-
1
-
-
84903796458
-
A test for comparing two groups of samples when analyzing multiple omics profiles
-
Chaturvedi N, Goeman J, Boer J, van Wieringen W, de Menezes R. A test for comparing two groups of samples when analyzing multiple omics profiles. BMC Bioinformatics. 2014; 15(1):236.
-
(2014)
BMC Bioinformatics
, vol.15
, Issue.1
, pp. 236
-
-
Chaturvedi, N.1
Goeman, J.2
Boer, J.3
van Wieringen, W.4
de Menezes, R.5
-
2
-
-
57749195712
-
RNA-Seq: a revolutionary tool for transcriptomics
-
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics. 2009; 10(1):57-63.
-
(2009)
Nature Reviews Genetics
, vol.10
, Issue.1
, pp. 57-63
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
3
-
-
77954464041
-
Proteomics: a pragmatic perspective
-
Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010; 28(7):695-709.
-
(2010)
Nat Biotechnol
, vol.28
, Issue.7
, pp. 695-709
-
-
Mallick, P.1
Kuster, B.2
-
4
-
-
80052654387
-
Metabolab: Advanced NMR data processing and analysis for metabolomics
-
Ludwig C, Günther UL. Metabolab: Advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics. 2011; 12(1):366.
-
(2011)
BMC Bioinformatics
, vol.12
, Issue.1
, pp. 366
-
-
Ludwig, C.1
Günther, U.L.2
-
6
-
-
42249096794
-
Mining phenotypes for gene function prediction
-
Groth P, Weiss B, Pohlenz HD, Leser U. Mining phenotypes for gene function prediction. BMC Bioinformatics. 2008; 9(1):136.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 136
-
-
Groth, P.1
Weiss, B.2
Pohlenz, H.D.3
Leser, U.4
-
7
-
-
66949120727
-
Variable selection and model choice in geoadditive regression models
-
Kneib T, Hothorn T, Tutz G. Variable selection and model choice in geoadditive regression models. Biometrics. 2009; 65:626-34.
-
(2009)
Biometrics
, vol.65
, pp. 626-634
-
-
Kneib, T.1
Hothorn, T.2
Tutz, G.3
-
8
-
-
84952499789
-
Frequency of selecting noise variables in subset regression analysis: a simulation study
-
Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. Am Statistician. 1987; 41:84-6.
-
(1987)
Am Statistician
, vol.41
, pp. 84-86
-
-
Flack, V.F.1
Chang, P.C.2
-
9
-
-
9644265270
-
Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality
-
Austin PC, Tu JV. Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality. J Cli Epidemiol. 2004; 57:1138-46.
-
(2004)
J Cli Epidemiol
, vol.57
, pp. 1138-1146
-
-
Austin, P.C.1
Tu, J.V.2
-
10
-
-
50249134209
-
Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study
-
Austin PC. Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study. J Cli Epidemiol. 2008; 61:1009-17.
-
(2008)
J Cli Epidemiol
, vol.61
, pp. 1009-1017
-
-
Austin, P.C.1
-
11
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc: Series B (Stat Methodol). 1996; 58:267-88.
-
(1996)
J R Stat Soc: Series B (Stat Methodol)
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
13
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc: Series B (Stat Methodol). 2005; 67:301-20.
-
(2005)
J R Stat Soc: Series B (Stat Methodol)
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
14
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting (with discussion)
-
Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion). Ann Stat. 2000; 28:337-407.
-
(2000)
Ann Stat
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Lear. 2001; 45:5-32.
-
(2001)
Mach Lear
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
16
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinfor. 2007; 8:25.
-
(2007)
BMC Bioinfor
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.L.2
Zeileis, A.3
Hothorn, T.4
-
18
-
-
84871371181
-
Variable selection with error control: another look at stability selection
-
Shah RD, Samworth RJ. Variable selection with error control: another look at stability selection. J R Stat Soc: Series B (Stat Methodol). 2013; 75:55-80.
