메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses

Author keywords

Bayesian model averaging; Evaluation; Microbiome analysis; Simulation design; Sparse ensemble based regression; Stability selection

Indexed keywords

BAYESIAN NETWORKS; STABILITY;

EID: 84923930979     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0467-6     Document Type: Article
Times cited : (13)

References (60)
  • 1
    • 70449713952 scopus 로고    scopus 로고
    • The NIH human microbiome project
    • The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, et al.The NIH human microbiome project. Genome Res. 2009; 19(12):2317-23. doi:10.1101/gr.096651.109.
    • (2009) Genome Res. , vol.19 , Issue.12 , pp. 2317-2323
  • 2
    • 84861961018 scopus 로고    scopus 로고
    • Tackling the microbiome
    • Hood L. Tackling the microbiome. Science. 2012; 336(6086):1209. doi:10.1126/science.1225475.
    • (2012) Science , vol.336 , Issue.6086 , pp. 1209
    • Hood, L.1
  • 3
    • 83255181845 scopus 로고    scopus 로고
    • The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011
    • Gilbert JA, Bailey M, Field D, Fierer N, Fuhrman JA, Hu B, et al.The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011. Standards Genomic Sci. 2011; 5(2):243-7. doi:10.4056/sigs.2134923.
    • (2011) Standards Genomic Sci. , vol.5 , Issue.2 , pp. 243-247
    • Gilbert, J.A.1    Bailey, M.2    Field, D.3    Fierer, N.4    Fuhrman, J.A.5    Hu, B.6
  • 4
    • 84876058250 scopus 로고    scopus 로고
    • Variable selection for sparse dirichlet-multinomial regression with an application to microbiome data analysis
    • Chen J, Li H. Variable selection for sparse dirichlet-multinomial regression with an application to microbiome data analysis. Ann Appl Stat. 2013; 7(1):418-42. doi:10.1214/12-aoas592.
    • (2013) Ann Appl Stat. , vol.7 , Issue.1 , pp. 418-442
    • Chen, J.1    Li, H.2
  • 5
    • 84890309776 scopus 로고    scopus 로고
    • A logistic normal multinomial regression model for microbiome compositional data analysis
    • Xia F, Chen J, Fung WK, Li H. A logistic normal multinomial regression model for microbiome compositional data analysis. Biometrics. 2013; 69(4):1053-63. doi:10.1111/biom.12079.
    • (2013) Biometrics , vol.69 , Issue.4 , pp. 1053-1063
    • Xia, F.1    Chen, J.2    Fung, W.K.3    Li, H.4
  • 6
    • 66249145772 scopus 로고    scopus 로고
    • Statistical methods for detecting differentially abundant features in clinical metagenomic samples
    • White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009; 5(4):1000352. doi:10.1371/journal.pcbi.1000352.
    • (2009) PLoS Comput Biol. , vol.5 , Issue.4 , pp. 1000352
    • White, J.R.1    Nagarajan, N.2    Pop, M.3
  • 7
    • 84888865593 scopus 로고    scopus 로고
    • Differential abundance analysis for microbial marker-gene surveys
    • Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013; 10(12):1200-2. doi:10.1038/nmeth.2658.
    • (2013) Nat Methods , vol.10 , Issue.12 , pp. 1200-1202
    • Paulson, J.N.1    Stine, O.C.2    Bravo, H.C.3    Pop, M.4
  • 9
    • 84865175815 scopus 로고    scopus 로고
    • Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation
    • Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al.Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infectious Diseases. 2012; 55(7):905-14. doi:10.1093/cid/cis580.
    • (2012) Clin Infectious Diseases , vol.55 , Issue.7 , pp. 905-914
    • Taur, Y.1    Xavier, J.B.2    Lipuma, L.3    Ubeda, C.4    Goldberg, J.5    Gobourne, A.6
  • 10
    • 29144464937 scopus 로고    scopus 로고
    • UniFrac: a new phylogenetic method for comparing microbial communities
    • Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005; 71(12):8228-35. doi:10.1128/aem.71.12.8228-8235.2005.
    • (2005) Appl Environ Microbiol. , vol.71 , Issue.12 , pp. 8228-8235
    • Lozupone, C.1    Knight, R.2
  • 11
    • 84865082160 scopus 로고    scopus 로고
    • Associating microbiome composition with environmental covariates using generalized UniFrac distances
    • Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, et al.Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics. 2012; 28(16):2106-13. doi:10.1093/bioinformatics/bts342.
