메뉴 건너뛰기




Volumn 28, Issue 1, 2016, Pages 43-52

Group 3 innate lymphoid cells: Regulating host-commensal bacteria interactions in inflammation and cancer

Author keywords

Cancer; Commensal bacteria; Innate lymphoid cells; Intestinal homeostasis

Indexed keywords

INTERLEUKIN 17; INTERLEUKIN 22; INTERLEUKIN 23; INTERLEUKIN 6;

EID: 84954290481     PISSN: 09538178     EISSN: 14602377     Source Type: Journal    
DOI: 10.1093/intimm/dxv056     Document Type: Article
Times cited : (26)

References (137)
  • 1
    • 84923357083 scopus 로고    scopus 로고
    • Homeostasis, inflammation, and disease susceptibility
    • Kotas, M. E. and Medzhitov, R. 2015. Homeostasis, inflammation, and disease susceptibility. Cell 160:816.
    • (2015) Cell , vol.160 , pp. 816
    • Kotas, M.E.1    Medzhitov, R.2
  • 2
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan, D. and Weinberg, R. A. 2011. Hallmarks of cancer: the next generation. Cell 144:646.
    • (2011) Cell , vol.144 , pp. 646
    • Hanahan, D.1    Weinberg, R.A.2
  • 3
    • 77950346282 scopus 로고    scopus 로고
    • Immunity, inflammation, and cancer
    • Grivennikov, S. I., Greten, F. R. and Karin, M. 2010. Immunity, inflammation, and cancer. Cell 140:883.
    • (2010) Cell , vol.140 , pp. 883
    • Grivennikov, S.I.1    Greten, F.R.2    Karin, M.3
  • 4
    • 84897138296 scopus 로고    scopus 로고
    • Role of the microbiota in immunity and inflammation
    • Belkaid, Y. and Hand, T. W. 2014. Role of the microbiota in immunity and inflammation. Cell 157:121.
    • (2014) Cell , vol.157 , pp. 121
    • Belkaid, Y.1    Hand, T.W.2
  • 5
    • 84861980130 scopus 로고    scopus 로고
    • Interactions between the microbiota and the immune system
    • Hooper, L. V., Littman, D. R. and Macpherson, A. J. 2012. Interactions between the microbiota and the immune system. Science 336:1268.
    • (2012) Science , vol.336 , pp. 1268
    • Hooper, L.V.1    Littman, D.R.2    Macpherson, A.J.3
  • 6
    • 84867807929 scopus 로고    scopus 로고
    • Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease
    • Sonnenberg, G. F. and Artis, D. 2012. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 37:601.
    • (2012) Immunity , vol.37 , pp. 601
    • Sonnenberg, G.F.1    Artis, D.2
  • 7
    • 84921367265 scopus 로고    scopus 로고
    • Modulation of immune development and function by intestinal microbiota
    • Kabat, A. M., Srinivasan, N. and Maloy, K. J. 2014. Modulation of immune development and function by intestinal microbiota. Trends Immunol. 35:507.
    • (2014) Trends Immunol , vol.35 , pp. 507
    • Kabat, A.M.1    Srinivasan, N.2    Maloy, K.J.3
  • 8
    • 84879369738 scopus 로고    scopus 로고
    • Commensal bacteria at the interface of host metabolism and the immune system
    • Brestoff, J. R. and Artis, D. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14:676.
    • (2013) Nat. Immunol , vol.14 , pp. 676
    • Brestoff, J.R.1    Artis, D.2
  • 9
    • 84876414806 scopus 로고    scopus 로고
    • The gut microbiota-masters of host development and physiology
    • Sommer, F. and Bäckhed, F. 2013. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11:227.
    • (2013) Nat. Rev. Microbiol , vol.11 , pp. 227
    • Sommer, F.1    Bäckhed, F.2
  • 10
    • 85044695622 scopus 로고    scopus 로고
    • Cancer and the microbiota
    • Garrett, W. S. 2015. Cancer and the microbiota. Science 348:80.
    • (2015) Science , vol.348 , pp. 80
    • Garrett, W.S.1
  • 11
    • 84921742288 scopus 로고    scopus 로고
    • Cancer and the gut microbiota: an unexpected link
    • Zitvogel, L., Galluzzi, L., Viaud, S. et al. 2015. Cancer and the gut microbiota: an unexpected link. Sci. Transl. Med. 7:271ps1.
    • (2015) Sci. Transl. Med , vol.7
    • Zitvogel, L.1    Galluzzi, L.2    Viaud, S.3
  • 12
    • 84922607138 scopus 로고    scopus 로고
    • The biology of innate lymphoid cells
