-
2
-
-
0346786584
-
Arcing classifiers (with discussion)
-
Breiman L (1998) Arcing classifiers (with discussion). Ann Stat 26: 801-849.
-
(1998)
Ann Stat
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
3
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman L (1999) Prediction games and arcing algorithms. Neural Comput 11: 1493-1517.
-
(1999)
Neural Comput
, vol.11
, pp. 1493-1517
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
Breiman L (2001) Random forests. Mach Learn 45: 5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
33745157294
-
Boosting for high-dimensional linear models
-
Bühlmann P (2006) Boosting for high-dimensional linear models. Ann Stat 34: 559-583.
-
(2006)
Ann Stat
, vol.34
, pp. 559-583
-
-
Bühlmann, P.1
-
6
-
-
41549141939
-
Boosting algorithms: regularization, prediction and model fitting (with discussion)
-
Bühlmann P, Hothorn T (2007) Boosting algorithms: regularization, prediction and model fitting (with discussion). Stat Sci 22: 477-522.
-
(2007)
Stat Sci
, vol.22
, pp. 477-522
-
-
Bühlmann, P.1
Hothorn, T.2
-
7
-
-
0043245810
-
2 loss: regression and classification
-
2 loss: regression and classification. J Am Stat Assoc 98: 324-338.
-
(2003)
J Am Stat Assoc
, vol.98
, pp. 324-338
-
-
Bühlmann, P.1
Yu, B.2
-
10
-
-
25444532788
-
Flexible smoothing with B-splines and penalties (with discussion)
-
Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties (with discussion). Stat Sci 11: 89-121.
-
(1996)
Stat Sci
, vol.11
, pp. 89-121
-
-
Eilers, P.H.C.1
Marx, B.D.2
-
11
-
-
77949352853
-
A selective overview of variable selection in high dimensional feature space
-
Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Statistica Sinica 20: 101-148.
-
(2010)
Statistica Sinica
, vol.20
, pp. 101-148
-
-
Fan, J.1
Lv, J.2
-
12
-
-
79960127235
-
Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
-
Fenske N, Kneib T, Hothorn T (2011) Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J Am Stat Assoc 106(494): 494-510.
-
(2011)
J Am Stat Assoc
, vol.106
, Issue.494
, pp. 494-510
-
-
Fenske, N.1
Kneib, T.2
Hothorn, T.3
-
14
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29: 1189-1232.
-
(2001)
Ann Stat
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
15
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting (with discussion)
-
Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting (with discussion). Ann Stat 28: 337-407.
-
(2000)
Ann Stat
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
16
-
-
22844452347
-
Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths
-
Garcia AL, Wagner K, Hothorn T, Koebnick C, Zunft HJF, Tippo U (2005) Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths. Obes Res 13(3): 626-634.
-
(2005)
Obes Res
, vol.13
, Issue.3
, pp. 626-634
-
-
Garcia, A.L.1
Wagner, K.2
Hothorn, T.3
Koebnick, C.4
Zunft, H.J.F.5
Tippo, U.6
-
17
-
-
49749102427
-
Comment: Boosting algorithms: regularization, prediction and model fitting
-
Hastie T (2007) Comment: Boosting algorithms: regularization, prediction and model fitting. Stat Sci 22: 513-515.
-
(2007)
Stat Sci
, vol.22
, pp. 513-515
-
-
Hastie, T.1
-
19
-
-
0003684449
-
-
2nd edn., New York: Springer
-
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
20
-
-
84893918341
-
-
PhD thesis, Department of Statistics, Ludwig-Maximilians-Universität München, Munich
-
Hofner B (2011) Boosting in structured additive models. PhD thesis, Department of Statistics, Ludwig-Maximilians-Universität München, Munich.
-
(2011)
Boosting in structured additive models
-
-
Hofner, B.1
-
22
-
-
80053616945
-
Monotonicity-constrained species distribution models
-
Hofner B, Müller J, Hothorn T (2011b) Monotonicity-constrained species distribution models. Ecology 92: 1895-1901.
-
(2011)
Ecology
, vol.92
, pp. 1895-1901
-
-
Hofner, B.1
Müller, J.2
Hothorn, T.3
-
23
-
-
33749677657
-
Unbiased recursive partitioning: a conditional inference framework
-
Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15: 651-674.
-
(2006)
J Comput Graph Stat
, vol.15
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
24
-
-
77956921559
-
Model-based boosting 2.0
-
Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B (2010) Model-based boosting 2. 0. J Mach Learn Res 11: 2109-2113.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 2109-2113
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
25
-
-
84881622205
-
-
R package version 2
-
Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B (2012) mboost: model-based boosting. http://CRAN. R-project. org/package=mboost, R package version 2. 1-3.
-
(2012)
Mboost: Model-based boosting
, pp. 1-3
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
26
-
-
66949120727
-
Variable selection and model choice in geoadditive regression models
-
on 16 Apr 2012, Web appendix accessed at
-
Kneib T, Hothorn T, Tutz G (2009) Variable selection and model choice in geoadditive regression models. Biometrics 65: 626-634. Web appendix accessed at http://www. biometrics. tibs. org/datasets/071127P. htm on 16 Apr 2012.
