메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

Controlling false discoveries in high-dimensional situations: Boosting with stability selection

Author keywords

Boosting; Error control; Stability selection; Variable selection

Indexed keywords

AMINO ACIDS; CLUSTERING ALGORITHMS; ERROR ANALYSIS; ERRORS; SAMPLING;

EID: 84931262233     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0575-3     Document Type: Article
Times cited : (117)

References (52)
  • 2
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics. 2009; 10(1):57-63.
    • (2009) Nature Reviews Genetics , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 3
    • 77954464041 scopus 로고    scopus 로고
    • Proteomics: a pragmatic perspective
    • Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010; 28(7):695-709.
    • (2010) Nat Biotechnol , vol.28 , Issue.7 , pp. 695-709
    • Mallick, P.1    Kuster, B.2
  • 4
    • 80052654387 scopus 로고    scopus 로고
    • Metabolab: Advanced NMR data processing and analysis for metabolomics
    • Ludwig C, Günther UL. Metabolab: Advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics. 2011; 12(1):366.
    • (2011) BMC Bioinformatics , vol.12 , Issue.1 , pp. 366
    • Ludwig, C.1    Günther, U.L.2
  • 7
    • 66949120727 scopus 로고    scopus 로고
    • Variable selection and model choice in geoadditive regression models
    • Kneib T, Hothorn T, Tutz G. Variable selection and model choice in geoadditive regression models. Biometrics. 2009; 65:626-34.
    • (2009) Biometrics , vol.65 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 8
    • 84952499789 scopus 로고
    • Frequency of selecting noise variables in subset regression analysis: a simulation study
    • Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. Am Statistician. 1987; 41:84-6.
    • (1987) Am Statistician , vol.41 , pp. 84-86
    • Flack, V.F.1    Chang, P.C.2
  • 9
    • 9644265270 scopus 로고    scopus 로고
    • Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality
    • Austin PC, Tu JV. Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality. J Cli Epidemiol. 2004; 57:1138-46.
    • (2004) J Cli Epidemiol , vol.57 , pp. 1138-1146
    • Austin, P.C.1    Tu, J.V.2
  • 10
    • 50249134209 scopus 로고    scopus 로고
    • Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study
    • Austin PC. Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study. J Cli Epidemiol. 2008; 61:1009-17.
    • (2008) J Cli Epidemiol , vol.61 , pp. 1009-1017
    • Austin, P.C.1
  • 11
  • 13
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc: Series B (Stat Methodol). 2005; 67:301-20.
    • (2005) J R Stat Soc: Series B (Stat Methodol) , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 14
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion)
    • Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with discussion). Ann Stat. 2000; 28:337-407.
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Lear. 2001; 45:5-32.
    • (2001) Mach Lear , vol.45 , pp. 5-32
    • Breiman, L.1
  • 16
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinfor. 2007; 8:25.
    • (2007) BMC Bioinfor , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 18
    • 84871371181 scopus 로고    scopus 로고
    • Variable selection with error control: another look at stability selection
    • Shah RD, Samworth RJ. Variable selection with error control: another look at stability selection. J R Stat Soc: Series B (Stat Methodol). 2013; 75:55-80.
    • (2013) J R Stat Soc: Series B (Stat Methodol). , vol.75 , pp. 55-80
    • Shah, R.D.1    Samworth, R.J.2
  • 19
    • 84869882656 scopus 로고    scopus 로고
    • TIGRESS: Trustful Inference of Gene REgulation using Stability Selection
    • Haury AC, Mordelet F, Vera-Licona P, Vert JP. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst Biol. 2012; 6(1):145.
    • (2012) BMC Syst Biol , vol.6 , Issue.1 , pp. 145
    • Haury, A.C.1    Mordelet, F.2    Vera-Licona, P.3    Vert, J.P.4
  • 21
    • 78650540144 scopus 로고    scopus 로고
    • A variable selection method for genome-wide association studies