    • Artis, D. and Spits, H. 2015. The biology of innate lymphoid cells. Nature 517:293.
    • (2015) Nature , vol.517 , pp. 293
    • Artis, D.1    Spits, H.2
  • 13
    • 84907983938 scopus 로고    scopus 로고
    • Innate lymphoid cells in inflammation and immunity
    • McKenzie, A. N., Spits, H. and Eberl, G. 2014. Innate lymphoid cells in inflammation and immunity. Immunity 41:366.
    • (2014) Immunity , vol.41 , pp. 366
    • McKenzie, A.N.1    Spits, H.2    Eberl, G.3
  • 14
    • 84906840499 scopus 로고    scopus 로고
    • Regulation of intestinal health and disease by innate lymphoid cells
    • Sonnenberg, G. F. 2014. Regulation of intestinal health and disease by innate lymphoid cells. Int. Immunol. 26:501.
    • (2014) Int. Immunol , vol.26 , pp. 501
    • Sonnenberg, G.F.1
  • 15
    • 84896804302 scopus 로고    scopus 로고
    • Regulation of the adaptive immune system by innate lymphoid cells
    • Hepworth, M. R. and Sonnenberg, G. F. 2014. Regulation of the adaptive immune system by innate lymphoid cells. Curr. Opin. Immunol. 27:75.
    • (2014) Curr. Opin. Immunol , vol.27 , pp. 75
    • Hepworth, M.R.1    Sonnenberg, G.F.2
  • 16
    • 78649360369 scopus 로고    scopus 로고
    • Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes
    • Vonarbourg, C., Mortha, A., Bui, V. L. et al. 2010. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt(+) innate lymphocytes. Immunity 33:736.
    • (2010) Immunity , vol.33 , pp. 736
    • Vonarbourg, C.1    Mortha, A.2    Bui, V.L.3
  • 18
    • 84879571464 scopus 로고    scopus 로고
    • Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model
    • Kirchberger, S., Royston, D. J., Boulard, O. et al. 2013. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210:917.
    • (2013) J. Exp. Med , vol.210 , pp. 917
    • Kirchberger, S.1    Royston, D.J.2    Boulard, O.3
  • 19
    • 84905118660 scopus 로고    scopus 로고
    • + mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22
    • + mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211:1571.
    • (2014) J. Exp. Med , vol.211 , pp. 1571
    • Longman, R.S.1    Diehl, G.E.2    Victorio, D.A.3
  • 20
    • 77956190936 scopus 로고    scopus 로고
    • Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease
    • Takayama, T., Kamada, N., Chinen, H. et al. 2010. Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology 139:882.
    • (2010) Gastroenterology , vol.139 , pp. 882
    • Takayama, T.1    Kamada, N.2    Chinen, H.3
  • 21
    • 84861796578 scopus 로고    scopus 로고
    • Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis
    • Ciccia, F., Accardo-Palumbo, A., Alessandro, R. et al. 2012. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 64:1869.
    • (2012) Arthritis Rheum , vol.64 , pp. 1869
    • Ciccia, F.1    Accardo-Palumbo, A.2    Alessandro, R.3
  • 22
    • 79958277385 scopus 로고    scopus 로고
    • IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease
    • Geremia, A., Arancibia-Cárcamo, C. V., Fleming, M. P. et al. 2011. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208:1127.
    • (2011) J. Exp. Med , vol.208 , pp. 1127
    • Geremia, A.1    Arancibia-Cárcamo, C.V.2    Fleming, M.P.3
  • 23
    • 85027945857 scopus 로고    scopus 로고
    • Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues
    • Bernink, J. H., Peters, C. P., Munneke, M. et al. 2013. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14:221.
    • (2013) Nat. Immunol , vol.14 , pp. 221
    • Bernink, J.H.1    Peters, C.P.2    Munneke, M.3
  • 24
    • 84902573427 scopus 로고    scopus 로고
    • Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells
    • Chan, I. H., Jain, R., Tessmer, M. S. et al. 2014. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 7:842.
    • (2014) Mucosal Immunol , vol.7 , pp. 842
    • Chan, I.H.1    Jain, R.2    Tessmer, M.S.3
  • 25
    • 84878737123 scopus 로고    scopus 로고
    • Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
