-
1
-
-
84907487414
-
An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control
-
1 Clevers, H., et al. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 346, 2014, 1248012.
-
(2014)
Science
, vol.346
, pp. 1248012
-
-
Clevers, H.1
-
2
-
-
70349932747
-
Towards an integrated view of Wnt signaling in development
-
2 van Amerongen, R., Nusse, R., Towards an integrated view of Wnt signaling in development. Development 136 (2009), 3205–3214.
-
(2009)
Development
, vol.136
, pp. 3205-3214
-
-
van Amerongen, R.1
Nusse, R.2
-
3
-
-
0023653271
-
Phenocopies induced with antisense RNA identify the wingless gene
-
3 Cabrera, C.V., et al. Phenocopies induced with antisense RNA identify the wingless gene. Cell 50 (1987), 659–663.
-
(1987)
Cell
, vol.50
, pp. 659-663
-
-
Cabrera, C.V.1
-
4
-
-
0023653232
-
The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless
-
4 Rijsewijk, F., et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50 (1987), 649–657.
-
(1987)
Cell
, vol.50
, pp. 649-657
-
-
Rijsewijk, F.1
-
5
-
-
77950358779
-
On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes
-
5 Niehrs, C., On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137 (2010), 845–857.
-
(2010)
Development
, vol.137
, pp. 845-857
-
-
Niehrs, C.1
-
6
-
-
33644523762
-
Wnt signals can function as positional cues in establishing cell polarity
-
6 Goldstein, B., et al. Wnt signals can function as positional cues in establishing cell polarity. DEVCEL 10 (2006), 391–396.
-
(2006)
DEVCEL
, vol.10
, pp. 391-396
-
-
Goldstein, B.1
-
7
-
-
84875456720
-
A localized Wnt signal orients asymmetric stem cell division in vitro
-
7 Habib, S.J., et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science 339 (2013), 1445–1448.
-
(2013)
Science
, vol.339
, pp. 1445-1448
-
-
Habib, S.J.1
-
8
-
-
84873589645
-
Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline
-
8 Seib, D.R.M., et al. Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Stem Cell 12 (2013), 204–214.
-
(2013)
Stem Cell
, vol.12
, pp. 204-214
-
-
Seib, D.R.M.1
-
9
-
-
84861986053
-
Wnt and beta-catenin signaling and disease
-
9 Clevers, H., Nusse, R., Wnt and beta-catenin signaling and disease. Cell 149 (2012), 1192–1205.
-
(2012)
Cell
, vol.149
, pp. 1192-1205
-
-
Clevers, H.1
Nusse, R.2
-
10
-
-
84871846692
-
WNT signalling pathways as therapeutic targets in cancer
-
10 Anastas, J.N., Moon, R.T., WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13 (2013), 11–26.
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 11-26
-
-
Anastas, J.N.1
Moon, R.T.2
-
11
-
-
84940889508
-
Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development
-
11 Sokol, S.Y., Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Semin. Cell Dev. Biol. 42 (2015), 78–85.
-
(2015)
Semin. Cell Dev. Biol.
, vol.42
, pp. 78-85
-
-
Sokol, S.Y.1
-
12
-
-
84870727005
-
Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling
-
12 MacDonald, B.T., He, X., Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol., 4, 2012, a007880.
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
, pp. a007880
-
-
MacDonald, B.T.1
He, X.2
-
13
-
-
33947612673
-
Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a
-
13 Komekado, H., et al. Glycosylation and palmitoylation of Wnt-3a are coupled to produce an active form of Wnt-3a. Genes Cells 12 (2007), 521–534.
-
(2007)
Genes Cells
, vol.12
, pp. 521-534
-
-
Komekado, H.1
-
14
-
-
84862777827
-
Roles of N-glycosylation and lipidation in Wg secretion and signaling
-
14 Tang, X., et al. Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev. Biol. 364 (2012), 32–41.
-
(2012)
Dev. Biol.