    • He Q, Lin DY. A variable selection method for genome-wide association studies. Bioinformatics. 2011; 27(1):1-8.
    • (2011) Bioinformatics , vol.27 , Issue.1 , pp. 1-8
    • He, Q.1    Lin, D.Y.2
  • 22
    • 84875729537 scopus 로고    scopus 로고
    • Stable graphical model estimation with random forests for discrete, continuous, and mixed variables
    • Fellinghauer B, Bühlmann P, Ryffel M, von Rhein M, Reinhardt JD. Stable graphical model estimation with random forests for discrete, continuous, and mixed variables. Comput Stat Data Anal. 2013; 64:132-52.
    • (2013) Comput Stat Data Anal , vol.64 , pp. 132-152
    • Fellinghauer, B.1    Bühlmann, P.2    Ryffel, M.3    von Rhein, M.4    Reinhardt, J.D.5
  • 23
    • 84895791592 scopus 로고    scopus 로고
    • High-dimensional statistics with a view toward applications in biology
    • Bühlmann P, Kalisch M, Meier L. High-dimensional statistics with a view toward applications in biology. Annu Rev Stat Appl. 2014; 1:255-78.
    • (2014) Annu Rev Stat Appl , vol.1 , pp. 255-278
    • Bühlmann, P.1    Kalisch, M.2    Meier, L.3
  • 24
    • 79955504883 scopus 로고    scopus 로고
    • Decomposing environmental, spatial, and spatiotemporal components of species distributions
    • Hothorn T, Müller J, Schröder B, Kneib T, Brandl R. Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecol Monogr. 2011; 81:329-47.
    • (2011) Ecol Monogr , vol.81 , pp. 329-347
    • Hothorn, T.1    Müller, J.2    Schröder, B.3    Kneib, T.4    Brandl, R.5
  • 25
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: regression and classification
    • 2 loss: regression and classification. J Am Stat Assoc. 2003; 98:324-39.
    • (2003) J Am Stat Assoc , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 26
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • Bühlmann P, Hothorn T. Boosting algorithms: Regularization, prediction and model fitting. Stat Sci. 2007; 22:477-505.
    • (2007) Stat Sci , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 27
    • 84893967115 scopus 로고    scopus 로고
    • Model-based boosting in R - A hands-on tutorial using the R package mboost
    • Hofner B, Mayr A, Robinzonov N, Schmid M. Model-based boosting in R - A hands-on tutorial using the R package mboost. Comput Stat. 2014; 29:3-35.
    • (2014) Comput Stat , vol.29 , pp. 3-35
    • Hofner, B.1    Mayr, A.2    Robinzonov, N.3    Schmid, M.4
  • 28
    • 80053581322 scopus 로고    scopus 로고
    • A framework for unbiased model selection based on boosting
    • Hofner B, Hothorn T, Kneib T, Schmid M. A framework for unbiased model selection based on boosting. J Comput Graph Stat. 2011; 20:956-71.
    • (2011) J Comput Graph Stat , vol.20 , pp. 956-971
    • Hofner, B.1    Hothorn, T.2    Kneib, T.3    Schmid, M.4
  • 29
    • 55549110371 scopus 로고    scopus 로고
    • Boosting additive models using component-wise P-splines
    • Schmid M, Hothorn T. Boosting additive models using component-wise P-splines. Comput Stat Data Anal. 2008; 53:298-311.
    • (2008) Comput Stat Data Anal , vol.53 , pp. 298-311
    • Schmid, M.1    Hothorn, T.2
  • 30
    • 80053616945 scopus 로고    scopus 로고
    • Monotonicity-constrained species distribution models
    • Hofner B, Müller J, Hothorn T. Monotonicity-constrained species distribution models. Ecology. 2011; 92:1895-1901.
    • (2011) Ecology , vol.92 , pp. 1895-1901
    • Hofner, B.1    Müller, J.2    Hothorn, T.3
  • 31
    • 84953350942 scopus 로고    scopus 로고
    • A unified framework of constrained regression.
    • Hofner B, Kneib T, Hothorn T. A unified framework of constrained regression. Stat Comput. 2014:1-14.
    • (2014) Stat Comput. , pp. 1-14
    • Hofner, B.1    Kneib, T.2    Hothorn, T.3
  • 32
    • 79960127235 scopus 로고    scopus 로고
    • Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
    • Fenske N, Kneib T, Hothorn T. Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J Am Stat Assoc. 2011; 106:494-510.
    • (2011) J Am Stat Assoc , vol.106 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 33
    • 84856711914 scopus 로고    scopus 로고