    • (2012) Bioinformatics , vol.28 , Issue.16 , pp. 2106-2113
    • Chen, J.1    Bittinger, K.2    Charlson, E.S.3    Hoffmann, C.4    Lewis, J.5    Wu, G.D.6
  • 12
    • 84896842823 scopus 로고    scopus 로고
    • Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics
    • Beck D, Foster JA. Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics. PLoS One. 2014; 9(2):87830. doi:10.1371/journal.pone.0087830.
    • (2014) PLoS One , vol.9 , Issue.2 , pp. 87830
    • Beck, D.1    Foster, J.A.2
  • 13
    • 79251625980 scopus 로고    scopus 로고
    • Supervised classification of human microbiota
    • Knights D, Costello EK, Knight R. Supervised classification of human microbiota. FEMS Microbiol Rev. 2011; 35(2):343-59. doi:10.1111/j.1574-6976.2010.00251.x.
    • (2011) FEMS Microbiol Rev. , vol.35 , Issue.2 , pp. 343-359
    • Knights, D.1    Costello, E.K.2    Knight, R.3
  • 14
    • 84923857557 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microbiomic data.
    • Statnikov A, Henaff M, Narendra V, Konganti K, Li Z, Yang L, et al.A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome. 2013; 1(11). doi:10.1186/2049-2618-1-11.
    • (2013) Microbiome , vol.1 , Issue.11
    • Statnikov, A.1    Henaff, M.2    Narendra, V.3    Konganti, K.4    Li, Z.5    Yang, L.6
  • 15
    • 83355174923 scopus 로고    scopus 로고
    • Optimized application of penalized regression methods to diverse genomic data
    • Waldron L, Pintilie M, Tsao M-SS, Shepherd FA, Huttenhower C, Jurisica I. Optimized application of penalized regression methods to diverse genomic data. Bioinformatics. 2011; 27(24):3399-406. doi:10.1093/bioinformatics/btr591.
    • (2011) Bioinformatics , vol.27 , Issue.24 , pp. 3399-3406
    • Waldron, L.1    Pintilie, M.2    Tsao, M.-S.S.3    Shepherd, F.A.4    Huttenhower, C.5    Jurisica, I.6
  • 16
    • 84897843060 scopus 로고    scopus 로고
    • Identification of important regressor groups, subgroups and individuals via regularization methods: application to gut microbiome data
    • Garcia TP, Müller S, Carroll RJ, Walzem RL. Identification of important regressor groups, subgroups and individuals via regularization methods: application to gut microbiome data. Bioinformatics. 2014; 30(6):831-7. doi:10.1093/bioinformatics/btt608.
    • (2014) Bioinformatics , vol.30 , Issue.6 , pp. 831-837
    • Garcia, T.P.1    Müller, S.2    Carroll, R.J.3    Walzem, R.L.4
  • 17
    • 84985997789 scopus 로고    scopus 로고
    • Variable selection in regression with compositional covariates
    • Lin W, Shi P, Feng R, Li H. Variable selection in regression with compositional covariates. Biometrika. 2014; 101(4):785-797. doi:10.1093/biomet/asu031.
    • (2014) Biometrika , vol.101 , Issue.4 , pp. 785-797
    • Lin, W.1    Shi, P.2    Feng, R.3    Li, H.4
  • 19
    • 84893874008 scopus 로고    scopus 로고
    • An Introduction to Statistical Learning: with Applications
    • R, 1st edn. New York, NY, USA: Springer Series in Statistics, Springer;
    • James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: with Applications in R, 1st edn. New York, NY, USA: Springer Series in Statistics, Springer; 2013. doi:10.1007/978-1-4614-7138-7.
    • (2013)
    • James, G.1    Witten, D.2    Hastie, T.3    Tibshirani, R.4
  • 20
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures (with comments and a rejoinder by the author)
    • Breiman L. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat Sci. 2001; 16(3):199-231. doi:10.1214/ss/1009213726.
    • (2001) Stat Sci. , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 24
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for bayesian variable selection
    • George EI, McCulloch RE. Approaches for bayesian variable selection. Statistica Sinica. 1997; 7:339-73.
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 25
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning. 2001; 45(1):5-32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 26
    • 0004103979 scopus 로고
    • Data Analysis and Regression
    • A Second Course in Statistics, Student. edn. Reading, MA: Addison-Wesley Publishing Company
    • Mosteller F, Tukey JW. Data Analysis and Regression - A Second Course in Statistics, Student. edn. Reading, MA: Addison-Wesley Publishing Company; 1977.
