메뉴 건너뛰기




Volumn 29, Issue 1-2, 2014, Pages 3-35

Model-based boosting in R: A hands-on tutorial using the R package mboost

Author keywords

Boosting; Component wise functional gradient descent; Generalized additive models; Tutorial

Indexed keywords


EID: 84893967115     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-012-0382-5     Document Type: Article
Times cited : (209)

References (43)
  • 2
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • Breiman L (1998) Arcing classifiers (with discussion). Ann Stat 26: 801-849.
    • (1998) Ann Stat , vol.26 , pp. 801-849
    • Breiman, L.1
  • 3
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman L (1999) Prediction games and arcing algorithms. Neural Comput 11: 1493-1517.
    • (1999) Neural Comput , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45: 5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • Bühlmann P (2006) Boosting for high-dimensional linear models. Ann Stat 34: 559-583.
    • (2006) Ann Stat , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 6
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting (with discussion)
    • Bühlmann P, Hothorn T (2007) Boosting algorithms: regularization, prediction and model fitting (with discussion). Stat Sci 22: 477-522.
    • (2007) Stat Sci , vol.22 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 7
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: regression and classification
    • 2 loss: regression and classification. J Am Stat Assoc 98: 324-338.
    • (2003) J Am Stat Assoc , vol.98 , pp. 324-338
    • Bühlmann, P.1    Yu, B.2
  • 10
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties (with discussion)
    • Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties (with discussion). Stat Sci 11: 89-121.
    • (1996) Stat Sci , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 11
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space
    • Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Statistica Sinica 20: 101-148.
    • (2010) Statistica Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 12
    • 79960127235 scopus 로고    scopus 로고
    • Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
    • Fenske N, Kneib T, Hothorn T (2011) Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J Am Stat Assoc 106(494): 494-510.
    • (2011) J Am Stat Assoc , vol.106 , Issue.494 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 14
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29: 1189-1232.
    • (2001) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion)
    • Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting (with discussion). Ann Stat 28: 337-407.
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 22844452347 scopus 로고    scopus 로고
    • Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths
    • Garcia AL, Wagner K, Hothorn T, Koebnick C, Zunft HJF, Tippo U (2005) Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths. Obes Res 13(3): 626-634.
    • (2005) Obes Res , vol.13 , Issue.3 , pp. 626-634
    • Garcia, A.L.1    Wagner, K.2    Hothorn, T.3    Koebnick, C.4    Zunft, H.J.F.5    Tippo, U.6
  • 17
    • 49749102427 scopus 로고    scopus 로고
    • Comment: Boosting algorithms: regularization, prediction and model fitting
    • Hastie T (2007) Comment: Boosting algorithms: regularization, prediction and model fitting. Stat Sci 22: 513-515.
    • (2007) Stat Sci , vol.22 , pp. 513-515
    • Hastie, T.1
  • 20
    • 84893918341 scopus 로고    scopus 로고
    • PhD thesis, Department of Statistics, Ludwig-Maximilians-Universität München, Munich
    • Hofner B (2011) Boosting in structured additive models. PhD thesis, Department of Statistics, Ludwig-Maximilians-Universität München, Munich.
    • (2011) Boosting in structured additive models
    • Hofner, B.1
  • 21
    • 80053581322 scopus 로고    scopus 로고
    • A framework for unbiased model selection based on boosting
    • Hofner B, Hothorn T, Kneib T, Schmid M (2011a) A framework for unbiased model selection based on boosting. J Comput Graph Stat 20: 956-971.
    • (2011) J Comput Graph Stat , vol.20 , pp. 956-971
    • Hofner, B.1    Hothorn, T.2    Kneib, T.3    Schmid, M.4
  • 22
    • 80053616945 scopus 로고    scopus 로고
    • Monotonicity-constrained species distribution models
    • Hofner B, Müller J, Hothorn T (2011b) Monotonicity-constrained species distribution models. Ecology 92: 1895-1901.
    • (2011) Ecology , vol.92 , pp. 1895-1901