    • Geoadditive expectile regression
    • Sobotka F, Kneib T. Geoadditive expectile regression. Comput Stat Data Anal. 2012; 56:755-67.
    • (2012) Comput Stat Data Anal , vol.56 , pp. 755-767
    • Sobotka, F.1    Kneib, T.2
  • 34
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber PJ. Robust estimation of a location parameter. Ann Stat. 1964; 53:73-101.
    • (1964) Ann Stat , vol.53 , pp. 73-101
    • Huber, P.J.1
  • 35
    • 84896968781 scopus 로고    scopus 로고
    • Boosting the concordance index for survival data - A unified framework to derive and evaluate biomarker combinations
    • Mayr A, Schmid M. Boosting the concordance index for survival data - A unified framework to derive and evaluate biomarker combinations. PloS one. 2014; 9(1):84483.
    • (2014) PloS one , vol.9 , Issue.1 , pp. 84483
    • Mayr, A.1    Schmid, M.2
  • 37
    • 84972488102 scopus 로고
    • Generalized additive models
    • Hastie T, Tibshirani R. Generalized additive models. Stat Sci. 1986; 1:297-310.
    • (1986) Stat Sci , vol.1 , pp. 297-310
    • Hastie, T.1    Tibshirani, R.2
  • 39
    • 8644257675 scopus 로고    scopus 로고
    • Penalized structured additive regression: A Bayesian perspective
    • Fahrmeir L, Kneib T, Lang S. Penalized structured additive regression: A Bayesian perspective. Stat Sinica. 2004; 14:731-61.
    • (2004) Stat Sinica , vol.14 , pp. 731-761
    • Fahrmeir, L.1    Kneib, T.2    Lang, S.3
  • 40
    • 84858743801 scopus 로고    scopus 로고
    • The importance of knowing when to stop - A sequential stopping rule for component-wise gradient boosting
    • Mayr A, Hofner B, Schmid M. The importance of knowing when to stop - A sequential stopping rule for component-wise gradient boosting. Meth Info Med. 2012; 51:178-86.
    • (2012) Meth Info Med , vol.51 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 43
    • 0034911878 scopus 로고    scopus 로고
    • Phenotype microarrays for high throughput phenotypic testing and assay of gene function
    • Bochner BR, Gadzinski P, Panomitros E. Phenotype microarrays for high throughput phenotypic testing and assay of gene function. Genome Res. 2001; 11:1246-55.
    • (2001) Genome Res , vol.11 , pp. 1246-1255
    • Bochner, B.R.1    Gadzinski, P.2    Panomitros, E.3
  • 45
    • 84859982600 scopus 로고    scopus 로고
    • Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics
    • Vaas LAI, Sikorski J, Hofner B, Buddruhs N, Fiebig A, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PloS one. 2012; 7(4):e34846.
    • (2012) PloS one , vol.7 , Issue.4 , pp. e34846
    • Vaas, L.A.I.1    Sikorski, J.2    Hofner, B.3    Buddruhs, N.4    Fiebig, A.5    Klenk, H.P.6
  • 46
    • 84880221612 scopus 로고    scopus 로고
    • opm: An R package for analysing OmniLog®; phenotype microarray data
    • Vaas LAI, Sikorski J, Michael V, Göker M, Klenk HP. opm: An R package for analysing OmniLog®; phenotype microarray data. Bioinformatics. 2013; 29(14):1823-4.
    • (2013) Bioinformatics , vol.29 , Issue.14 , pp. 1823-1824
    • Vaas, L.A.I.1    Sikorski, J.2    Michael, V.3    Göker, M.4    Klenk, H.P.5
  • 47
    • 84873517125 scopus 로고    scopus 로고
    • A PAUC-based estimation technique for disease classification and biomarker selection
    • Schmid M, Hothorn T, Krause F, Rabe C. A PAUC-based estimation technique for disease classification and biomarker selection. Stat Appl Genet Mol Biol. 2012; 11(5):Article 3. doi:10.1515/1544-6115.1792.
    • (2012) Stat Appl Genet Mol Biol. , vol.11 , Issue.5
    • Schmid, M.1    Hothorn, T.2    Krause, F.3    Rabe, C.4
  • 48
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci. 2001; 98(9):5116-121.
    • (2001) Proc Natl Acad Sci , vol.98 , Issue.9 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 51
    • 84907095419 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing.
    • R Foundation for Statistical Computing.
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2014. R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org .
    • (2014) Vienna: R Foundation for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.