-
(2013)
J R Stat Soc: Series B (Stat Methodol).
, vol.75
, pp. 55-80
-
-
Shah, R.D.1
Samworth, R.J.2
-
19
-
-
84869882656
-
TIGRESS: Trustful Inference of Gene REgulation using Stability Selection
-
Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst Biol. 2012; 6(1):145.
-
(2012)
BMC Syst Biol
, vol.6
, Issue.1
, pp. 145
-
-
Haury, A.C.1
Mordelet, F.2
Vera-Licona, P.3
Vert, J.P.4
-
20
-
-
84870305264
-
Wisdom of crowds for robust gene network inference
-
Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nat methods. 2012; 9(8):796-804.
-
(2012)
Nat methods
, vol.9
, Issue.8
, pp. 796-804
-
-
Marbach, D.1
Costello, J.C.2
Küffner, R.3
Vega, N.M.4
Prill, R.J.5
Camacho, D.M.6
-
21
-
-
78650540144
-
A variable selection method for genome-wide association studies
-
He Q, Lin DY. A variable selection method for genome-wide association studies. Bioinformatics. 2011; 27(1):1-8.
-
(2011)
Bioinformatics
, vol.27
, Issue.1
, pp. 1-8
-
-
He, Q.1
Lin, D.Y.2
-
22
-
-
84875729537
-
Stable graphical model estimation with random forests for discrete, continuous, and mixed variables
-
Fellinghauer B, Bühlmann P, Ryffel M, von Rhein M, Reinhardt JD. Stable graphical model estimation with random forests for discrete, continuous, and mixed variables. Comput Stat Data Anal. 2013; 64:132-52.
-
(2013)
Comput Stat Data Anal
, vol.64
, pp. 132-152
-
-
Fellinghauer, B.1
Bühlmann, P.2
Ryffel, M.3
von Rhein, M.4
Reinhardt, J.D.5
-
23
-
-
84895791592
-
High-dimensional statistics with a view toward applications in biology
-
Bühlmann P, Kalisch M, Meier L. High-dimensional statistics with a view toward applications in biology. Annu Rev Stat Appl. 2014; 1:255-78.
-
(2014)
Annu Rev Stat Appl
, vol.1
, pp. 255-278
-
-
Bühlmann, P.1
Kalisch, M.2
Meier, L.3
-
24
-
-
79955504883
-
Decomposing environmental, spatial, and spatiotemporal components of species distributions
-
Hothorn T, Müller J, Schröder B, Kneib T, Brandl R. Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecol Monogr. 2011; 81:329-47.
-
(2011)
Ecol Monogr
, vol.81
, pp. 329-347
-
-
Hothorn, T.1
Müller, J.2
Schröder, B.3
Kneib, T.4
Brandl, R.5
-
25
-
-
0043245810
-
2 loss: regression and classification
-
2 loss: regression and classification. J Am Stat Assoc. 2003; 98:324-39.
-
(2003)
J Am Stat Assoc
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
26
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting
-
Bühlmann P, Hothorn T. Boosting algorithms: Regularization, prediction and model fitting. Stat Sci. 2007; 22:477-505.
-
(2007)
Stat Sci
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
27
-
-
84893967115
-
Model-based boosting in R - A hands-on tutorial using the R package mboost
-
Hofner B, Mayr A, Robinzonov N, Schmid M. Model-based boosting in R - A hands-on tutorial using the R package mboost. Comput Stat. 2014; 29:3-35.
-
(2014)
Comput Stat
, vol.29
, pp. 3-35
-
-
Hofner, B.1
Mayr, A.2
Robinzonov, N.3
Schmid, M.4
-
29
-
-
55549110371
-
Boosting additive models using component-wise P-splines
-
Schmid M, Hothorn T. Boosting additive models using component-wise P-splines. Comput Stat Data Anal. 2008; 53:298-311.