    • (1977)
    • Mosteller, F.1    Tukey, J.W.2
  • 27
    • 79954997618 scopus 로고    scopus 로고
    • Statistics for High-Dimensional Data
    • Methods, Theory and Applications, 1st edn. Springer, Heidelberg, Germany: Springer Series in Statistics
    • Bühlmann P, van de Geer S. Statistics for High-Dimensional Data: Methods, Theory and Applications, 1st edn. Springer, Heidelberg, Germany: Springer Series in Statistics; 2011. doi:10.1007/978-3-642-20192-9.
    • (2011)
    • Bühlmann, P.1    van de Geer, S.2
  • 28
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B, Stat Methodology. 2005; 67(2):301-20. doi:10.1111/j.1467-9868.2005.00503.x.
    • (2005) J R Stat Soc Ser B, Stat Methodology , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 29
    • 84863304598 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing.
    • Accessed on 07 February, 2015.
    • R Development Core Team. R: A Language and Environment for Statistical Computing. 2014. http://www.R-project.org/. Accessed on 07 February, 2015.
    • (2014)
  • 30
    • 84954204436 scopus 로고    scopus 로고
    • regeval A systematic evaluation of high-dimensional, ensemble based regression for exploring large model spaces in microbiome analyses.
    • Accessed on 07 February, 2015.
    • Shankar J. regeval: A systematic evaluation of high-dimensional, ensemble based regression for exploring large model spaces in microbiome analyses. GitHub. 2014. http://github.com/openpencil/regeval. Accessed on 07 February, 2015.
    • (2014) GitHub.
    • Shankar, J.1
  • 31
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning
    • Data Mining, Inference, and Prediction, 2nd edn. Springer, New York, NY, USA: Springer Series in Statistics
    • Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York, NY, USA: Springer Series in Statistics; 2013. doi:10.1007/978-0-387-84858-7.
    • (2013)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 32
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Software. 2010; 33(1):1-22.
    • (2010) J Stat Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 33
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B, Stat Methodology. 1996; 58(1):267-88. doi:10.2307/2346178.
    • (1996) J R Stat Soc Ser B, Stat Methodology , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 35
    • 84887450255 scopus 로고    scopus 로고
    • Sparsity by Worst-Case Quadratic Penalties.
    • arXiv preprint. Accessed on 07 February, 2015,Accessed on 07 February, 2015. arXiv:1210.2077 Code:
    • Grandvalet Y, Chiquet J, Ambroise C. Sparsity by Worst-Case Quadratic Penalties. arXiv preprint. 2012. http://arxiv.org/abs/1210.2077 Accessed on 07 February, 2015. arXiv:1210.2077 Code: http://r-forge.r-project.org/projects/quadrupen/ Accessed on 07 February, 2015.
    • (2012)
    • Grandvalet, Y.1    Chiquet, J.2    Ambroise, C.3
  • 36
    • 21144482574 scopus 로고
    • A rank statistics approach to the consistency of a general bootstrap
    • Mason DM, Newton MA. A rank statistics approach to the consistency of a general bootstrap. Ann Stat. 1992; 20(3):1611-24. doi:10.1214/aos/1176348787.
    • (1992) Ann Stat. , vol.20 , Issue.3 , pp. 1611-1624
    • Mason, D.M.1    Newton, M.A.2
  • 37
    • 0001018767 scopus 로고
    • Exchangeably weighted bootstraps of the general empirical process
    • Praestgaard J, Wellner JA. Exchangeably weighted bootstraps of the general empirical process. Ann Probability. 1993; 21(4):2053-86. doi:10.1214/aop/1176989011.
    • (1993) Ann Probability , vol.21 , Issue.4 , pp. 2053-2086
    • Praestgaard, J.1    Wellner, J.A.2
  • 38
    • 0041079362 scopus 로고
    • A remark on the difference between sampling with and without replacement
    • Freedman D. A remark on the difference between sampling with and without replacement. J Am Stat Assoc. 1977; 72(359):681-1. doi:10.1080/01621459.1977.10480637.
    • (1977) J Am Stat Assoc. , vol.72 , Issue.359 , pp. 681-681
    • Freedman, D.1
  • 39
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • Bühlmann P, Yu B. Analyzing bagging. Ann Stat. 2002; 30(4):927-61. doi:10.1214/aos/1031689014.
    • (2002) Ann Stat. , vol.30 , Issue.4 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 40
    • 33750494541 scopus 로고    scopus 로고
    • On bagging and nonlinear estimation
    • Friedman JH, Hall P. On bagging and nonlinear estimation. J Stat Planning Inference. 2007; 137(3):669-83. doi:10.1016/j.jspi.2006.06.002.