, vol.364
, pp. 32-41
-
-
Tang, X.1
-
15
-
-
84863543371
-
Structural basis of Wnt recognition by Frizzled
-
15 Janda, C.Y., et al. Structural basis of Wnt recognition by Frizzled. Science 337 (2012), 59–64.
-
(2012)
Science
, vol.337
, pp. 59-64
-
-
Janda, C.Y.1
-
16
-
-
33751318469
-
Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion
-
16 Takada, R., et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11 (2006), 791–801.
-
(2006)
Dev. Cell
, vol.11
, pp. 791-801
-
-
Takada, R.1
-
17
-
-
84955490041
-
Fatty acylation of Wnt proteins
-
17 Nile, A.H., Hannoush, R.N., Fatty acylation of Wnt proteins. Nat. Chem. Biol. 12 (2016), 60–69.
-
(2016)
Nat. Chem. Biol.
, vol.12
, pp. 60-69
-
-
Nile, A.H.1
Hannoush, R.N.2
-
18
-
-
53249154641
-
Regulation of Wnt protein secretion and its role in gradient formation
-
18 Bartscherer, K., Boutros, M., Regulation of Wnt protein secretion and its role in gradient formation. EMBO Rep. 9 (2008), 977–982.
-
(2008)
EMBO Rep.
, vol.9
, pp. 977-982
-
-
Bartscherer, K.1
Boutros, M.2
-
19
-
-
84900419345
-
WLS retrograde transport to the endoplasmic reticulum during Wnt secretion
-
19 Yu, J., et al. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Dev. Cell 29 (2014), 277–291.
-
(2014)
Dev. Cell
, vol.29
, pp. 277-291
-
-
Yu, J.1
-
20
-
-
84863933857
-
Wnt proteins
-
20 Willert, K., Nusse, R., Wnt proteins. Cold Spring Harb. Perspect. Biol., 4, 2012, a007864.
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
, pp. a007864
-
-
Willert, K.1
Nusse, R.2
-
21
-
-
0027097821
-
Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line
-
21 Mason, J.O., et al. Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line. Mol. Biol. Cell 3 (1992), 521–533.
-
(1992)
Mol. Biol. Cell
, vol.3
, pp. 521-533
-
-
Mason, J.O.1
-
22
-
-
33947213491
-
Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling
-
22 Kurayoshi, M., et al. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J. 402 (2007), 515–523.
-
(2007)
Biochem. J.
, vol.402
, pp. 515-523
-
-
Kurayoshi, M.1
-
23
-
-
0037737726
-
Wnt proteins are lipid-modified and can act as stem cell growth factors
-
23 Willert, K., et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423 (2003), 448–452.
-
(2003)
Nature
, vol.423
, pp. 448-452
-
-
Willert, K.1
-
24
-
-
0034161499
-
A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling
-
24 Hofmann, K., A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem. Sci. 25 (2000), 111–112.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 111-112
-
-
Hofmann, K.1
-
25
-
-
84884558970
-
Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins
-
25 Rios-Esteves, J., Resh, M.D., Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep. 4 (2013), 1072–1081.
-
(2013)
Cell Rep.
, vol.4
, pp. 1072-1081
-
-
Rios-Esteves, J.1
Resh, M.D.2
-
26
-
-
4043154959
-
Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine
-
26 Zhai, L., et al. Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279 (2004), 33220–33227.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 33220-33227
-
-
Zhai, L.1
-
27
-
-
84925364903
-
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation
-
27 Zhang, X., et al. Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev. Cell 32 (2015), 719–730.
-
(2015)
Dev. Cell
, vol.32
, pp. 719-730
-
-
Zhang, X.1
-
28
-
-
34347326153
-
Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia
-
28 Grzeschik, K.H., et al. Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat. Genet 39 (2007), 833–835.
-
(2007)
Nat. Genet
, vol.39
, pp. 833-835
-
-
Grzeschik, K.H.1
-
29
-
-
34347341670
-
Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia
-
29 Wang, X., et al. Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia. Nat. Genet. 39 (2007), 836–838.
-
(2007)
Nat. Genet.
, vol.39
, pp. 836-838
-
-
Wang, X.1
-
30
-
-
84890281677
-
Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974
-
30 Liu, J., et al. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 20224–20229.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 20224-20229
-
-
Liu, J.1
-
31
-
-
84872528453
-
Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer
-
31 Proffitt, K.D., et al. Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer Res. 73 (2013), 502–507.
-
(2013)
Cancer Res.