    • Hepworth, M. R., Monticelli, L. A., Fung, T. C. et al. 2013. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498:113.
    • (2013) Nature , vol.498 , pp. 113
    • Hepworth, M.R.1    Monticelli, L.A.2    Fung, T.C.3
  • 27
    • 84876780238 scopus 로고    scopus 로고
    • Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-γ-producing cells
    • Fuchs, A., Vermi, W., Lee, J. S. et al. 2013. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-γ-producing cells. Immunity 38:769.
    • (2013) Immunity , vol.38 , pp. 769
    • Fuchs, A.1    Vermi, W.2    Lee, J.S.3
  • 28
    • 84937707458 scopus 로고    scopus 로고
    • Interleukin-12 and-23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria
    • Bernink, J. H., Krabbendam, L., Germar, K. et al. 2015. Interleukin-12 and-23 Control Plasticity of CD127(+) Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria. Immunity 43:146.
    • (2015) Immunity , vol.43 , pp. 146
    • Bernink, J.H.1    Krabbendam, L.2    Germar, K.3
  • 29
    • 0016805047 scopus 로고
    • Galen on cancer and related diseases
    • Reedy, J. 1975. Galen on cancer and related diseases. Clio Med. 10:227.
    • (1975) Clio Med , vol.10 , pp. 227
    • Reedy, J.1
  • 30
    • 84859401430 scopus 로고    scopus 로고
    • Cancer and inflammation: an old intuition with rapidly evolving new concepts
    • Trinchieri, G. 2012. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 30:677.
    • (2012) Annu. Rev. Immunol , vol.30 , pp. 677
    • Trinchieri, G.1
  • 31
    • 84888633713 scopus 로고    scopus 로고
    • Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms
    • Elinav, E., Nowarski, R., Thaiss, C. A., Hu, B., Jin, C. and Flavell, R. A. 2013. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13:759.
    • (2013) Nat. Rev. Cancer , vol.13 , pp. 759
    • Elinav, E.1    Nowarski, R.2    Thaiss, C.A.3    Hu, B.4    Jin, C.5    Flavell, R.A.6
  • 32
    • 84861648384 scopus 로고    scopus 로고
    • Global burden of cancers attributable to infections in 2008: a review and synthetic analysis
    • de Martel, C., Ferlay, J., Franceschi, S. et al. 2012. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13:607.
    • (2012) Lancet Oncol , vol.13 , pp. 607
    • de Martel, C.1    Ferlay, J.2    Franceschi, S.3
  • 33
    • 0000161413 scopus 로고
    • The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases
    • Coley, W. B. 1893. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105:487.
    • (1893) Am. J. Med. Sci , vol.105 , pp. 487
    • Coley, W.B.1
  • 35
    • 0016577668 scopus 로고
    • Animal models for the study of dietary factors and cancer of the large bowel
    • Reddy, B. S., Narisawa, T., Maronpot, R., Weisburger, J. H. and Wynder, E. L. 1975. Animal models for the study of dietary factors and cancer of the large bowel. Cancer Res. 35(11 Pt. 2):3421.
    • (1975) Cancer Res , vol.35 , Issue.11 , pp. 3421
    • Reddy, B.S.1    Narisawa, T.2    Maronpot, R.3    Weisburger, J.H.4    Wynder, E.L.5
  • 36
    • 67650299380 scopus 로고    scopus 로고
    • Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility
    • Uronis, J. M., Mühlbauer, M., Herfarth, H. H., Rubinas, T. C., Jones, G. S. and Jobin, C. 2009. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 4:e6026.
    • (2009) PLoS One , vol.4
    • Uronis, J.M.1    Mühlbauer, M.2    Herfarth, H.H.3    Rubinas, T.C.4    Jones, G.S.5    Jobin, C.6
  • 37
    • 40249087075 scopus 로고    scopus 로고
    • Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity
    • Vannucci, L., Stepankova, R., Kozakova, H., Fiserova, A., Rossmann, P. and Tlaskalova-Hogenova, H. 2008. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol. 32:609.
    • (2008) Int. J. Oncol , vol.32 , pp. 609
    • Vannucci, L.1    Stepankova, R.2    Kozakova, H.3    Fiserova, A.4    Rossmann, P.5    Tlaskalova-Hogenova, H.6
  • 38
    • 33751361302 scopus 로고    scopus 로고
    • Bacteria, inflammation, and colon cancer