    • Hofner, B.1    Müller, J.2    Hothorn, T.3
  • 23
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: a conditional inference framework
    • Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15: 651-674.
    • (2006) J Comput Graph Stat , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 26
    • 66949120727 scopus 로고    scopus 로고
    • Variable selection and model choice in geoadditive regression models
    • on 16 Apr 2012, Web appendix accessed at
    • Kneib T, Hothorn T, Tutz G (2009) Variable selection and model choice in geoadditive regression models. Biometrics 65: 626-634. Web appendix accessed at http://www. biometrics. tibs. org/datasets/071127P. htm on 16 Apr 2012.
    • (2009) Biometrics , vol.65 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 27
    • 84925105967 scopus 로고    scopus 로고
    • New York: Cambridge University Press
    • Koenker R (2005) Quantile regression. Cambridge University Press, New York.
    • (2005) Quantile Regression
    • Koenker, R.1
  • 28
    • 84859815011 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape for high-dimensional data-a flexible approach based on boosting
    • Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012a) Generalized additive models for location, scale and shape for high-dimensional data-a flexible approach based on boosting. J R Stat Soc Ser C (Appl Stat) 61(3): 403-427.
    • (2012) J R Stat Soc Ser C (Appl Stat) , vol.61 , Issue.3 , pp. 403-427
    • Mayr, A.1    Fenske, N.2    Hofner, B.3    Kneib, T.4    Schmid, M.5
  • 29
    • 84858743801 scopus 로고    scopus 로고
    • The importance of knowing when to stop-a sequential stopping rule for component-wise gradient boosting
    • Mayr A, Hofner B, Schmid M (2012b) The importance of knowing when to stop-a sequential stopping rule for component-wise gradient boosting. Methods Inf Med 51(2): 178-186.
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 30
    • 84856094557 scopus 로고    scopus 로고
    • Prediction intervals for future BMI values of individual children-a non-parametric approach by quantile boosting
    • Mayr A, Hothorn T, Fenske N (2012c) Prediction intervals for future BMI values of individual children-a non-parametric approach by quantile boosting. BMC Med Res Methodol 12(6): 1-13.
    • (2012) BMC Med Res Methodol , vol.12 , Issue.6 , pp. 1-13
    • Mayr, A.1    Hothorn, T.2    Fenske, N.3
  • 32
    • 33745174860 scopus 로고    scopus 로고
    • Quantile regression forests
    • Meinshausen N (2006) Quantile regression forests. J Mach Learn Res 7: 983-999.
    • (2006) J Mach Learn Res , vol.7 , pp. 983-999
    • Meinshausen, N.1
  • 35
    • 84907095419 scopus 로고    scopus 로고
    • R: A language and Environment for statistical computing
    • R Development Core Team, Vienna, ISBN 3-900051-07-0
    • R Development Core Team (2012) R: a language and Environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www. R-project. org, ISBN 3-900051-07-0.
    • (2012) R Foundation for Statistical Computing
  • 37
    • 55549110371 scopus 로고    scopus 로고
    • Boosting additive models using component-wise P-splines
    • Schmid M, Hothorn T (2008a) Boosting additive models using component-wise P-splines. Comput Stat Data Anal 53: 298-311.
    • (2008) Comput Stat Data Anal , vol.53 , pp. 298-311
    • Schmid, M.1    Hothorn, T.2
  • 38
    • 47349125398 scopus 로고    scopus 로고
    • Flexible boosting of accelerated failure time models
    • Schmid M, Hothorn T (2008b) Flexible boosting of accelerated failure time models. BMC Bioinform 9: 269.
    • (2008) BMC Bioinform , vol.9 , pp. 269
    • Schmid, M.1    Hothorn, T.2
  • 39
    • 77953324042 scopus 로고    scopus 로고
    • Estimation and regularization techniques for regression models with multidimensional prediction functions
    • Schmid M, Potapov S, Pfahlberg A, Hothorn T (2010) Estimation and regularization techniques for regression models with multidimensional prediction functions. Stat Comput 20: 139-150.
    • (2010) Stat Comput , vol.20 , pp. 139-150
    • Schmid, M.1    Potapov, S.2    Pfahlberg, A.3    Hothorn, T.4
  • 41
    • 84856711914 scopus 로고    scopus 로고
    • Geoadditive expectile regression
    • Sobotka F, Kneib T (2010) Geoadditive expectile regression. Comput Stat Data Anal 56(4): 755-767.
    • (2010) Comput Stat Data Anal , vol.56 , Issue.4 , pp. 755-767
    • Sobotka, F.1    Kneib, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.