, vol.73
, pp. 502-507
-
-
Proffitt, K.D.1
-
32
-
-
70349273652
-
Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity
-
32 Cha, S.W., et al. Wnt11/5a complex formation caused by tyrosine sulfation increases canonical signaling activity. Curr. Biol. 19 (2009), 1573–1580.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1573-1580
-
-
Cha, S.W.1
-
33
-
-
67650532146
-
Wnt signaling is regulated by endoplasmic reticulum retention
-
33 Zoltewicz, J.S., et al. Wnt signaling is regulated by endoplasmic reticulum retention. PLoS ONE, 4, 2009, e6191.
-
(2009)
PLoS ONE
, vol.4
, pp. e6191
-
-
Zoltewicz, J.S.1
-
34
-
-
33646134826
-
Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells
-
34 Banziger, C., et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125 (2006), 509–522.
-
(2006)
Cell
, vol.125
, pp. 509-522
-
-
Banziger, C.1
-
35
-
-
33646123992
-
Secretion of Wnt ligands requires Evi, a conserved transmembrane protein
-
35 Bartscherer, K., et al. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125 (2006), 523–533.
-
(2006)
Cell
, vol.125
, pp. 523-533
-
-
Bartscherer, K.1
-
36
-
-
33846138014
-
Sprinter: a novel transmembrane protein required for Wg secretion and signaling
-
36 Goodman, R.M., et al. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133 (2006), 4901–4911.
-
(2006)
Development
, vol.133
, pp. 4901-4911
-
-
Goodman, R.M.1
-
37
-
-
77956942286
-
WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification
-
37 Coombs, G.S., et al. WLS-dependent secretion of WNT3A requires Ser209 acylation and vacuolar acidification. J. Cell Sci. 123 (2010), 3357–3367.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3357-3367
-
-
Coombs, G.S.1
-
38
-
-
84959079244
-
Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress
-
38 Zhang, P., et al. Dysfunction of Wntless triggers the retrograde Golgi-to-ER transport of Wingless and induces ER stress. Sci. Rep., 6, 2016, 19418.
-
(2016)
Sci. Rep.
, vol.6
, pp. 19418
-
-
Zhang, P.1
-
39
-
-
84890978108
-
Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine
-
39 Gao, X., Hannoush, R.N., Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat. Chem. Biol. 10 (2013), 61–68.
-
(2013)
Nat. Chem. Biol.
, vol.10
, pp. 61-68
-
-
Gao, X.1
Hannoush, R.N.2
-
40
-
-
84355162717
-
Porcupine-mediated lipidation is required for Wnt recognition by Wls
-
40 Herr, P., Basler, K., Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361 (2012), 392–402.
-
(2012)
Dev. Biol.
, vol.361
, pp. 392-402
-
-
Herr, P.1
Basler, K.2
-
41
-
-
82555176447
-
p24 proteins are required for secretion of Wnt ligands
-
41 Buechling, T., et al. p24 proteins are required for secretion of Wnt ligands. EMBO Rep. 12 (2011), 1265–1272.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1265-1272
-
-
Buechling, T.1
-
42
-
-
80255136237
-
A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion
-
42 Port, F., et al. A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion. EMBO Rep. 12 (2011), 1144–1152.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1144-1152
-
-
Port, F.1
-
43
-
-
33947521050
-
Helping Wingless take flight: how WNT proteins are secreted
-
43 Hausmann, G., et al. Helping Wingless take flight: how WNT proteins are secreted. Nat. Rev. Mol. Cell Biol. 8 (2007), 331–336.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 331-336
-
-
Hausmann, G.1
-
44
-
-
0037018854
-
Producing cells retain and recycle Wingless in Drosophila embryos
-
44 Pfeiffer, S., et al. Producing cells retain and recycle Wingless in Drosophila embryos. Curr. Biol. 12 (2002), 957–962.
-
(2002)
Curr. Biol.
, vol.12
, pp. 957-962
-
-
Pfeiffer, S.1
-
45
-
-
0035917498
-
Apical localization of wingless transcripts is required for wingless signaling
-
45 Simmonds, A.J., et al. Apical localization of wingless transcripts is required for wingless signaling. Cell 105 (2001), 197–207.