-
(2009)
Biometrics
, vol.65
, pp. 626-634
-
-
Kneib, T.1
Hothorn, T.2
Tutz, G.3
-
27
-
-
84925105967
-
-
New York: Cambridge University Press
-
Koenker R (2005) Quantile regression. Cambridge University Press, New York.
-
(2005)
Quantile Regression
-
-
Koenker, R.1
-
28
-
-
84859815011
-
Generalized additive models for location, scale and shape for high-dimensional data-a flexible approach based on boosting
-
Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012a) Generalized additive models for location, scale and shape for high-dimensional data-a flexible approach based on boosting. J R Stat Soc Ser C (Appl Stat) 61(3): 403-427.
-
(2012)
J R Stat Soc Ser C (Appl Stat)
, vol.61
, Issue.3
, pp. 403-427
-
-
Mayr, A.1
Fenske, N.2
Hofner, B.3
Kneib, T.4
Schmid, M.5
-
29
-
-
84858743801
-
The importance of knowing when to stop-a sequential stopping rule for component-wise gradient boosting
-
Mayr A, Hofner B, Schmid M (2012b) The importance of knowing when to stop-a sequential stopping rule for component-wise gradient boosting. Methods Inf Med 51(2): 178-186.
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 178-186
-
-
Mayr, A.1
Hofner, B.2
Schmid, M.3
-
30
-
-
84856094557
-
Prediction intervals for future BMI values of individual children-a non-parametric approach by quantile boosting
-
Mayr A, Hothorn T, Fenske N (2012c) Prediction intervals for future BMI values of individual children-a non-parametric approach by quantile boosting. BMC Med Res Methodol 12(6): 1-13.
-
(2012)
BMC Med Res Methodol
, vol.12
, Issue.6
, pp. 1-13
-
-
Mayr, A.1
Hothorn, T.2
Fenske, N.3
-
32
-
-
33745174860
-
Quantile regression forests
-
Meinshausen N (2006) Quantile regression forests. J Mach Learn Res 7: 983-999.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 983-999
-
-
Meinshausen, N.1
-
34
-
-
83855161149
-
-
R Development Core Team, R package version 3
-
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team (2012) nlme: linear and nonlinear mixed effects models. http://CRAN. R-project. org/package=nlme, R package version 3. 1-103.
-
(2012)
Nlme: Linear and nonlinear mixed effects models
, pp. 1-103
-
-
Pinheiro, J.1
Bates, D.2
DebRoy, S.3
Sarkar, D.4
-
35
-
-
84907095419
-
R: A language and Environment for statistical computing
-
R Development Core Team, Vienna, ISBN 3-900051-07-0
-
R Development Core Team (2012) R: a language and Environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www. R-project. org, ISBN 3-900051-07-0.
-
(2012)
R Foundation for Statistical Computing
-
-
-
37
-
-
55549110371
-
Boosting additive models using component-wise P-splines
-
Schmid M, Hothorn T (2008a) Boosting additive models using component-wise P-splines. Comput Stat Data Anal 53: 298-311.
-
(2008)
Comput Stat Data Anal
, vol.53
, pp. 298-311
-
-
Schmid, M.1
Hothorn, T.2
-
38
-
-
47349125398
-
Flexible boosting of accelerated failure time models
-
Schmid M, Hothorn T (2008b) Flexible boosting of accelerated failure time models. BMC Bioinform 9: 269.
-
(2008)
BMC Bioinform
, vol.9
, pp. 269
-
-
Schmid, M.1
Hothorn, T.2
-
39
-
-
77953324042
-
Estimation and regularization techniques for regression models with multidimensional prediction functions
-
Schmid M, Potapov S, Pfahlberg A, Hothorn T (2010) Estimation and regularization techniques for regression models with multidimensional prediction functions. Stat Comput 20: 139-150.
-
(2010)
Stat Comput
, vol.20
, pp. 139-150
-
-
Schmid, M.1
Potapov, S.2
Pfahlberg, A.3
Hothorn, T.4
-
40
-
-
81555220933
-
Geoadditive regression modeling of stream biological condition
-
Schmid M, Hothorn T, Maloney KO, Weller DE, Potapov S (2011) Geoadditive regression modeling of stream biological condition. Environ Ecol Stat 18(4): 709-733.
-
(2011)
Environ Ecol Stat
, vol.18
, Issue.4
, pp. 709-733
-
-
Schmid, M.1
Hothorn, T.2
Maloney, K.O.3
Weller, D.E.4
Potapov, S.5
-
41
-
-
84856711914
-
Geoadditive expectile regression
-
Sobotka F, Kneib T (2010) Geoadditive expectile regression. Comput Stat Data Anal 56(4): 755-767.
-
(2010)
Comput Stat Data Anal
, vol.56
, Issue.4
, pp. 755-767
-
-
Sobotka, F.1
Kneib, T.2
|