    • (2007) J Stat Planning Inference , vol.137 , Issue.3 , pp. 669-683
    • Friedman, J.H.1    Hall, P.2
  • 41
    • 84923934006 scopus 로고    scopus 로고
    • Stochastic search for semiparametric linear regression models.
    • Banerjee M, Bunea F, Huang J, Koltchinskii V, Maathuis MH, (eds.) From Probability to Statistics and Back: High-Dimensional Models and Processes - A Festschrift in Honor of Jon A. Wellner. Beachwood, Ohio, USA: Institute of Mathematical Statistics
    • Dümbgen L, Samworth RJ, Schuhmacher D. Stochastic search for semiparametric linear regression models. In: Banerjee M, Bunea F, Huang J, Koltchinskii V, Maathuis MH, (eds.) From Probability to Statistics and Back: High-Dimensional Models and Processes - A Festschrift in Honor of Jon A. Wellner. Beachwood, Ohio, USA: Institute of Mathematical Statistics: 2013. p. 78-90. doi:10.1214/12-IMSCOLL907.
    • (2013) , pp. 78-90
    • Dümbgen, L.1    Samworth, R.J.2    Schuhmacher, D.3
  • 42
    • 56449120785 scopus 로고    scopus 로고
    • Bolasso: model consistent lasso estimation through the bootstrap.
    • Proceedings of the 25th International Conference on Machine Learning. ICML '08. New York, New York, USA: ACM Press
    • Bach FR. Bolasso: model consistent lasso estimation through the bootstrap. In: Proceedings of the 25th International Conference on Machine Learning. ICML '08. New York, New York, USA: ACM Press: 2008. p. 33-40. doi:10.1145/1390156.1390161.
    • (2008) , pp. 33-40
    • Bach, F.R.1
  • 43
    • 85051172121 scopus 로고    scopus 로고
    • BoomSpikeSlab: MCMC for spike and slab regression. R package version 0.5.2 CRAN.
    • Accessed on 07 February, 2015.
    • Scott SL. BoomSpikeSlab: MCMC for spike and slab regression. R package version 0.5.2 CRAN. 2014. http://CRAN.R-project.org/package=BoomSpikeSlab Accessed on 07 February, 2015.
    • (2014)
    • Scott, S.L.1
  • 44
    • 84905485554 scopus 로고    scopus 로고
    • Predicting the present with bayesian structural time series
    • Scott SL, Varian HR. Predicting the present with bayesian structural time series. Int J Math Modell Numer Optimisation. 2014; 5(1/2):4. doi:10.1504/ijmmno.2014.059942.
    • (2014) Int J Math Modell Numer Optimisation , vol.5 , Issue.1-2 , pp. 4
    • Scott, S.L.1    Varian, H.R.2
  • 45
    • 84923856788 scopus 로고    scopus 로고
    • Inferring causal impact using Bayesian structural time-series models.
    • press. Accessed on 07 February, 2015.
    • Brodersen KH, Gallusser F, Koehler J, Remy N, Scott SL. Inferring causal impact using Bayesian structural time-series models. Ann Appl Stat. 2014. In press. http://www.e-publications.org/ims/submission/AOAS/user/submissionFile/17112?confirm=ef7e4bee. Accessed on 07 February, 2015.
    • (2014) Ann Appl Stat.
    • Brodersen, K.H.1    Gallusser, F.2    Koehler, J.3    Remy, N.4    Scott, S.L.5
  • 46
    • 42349089655 scopus 로고    scopus 로고
    • Mixtures of g priors for bayesian variable selection
    • Liang F, Paulo R, Molina G, Clyde MA, Berger JO. Mixtures of g priors for bayesian variable selection. J Am Stat Assoc. 2008; 103(481):410-23. doi:10.1198/016214507000001337.
    • (2008) J Am Stat Assoc. , vol.103 , Issue.481 , pp. 410-423
    • Liang, F.1    Paulo, R.2    Molina, G.3    Clyde, M.A.4    Berger, J.O.5
  • 48
    • 80054956305 scopus 로고    scopus 로고
    • Epidemiology, clinical characteristics, and outcome of candidemia: experience in a tertiary referral center in the UK
    • Das I, Nightingale P, Patel M, Jumaa P. Epidemiology, clinical characteristics, and outcome of candidemia: experience in a tertiary referral center in the UK. Int J Infectious Dis. 2011; 15(11):e759-63. doi:10.1016/j.ijid.2011.06.006.
    • (2011) Int J Infectious Dis. , vol.15 , Issue.11 , pp. e759-e763
    • Das, I.1    Nightingale, P.2    Patel, M.3    Jumaa, P.4
  • 50
    • 84865605029 scopus 로고    scopus 로고
    • A review of candida species causing blood stream infection
    • Giri S, Kindo AJ. A review of candida species causing blood stream infection. Indian J Med Microbiol. 2012; 30(3):270-8. doi:10.4103/0255-0857.99484.