-
(2001)
Cell
, vol.105
, pp. 197-207
-
-
Simmonds, A.J.1
-
46
-
-
0035917422
-
Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles
-
46 Wilkie, G.S., Davis, I., Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell 105 (2001), 209–219.
-
(2001)
Cell
, vol.105
, pp. 209-219
-
-
Wilkie, G.S.1
Davis, I.2
-
47
-
-
0034704824
-
Wingless gradient formation in the Drosophila wing
-
47 Strigini, M., Cohen, S.M., Wingless gradient formation in the Drosophila wing. Curr. Biol. 10 (2000), 293–300.
-
(2000)
Curr. Biol.
, vol.10
, pp. 293-300
-
-
Strigini, M.1
Cohen, S.M.2
-
48
-
-
84961219058
-
Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs
-
48 Yamazaki, Y., et al. Godzilla-dependent transcytosis promotes Wingless signalling in Drosophila wing imaginal discs. Nat. Cell Biol. 18 (2016), 451–457.
-
(2016)
Nat. Cell Biol.
, vol.18
, pp. 451-457
-
-
Yamazaki, Y.1
-
49
-
-
84880671888
-
The apical and basolateral secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by different mechanisms
-
49 Yamamoto, H., et al. The apical and basolateral secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by different mechanisms. J. Cell Sci. 126 (2013), 2931–2943.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 2931-2943
-
-
Yamamoto, H.1
-
50
-
-
37749052695
-
C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless
-
50 Pan, C.L., et al. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev. Cell 14 (2008), 132–139.
-
(2008)
Dev. Cell
, vol.14
, pp. 132-139
-
-
Pan, C.L.1
-
51
-
-
37749040775
-
The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network
-
51 Belenkaya, T.Y., et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev. Cell 14 (2008), 120–131.
-
(2008)
Dev. Cell
, vol.14
, pp. 120-131
-
-
Belenkaya, T.Y.1
-
52
-
-
33646592268
-
Wnt gradient formation requires retromer function in Wnt-producing cells
-
52 Coudreuse, D.Y., et al. Wnt gradient formation requires retromer function in Wnt-producing cells. Science 312 (2006), 921–924.
-
(2006)
Science
, vol.312
, pp. 921-924
-
-
Coudreuse, D.Y.1
-
53
-
-
38849106101
-
Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex
-
53 Franch-Marro, X., et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat. Cell Biol. 10 (2008), 170–177.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 170-177
-
-
Franch-Marro, X.1
-
54
-
-
38849134055
-
Wingless secretion promotes and requires retromer-dependent cycling of Wntless
-
54 Port, F., et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat. Cell Biol. 10 (2008), 178–185.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 178-185
-
-
Port, F.1
-
55
-
-
33744507945
-
Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans
-
55 Prasad, B.C., Clark, S.G., Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133 (2006), 1757–1766.
-
(2006)
Development
, vol.133
, pp. 1757-1766
-
-
Prasad, B.C.1
Clark, S.G.2
-
56
-
-
37749043874
-
Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells
-
56 Yang, P.T., et al. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev. Cell 14 (2008), 140–147.
-
(2008)
Dev. Cell
, vol.14
, pp. 140-147
-
-
Yang, P.T.1
-
57
-
-
79961002971
-
A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion
-
57 Harterink, M., et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat. Cell Biol. 13 (2011), 914–923.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 914-923
-
-
Harterink, M.1
-
58
-
-
82655178026
-
SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless
-
58 Zhang, P., et al. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res. 21 (2011), 1677–1690.
-
(2011)
Cell Res.
, vol.21
, pp. 1677-1690
-
-
Zhang, P.1
-
59
-
-
78650302964
-
Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells
-
59 Silhankova, M., et al. Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J. 29 (2010), 4094–4105.
-
(2010)
EMBO J.