-
(2008)
Comput Stat Data Anal
, vol.53
, pp. 298-311
-
-
Schmid, M.1
Hothorn, T.2
-
30
-
-
80053616945
-
Monotonicity-constrained species distribution models
-
Hofner B, Müller J, Hothorn T. Monotonicity-constrained species distribution models. Ecology. 2011; 92:1895-1901.
-
(2011)
Ecology
, vol.92
, pp. 1895-1901
-
-
Hofner, B.1
Müller, J.2
Hothorn, T.3
-
31
-
-
84953350942
-
A unified framework of constrained regression.
-
Hofner B, Kneib T, Hothorn T. A unified framework of constrained regression. Stat Comput. 2014:1-14.
-
(2014)
Stat Comput.
, pp. 1-14
-
-
Hofner, B.1
Kneib, T.2
Hothorn, T.3
-
32
-
-
79960127235
-
Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
-
Fenske N, Kneib T, Hothorn T. Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J Am Stat Assoc. 2011; 106:494-510.
-
(2011)
J Am Stat Assoc
, vol.106
, pp. 494-510
-
-
Fenske, N.1
Kneib, T.2
Hothorn, T.3
-
34
-
-
0003157339
-
Robust estimation of a location parameter
-
Huber PJ. Robust estimation of a location parameter. Ann Stat. 1964; 53:73-101.
-
(1964)
Ann Stat
, vol.53
, pp. 73-101
-
-
Huber, P.J.1
-
35
-
-
84896968781
-
Boosting the concordance index for survival data - A unified framework to derive and evaluate biomarker combinations
-
Mayr A, Schmid M. Boosting the concordance index for survival data - A unified framework to derive and evaluate biomarker combinations. PloS one. 2014; 9(1):84483.
-
(2014)
PloS one
, vol.9
, Issue.1
, pp. 84483
-
-
Mayr, A.1
Schmid, M.2
-
36
-
-
77956921559
-
Model-based boosting 2.0
-
Hothorn T, Bühlmann P, Kneib T, Schmid M, Hofner B. Model-based boosting 2.0. J Mach Lear Res. 2010; 11:2109-113.
-
(2010)
J Mach Lear Res
, vol.11
, pp. 2109-2113
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
37
-
-
84972488102
-
Generalized additive models
-
Hastie T, Tibshirani R. Generalized additive models. Stat Sci. 1986; 1:297-310.
-
(1986)
Stat Sci
, vol.1
, pp. 297-310
-
-
Hastie, T.1
Tibshirani, R.2
-
39
-
-
8644257675
-
Penalized structured additive regression: A Bayesian perspective
-
Fahrmeir L, Kneib T, Lang S. Penalized structured additive regression: A Bayesian perspective. Stat Sinica. 2004; 14:731-61.
-
(2004)
Stat Sinica
, vol.14
, pp. 731-761
-
-
Fahrmeir, L.1
Kneib, T.2
Lang, S.3
-
40
-
-
84858743801
-
The importance of knowing when to stop - A sequential stopping rule for component-wise gradient boosting
-
Mayr A, Hofner B, Schmid M. The importance of knowing when to stop - A sequential stopping rule for component-wise gradient boosting. Meth Info Med. 2012; 51:178-86.
-
(2012)
Meth Info Med
, vol.51
, pp. 178-186
-
-
Mayr, A.1
Hofner, B.2
Schmid, M.3
-
41
-
-
84872440853
-
Autism spectrum disorders
-
Manning-Courtney P, Murray D, Currans K, Johnson H, Bing N, Kroeger-Geoppinger K, et al. Autism spectrum disorders. Curr Probl Pediatr Adolesc Health Care. 2013; 43(1):2-11. Autism Spectrum Disorders.
