-Dimensional regression with unknown variable grouping. Technometrics. 2013; 56(1):112-22. doi:10.1080/00401706.2013.810174.
-
(2013)
Technometrics
, vol.56
, Issue.1
, pp. 112-122
-
-
Witten, D.M.1
Shojaie, A.2
Zhang, F.3
-
60
-
-
78049434937
-
Replicate or lie: The need for replication
-
Prosser JI. Replicate or lie: The need for replication. Environ Microbiol. 2010; 12(7):1806-10. doi:10.1111/j.1462-2920.2010.02201.x.
-
(2010)
Environ Microbiol.
, vol.12
, Issue.7
, pp. 1806-1810
-
-
Prosser, J.I.1
|