, vol.29
, pp. 4094-4105
-
-
Silhankova, M.1
-
60
-
-
84892370818
-
Patterning and growth control by membrane-tethered Wingless
-
60 Alexandre, C., et al. Patterning and growth control by membrane-tethered Wingless. Nature 505 (2014), 180–185.
-
(2014)
Nature
, vol.505
, pp. 180-185
-
-
Alexandre, C.1
-
61
-
-
84959017482
-
Visualization of a short-range Wnt gradient in the intestinal stem-cell niche
-
61 Farin, H.F., et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530 (2016), 340–343.
-
(2016)
Nature
, vol.530
, pp. 340-343
-
-
Farin, H.F.1
-
62
-
-
0030606264
-
Direct and long-range action of a wingless morphogen gradient
-
62 Zecca, M., et al. Direct and long-range action of a wingless morphogen gradient. Cell 87 (1996), 833–844.
-
(1996)
Cell
, vol.87
, pp. 833-844
-
-
Zecca, M.1
-
63
-
-
84864614812
-
Lipoproteins in Drosophila melanogaster–assembly, function, and influence on tissue lipid composition
-
63 Palm, W., et al. Lipoproteins in Drosophila melanogaster–assembly, function, and influence on tissue lipid composition. PLoS genet., 8, 2012, e1002828.
-
(2012)
PLoS genet.
, vol.8
, pp. e1002828
-
-
Palm, W.1
-
64
-
-
18344378499
-
Lipoprotein particles are required for Hedgehog and Wingless signalling
-
64 Panakova, D., et al. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435 (2005), 58–65.
-
(2005)
Nature
, vol.435
, pp. 58-65
-
-
Panakova, D.1
-
65
-
-
59849102420
-
Mammalian Wnt3a is released on lipoprotein particles
-
65 Neumann, S., et al. Mammalian Wnt3a is released on lipoprotein particles. Traffic 10 (2009), 334–343.
-
(2009)
Traffic
, vol.10
, pp. 334-343
-
-
Neumann, S.1
-
66
-
-
84938581025
-
Extracellular vesicles shuffling intercellular messages: for good or for bad
-
66 Lo Cicero, A., et al. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr. Opin. Cell Biol. 35 (2015), 69–77.
-
(2015)
Curr. Opin. Cell Biol.
, vol.35
, pp. 69-77
-
-
Lo Cicero, A.1
-
67
-
-
84871122344
-
Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes
-
67 Beckett, K., et al. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 14 (2013), 82–96.
-
(2013)
Traffic
, vol.14
, pp. 82-96
-
-
Beckett, K.1
-
68
-
-
84867101024
-
Active Wnt proteins are secreted on exosomes
-
68 Gross, J.C., et al. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14 (2012), 1036–1045.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1036-1045
-
-
Gross, J.C.1
-
69
-
-
84860852182
-
Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons
-
69 Koles, K., et al. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem. 287 (2012), 16820–16834.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 16820-16834
-
-
Koles, K.1
-
70
-
-
70349829157
-
Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless
-
70 Korkut, C., et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139 (2009), 393–404.
-
(2009)
Cell
, vol.139
, pp. 393-404
-
-
Korkut, C.1
-
71
-
-
84949920853
-
Structure and function of longin SNAREs
-
71 Daste, F., et al. Structure and function of longin SNAREs. J. Cell Sci. 128 (2015), 4263–4272.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 4263-4272
-
-
Daste, F.1
-
72
-
-
84961262615
-
Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/(-albumin
-
72 Mihara, E., et al. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/(-albumin. eLife, 5, 2016, e11621.
-
(2016)
eLife
, vol.5
, pp. e11621
-
-
Mihara, E.1
-
73
-
-
84855998350
-
Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility
-
73 Mulligan, K.A., et al. Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 370–377.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 370-377
-
-
Mulligan, K.A.1
-
74
-
-
84961215829
-
Role of cytonemes in Wnt transport
-
74 Stanganello, E., Scholpp, S., Role of cytonemes in Wnt transport. J. Cell Sci. 129 (2016), 665–672.
-
(2016)
J. Cell Sci.
, vol.129
, pp. 665-672
-
-
Stanganello, E.1
Scholpp, S.2
-
75
-
-
84887256489
-
Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia
-
75 Bischoff, M., et al. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat. Cell Biol. 15 (2013), 1269–1281.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1269-1281
-
-
Bischoff, M.1
-
76
-
-
84891652285
-
Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein
-
76 Roy, S., et al. Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein. Science, 343, 2014, 1244624.
-
(2014)
Science
, vol.343
, pp. 1244624
-
-
Roy, S.1
-
77
-
-
84930669089
-
Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta–Notch signaling to the air sac primordium
-
77 Huang, H., Kornberg, T.B., Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta–Notch signaling to the air sac primordium. eLife, 4, 2015, e06114.