    • (2012) Indian J Med Microbiol. , vol.30 , Issue.3 , pp. 270-278
    • Giri, S.1    Kindo, A.J.2
  • 51
    • 83455254035 scopus 로고    scopus 로고
    • Diagnosis of invasive candidiasis in the ICU
    • Eggimann P, Bille J, Marchetti O. Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care. 2011; 1(1):37. doi:10.1186/2110-5820-1-37.
    • (2011) Ann Intensive Care , vol.1 , Issue.1 , pp. 37
    • Eggimann, P.1    Bille, J.2    Marchetti, O.3
  • 52
    • 52449129099 scopus 로고    scopus 로고
    • Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories
    • Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen K. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infection. 2008; 14(10):908-34. doi:10.1111/j.1469-0691.2008.02070.x.
    • (2008) Clin Microbiol Infection , vol.14 , Issue.10 , pp. 908-934
    • Woo, P.C.Y.1    Lau, S.K.P.2    Teng, J.L.L.3    Tse, H.4    Yuen, K.5
  • 53
    • 84859972408 scopus 로고    scopus 로고
    • Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List: Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi
    • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al.Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List: Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Nat Acad Sci USA. 2012; 109(16):6241-6. doi:10.1073/pnas.1117018109.
    • (2012) Proc Nat Acad Sci USA , vol.109 , Issue.16 , pp. 6241-6246
    • Schoch, C.L.1    Seifert, K.A.2    Huhndorf, S.3    Robert, V.4    Spouge, J.L.5    Levesque, C.A.6
  • 54
    • 84923856787 scopus 로고    scopus 로고
    • YAP: A Computationally Efficient Workflow for Taxonomic Analyses of Bacterial 16S and Fungal ITS Sequences.
    • Accessed on 07 February, 2015.
    • Szpakowski S. YAP: A Computationally Efficient Workflow for Taxonomic Analyses of Bacterial 16S and Fungal ITS Sequences. GitHub. 2013. http://github.com/shpakoo/YAP. Accessed on 07 February, 2015.
    • (2013) GitHub
    • Szpakowski, S.1
  • 55
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem
    • Scott JG, Berger JO. Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem. Ann Stat. 2010; 38(5):2587-619. doi:10.1214/10-AOS792.
    • (2010) Ann Stat , vol.38 , Issue.5 , pp. 2587-2619
    • Scott, J.G.1    Berger, J.O.2
  • 56
    • 84901298344 scopus 로고    scopus 로고
    • Unraveling the outcome of 16S rDNA-based taxonomy analysis through mock data and simulations
    • May A, Abeln S, Crielaard W, Heringa J, Brandt BW. Unraveling the outcome of 16S rDNA-based taxonomy analysis through mock data and simulations. Bioinformatics. 2014; 30(11):1530-8. doi:10.1093/bioinformatics/btu085.
    • (2014) Bioinformatics , vol.30 , Issue.11 , pp. 1530-1538
    • May, A.1    Abeln, S.2    Crielaard, W.3    Heringa, J.4    Brandt, B.W.5
  • 57
    • 84923856786 scopus 로고    scopus 로고
    • Modelling interactions in high-dimensional data with Backtracking.
    • arXiv preprint. Accessed on 07 February, 2015.
    • Shah RD. Modelling interactions in high-dimensional data with Backtracking. arXiv preprint. 2013. http://arxiv.org/abs/1208.1174. Accessed on 07 February, 2015.
    • (2013)
    • Shah, R.D.1
  • 59
    • 84894542017 scopus 로고    scopus 로고
    • The cluster elastic net for High-Dimensional regression with unknown variable grouping
    • Witten DM, Shojaie A, Zhang F. The cluster elastic net for High-Dimensional regression with unknown variable grouping. Technometrics. 2013; 56(1):112-22. doi:10.1080/00401706.2013.810174.
    • (2013) Technometrics , vol.56 , Issue.1 , pp. 112-122
    • Witten, D.M.1    Shojaie, A.2    Zhang, F.3
  • 60
    • 78049434937 scopus 로고    scopus 로고
    • Replicate or lie: The need for replication
    • Prosser JI. Replicate or lie: The need for replication. Environ Microbiol. 2010; 12(7):1806-10. doi:10.1111/j.1462-2920.2010.02201.x.
    • (2010) Environ Microbiol. , vol.12 , Issue.7 , pp. 1806-1810
    • Prosser, J.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.