-
(2013)
Curr Probl Pediatr Adolesc Health Care
, vol.43
, Issue.1
, pp. 2-11
-
-
Manning-Courtney, P.1
Murray, D.2
Currans, K.3
Johnson, H.4
Bing, N.5
Kroeger-Geoppinger, K.6
-
42
-
-
84878345032
-
-
Mol Autism;
-
Boccuto L, Chen CF, Pittman A, Skinner C, McCartney H, Jones K, et al. Decreased tryptophan metabolism in patients with autism spectrum disorders. Mol Autism; 4(1):16.
-
Decreased tryptophan metabolism in patients with autism spectrum disorders.
, vol.4
, Issue.1
, pp. 16
-
-
Boccuto, L.1
Chen, C.F.2
Pittman, A.3
Skinner, C.4
McCartney, H.5
Jones, K.6
-
43
-
-
0034911878
-
Phenotype microarrays for high throughput phenotypic testing and assay of gene function
-
Bochner BR, Gadzinski P, Panomitros E. Phenotype microarrays for high throughput phenotypic testing and assay of gene function. Genome Res. 2001; 11:1246-55.
-
(2001)
Genome Res
, vol.11
, pp. 1246-1255
-
-
Bochner, B.R.1
Gadzinski, P.2
Panomitros, E.3
-
44
-
-
84931285979
-
-
with contributions by R package version 1.1-0.
-
Göker M, with contributions by Hofner B, Vaas LAI, Sikorski J, Buddruhs N, Fiebig A. opm: Analysing Phenotype Microarray and Growth Curve Data. 2014. R package version 1.1-0. http://CRAN.R-project.org/package=opm .
-
(2014)
opm: Analysing Phenotype Microarray and Growth Curve Data.
-
-
Göker, M.1
Hofner, B.2
Vaas, L.A.I.3
Sikorski, J.4
Buddruhs, N.5
Fiebig, A.6
-
45
-
-
84859982600
-
Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics
-
Vaas LAI, Sikorski J, Hofner B, Buddruhs N, Fiebig A, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PloS one. 2012; 7(4):e34846.
-
(2012)
PloS one
, vol.7
, Issue.4
, pp. e34846
-
-
Vaas, L.A.I.1
Sikorski, J.2
Hofner, B.3
Buddruhs, N.4
Fiebig, A.5
Klenk, H.P.6
-
46
-
-
84880221612
-
opm: An R package for analysing OmniLog®; phenotype microarray data
-
Vaas LAI, Sikorski J, Michael V, Göker M, Klenk HP. opm: An R package for analysing OmniLog®; phenotype microarray data. Bioinformatics. 2013; 29(14):1823-4.
-
(2013)
Bioinformatics
, vol.29
, Issue.14
, pp. 1823-1824
-
-
Vaas, L.A.I.1
Sikorski, J.2
Michael, V.3
Göker, M.4
Klenk, H.P.5
-
47
-
-
84873517125
-
A PAUC-based estimation technique for disease classification and biomarker selection
-
Schmid M, Hothorn T, Krause F, Rabe C. A PAUC-based estimation technique for disease classification and biomarker selection. Stat Appl Genet Mol Biol. 2012; 11(5):Article 3. doi:10.1515/1544-6115.1792.
-
(2012)
Stat Appl Genet Mol Biol.
, vol.11
, Issue.5
-
-
Schmid, M.1
Hothorn, T.2
Krause, F.3
Rabe, C.4
-
48
-
-
0035942271
-
Significance analysis of microarrays applied to the ionizing radiation response
-
Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci. 2001; 98(9):5116-121.
-
(2001)
Proc Natl Acad Sci
, vol.98
, Issue.9
, pp. 5116-5121
-
-
Tusher, V.G.1
Tibshirani, R.2
Chu, G.3
-
51
-
-
84907095419
-
R: A Language and Environment for Statistical Computing.
-
R Foundation for Statistical Computing.
-
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2014. R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org .
-
(2014)
Vienna: R Foundation for Statistical Computing
-
-
|