-
(2015)
eLife
, vol.4
, pp. e06114
-
-
Huang, H.1
Kornberg, T.B.2
-
78
-
-
84866092742
-
Secreted and transmembrane wnt inhibitors and activators
-
78 Cruciat, C.M., Niehrs, C., Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol., 5, 2013, a015081.
-
(2013)
Cold Spring Harb. Perspect. Biol.
, vol.5
, pp. a015081
-
-
Cruciat, C.M.1
Niehrs, C.2
-
79
-
-
77954055939
-
Shaping morphogen gradients by proteoglycans
-
79 Yan, D., Lin, X., Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol., 1, 2009, a002493.
-
(2009)
Cold Spring Harb. Perspect. Biol.
, vol.1
, pp. a002493
-
-
Yan, D.1
Lin, X.2
-
80
-
-
14844360345
-
Glypicans shunt the Wingless signal between local signalling and further transport
-
80 Franch-Marro, X., et al. Glypicans shunt the Wingless signal between local signalling and further transport. Development 132 (2005), 659–666.
-
(2005)
Development
, vol.132
, pp. 659-666
-
-
Franch-Marro, X.1
-
81
-
-
70349986968
-
The core protein of glypican Dally-like determines its biphasic activity in wingless morphogen signaling
-
81 Yan, D., et al. The core protein of glypican Dally-like determines its biphasic activity in wingless morphogen signaling. Dev. Cell 17 (2009), 470–481.
-
(2009)
Dev. Cell
, vol.17
, pp. 470-481
-
-
Yan, D.1
-
82
-
-
14844365003
-
Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc
-
82 Han, C., et al. Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132 (2005), 667–679.
-
(2005)
Development
, vol.132
, pp. 667-679
-
-
Han, C.1
-
83
-
-
0033566126
-
Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling
-
83 Lin, X., Perrimon, N., Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400 (1999), 281–284.
-
(1999)
Nature
, vol.400
, pp. 281-284
-
-
Lin, X.1
Perrimon, N.2
-
84
-
-
7544229806
-
The Wingless morphogen gradient is established by the cooperative action of Frizzled and heparan sulfate proteoglycan receptors
-
84 Baeg, G.H., et al. The Wingless morphogen gradient is established by the cooperative action of Frizzled and heparan sulfate proteoglycan receptors. Dev. Biol. 276 (2004), 89–100.
-
(2004)
Dev. Biol.
, vol.276
, pp. 89-100
-
-
Baeg, G.H.1
-
85
-
-
5044250261
-
Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein
-
85 Kirkpatrick, C.A., et al. Spatial regulation of Wingless morphogen distribution and signaling by Dally-like protein. Dev. Cell 7 (2004), 513–523.
-
(2004)
Dev. Cell
, vol.7
, pp. 513-523
-
-
Kirkpatrick, C.A.1
-
86
-
-
5044249440
-
Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity
-
86 Kreuger, J., et al. Opposing activities of Dally-like glypican at high and low levels of Wingless morphogen activity. Dev. Cell 7 (2004), 503–512.
-
(2004)
Dev. Cell
, vol.7
, pp. 503-512
-
-
Kreuger, J.1
-
87
-
-
77951122089
-
APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex
-
87 Shimomura, Y., et al. APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature 464 (2010), 1043–1047.
-
(2010)
Nature
, vol.464
, pp. 1043-1047
-
-
Shimomura, Y.1
-
88
-
-
84862684701
-
Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation
-
88 Zhang, X., et al. Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation. Cell 149 (2012), 1565–1577.
-
(2012)
Cell
, vol.149
, pp. 1565-1577
-
-
Zhang, X.1
-
89
-
-
0030933978
-
Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer
-
89 Leyns, L., et al. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88 (1997), 747–756.
-
(1997)
Cell
, vol.88
, pp. 747-756
-
-
Leyns, L.1
-
90
-
-
0030799081
-
The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling
-
90 Lin, K., et al. The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc. Natl. Acad. Sci. U.S.A. 94 (1997), 11196–11200.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 11196-11200
-
-
Lin, K.1
-
91
-
-
0030892061
-
Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8
-
91 Wang, S., et al. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88 (1997), 757–766.
-
(1997)
Cell
, vol.88
, pp. 757-766
-
-
Wang, S.1
-
92
-
-
0033523005
-
Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative Mechanisms for FRP inhibition of Wnt signaling
-
92 Bafico, A., et al. Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative Mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem. 274 (1999), 16180–16187.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16180-16187
-
-
Bafico, A.1
-
93
-
-
27744495867
-
SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor
-
93 Rodriguez, J., et al. SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat. Neurosci. 8 (2005), 1301–1309.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 1301-1309
-
-
Rodriguez, J.1
-
94
-
-
33645746278
-
Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis
-
94 Satoh, W., et al. Sfrp1 and Sfrp2 regulate anteroposterior axis elongation and somite segmentation during mouse embryogenesis. Development 133 (2006), 989–999.
-
(2006)
Development
, vol.133
, pp. 989-999
-
-
Satoh, W.1
-
95
-
-
39549107806
-
Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse
-
95 Satoh, W., et al. Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/beta-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 46 (2008), 92–103.
-
(2008)
Genesis
, vol.46
, pp. 92-103
-
-
Satoh, W.1
-
96
-
-
13244292984
-
Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog
-
96 Glise, B., et al. Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog. Dev. Cell 8 (2005), 255–266.
-
(2005)
Dev. Cell
, vol.8
, pp. 255-266
-
-
Glise, B.1
-
97
-
-
13244257603
-
The Drosophila ortholog of the human Wnt inhibitor factor Shifted controls the diffusion of lipid-modified Hedgehog
-
97 Gorfinkiel, N., et al. The Drosophila ortholog of the human Wnt inhibitor factor Shifted controls the diffusion of lipid-modified Hedgehog. Dev. Cell 8 (2005), 241–253.
-
(2005)
Dev. Cell
, vol.8
, pp. 241-253
-
-
Gorfinkiel, N.1
-
98
-
-
84859199011
-
The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling
-
98 Avanesov, A., et al. The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling. PLoS Genet., 8, 2012, e1002503.
-
(2012)
PLoS Genet.
, vol.8
, pp. e1002503
-
-
Avanesov, A.1
-
99
-
-
0036570660
-
Wingful, an extracellular feedback inhibitor of Wingless
-
99 Gerlitz, O., Basler, K., Wingful, an extracellular feedback inhibitor of Wingless. Genes Dev. 16 (2002), 1055–1059.
-
(2002)
Genes Dev.
, vol.16
, pp. 1055-1059
-
-
Gerlitz, O.1
Basler, K.2
-
100
-
-
0036111641
-
HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient
-
100 Giraldez, A.J., et al. HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev. Cell 2 (2002), 667–676.
-
(2002)
Dev. Cell
, vol.2
, pp. 667-676
-
-
Giraldez, A.J.1
-
101
-
-
41149161142
-
Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface
-
101 Traister, A., et al. Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem. J. 410 (2008), 503–511.
-
(2008)
Biochem. J.
, vol.410
, pp. 503-511
-
-
Traister, A.1
-
102
-
-
84924651313
-
Notum deacylates Wnt proteins to suppress signalling activity
-
102 Kakugawa, S., et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature 519 (2015), 187–192.
-
(2015)
Nature
, vol.519
, pp. 187-192
-
-
Kakugawa, S.1
-
103
-
-
84937547475
-
Filopodia-based Wnt transport during vertebrate tissue patterning
-
Published online January 5, 2015
-
103 Stanganello, E., Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun, 2015, 10.1038/ncomms6846 Published online January 5, 2015.
-
(2015)
Nat. Commun
-
-
Stanganello, E.1
|