    • Yang, L. and Pei, Z. 2006. Bacteria, inflammation, and colon cancer. World J. Gastroenterol. 12:6741.
    • (2006) World J. Gastroenterol , vol.12 , pp. 6741
    • Yang, L.1    Pei, Z.2
  • 39
    • 0030614675 scopus 로고    scopus 로고
    • Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status
    • Dove, W. F., Clipson, L., Gould, K. A. et al. 1997. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57:812.
    • (1997) Cancer Res , vol.57 , pp. 812
    • Dove, W.F.1    Clipson, L.2    Gould, K.A.3
  • 40
    • 0017060722 scopus 로고
    • Occurrence of spontaneous tumors in the germfree F344 rat
    • Sacksteder, M. R. 1976. Occurrence of spontaneous tumors in the germfree F344 rat. J. Natl Cancer Inst. 57:1371.
    • (1976) J. Natl Cancer Inst , vol.57 , pp. 1371
    • Sacksteder, M.R.1
  • 41
    • 0015419886 scopus 로고
    • Induction of lung cancer in germfree, specific-pathogen-free, and infected rats by N-nitrosoheptamethyleneimine: enhancement by respiratory infection
    • Schreiber, H., Nettesheim, P., Lijinsky, W., Richter, C. B. and Walburg, H. E. Jr. 1972. Induction of lung cancer in germfree, specific-pathogen-free, and infected rats by N-nitrosoheptamethyleneimine: enhancement by respiratory infection. J. Natl Cancer Inst. 49:1107.
    • (1972) J. Natl Cancer Inst , vol.49 , pp. 1107
    • Schreiber, H.1    Nettesheim, P.2    Lijinsky, W.3    Richter, C.B.4    Walburg, H.E.5
  • 42
    • 0018068315 scopus 로고
    • Effect of intestinal microflora on 2, 2'-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats
    • Reddy, B. S. and Watanabe, K. 1978. Effect of intestinal microflora on 2, 2'-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats. J. Natl Cancer Inst. 61:1269.
    • (1978) J. Natl Cancer Inst , vol.61 , pp. 1269
    • Reddy, B.S.1    Watanabe, K.2
  • 43
    • 0019779632 scopus 로고
    • Comparison of the carcinogenicity of methylazoxymethanol-beta-D-glucosiduronic acid in conventional and germfree Sprague-Dawley rats
    • Laqueur, G. L., Matsumoto, H. and Yamamoto, R. S. 1981. Comparison of the carcinogenicity of methylazoxymethanol-beta-D-glucosiduronic acid in conventional and germfree Sprague-Dawley rats. J. Natl Cancer Inst. 67:1053.
    • (1981) J. Natl Cancer Inst , vol.67 , pp. 1053
    • Laqueur, G.L.1    Matsumoto, H.2    Yamamoto, R.S.3
  • 44
    • 78650496969 scopus 로고    scopus 로고
    • Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia
    • Lofgren, J. L., Whary, M. T., Ge, Z. et al. 2011. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 140:210.
    • (2011) Gastroenterology , vol.140 , pp. 210
    • Lofgren, J.L.1    Whary, M.T.2    Ge, Z.3
  • 45
    • 84864298078 scopus 로고    scopus 로고
    • Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice
    • Li, Y., Kundu, P., Seow, S. W. et al. 2012. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 33:1231.
    • (2012) Carcinogenesis , vol.33 , pp. 1231
    • Li, Y.1    Kundu, P.2    Seow, S.W.3
  • 46
    • 84859812538 scopus 로고    scopus 로고
    • Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4
    • Dapito, D. H., Mencin, A., Gwak, G. Y. et al. 2012. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504.
    • (2012) Cancer Cell , vol.21 , pp. 504
    • Dapito, D.H.1    Mencin, A.2    Gwak, G.Y.3
  • 49
    • 69249232549 scopus 로고    scopus 로고
    • Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells
    • Garrett, W. S., Punit, S., Gallini, C. A. et al. 2009. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16:208.
    • (2009) Cancer Cell , vol.16 , pp. 208
    • Garrett, W.S.1    Punit, S.2    Gallini, C.A.3
  • 50
    • 84873372079 scopus 로고    scopus 로고
    • NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer
    • Couturier-Maillard, A., Secher, T., Rehman, A. et al. 2013. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123:700.
    • (2013) J. Clin. Invest , vol.123 , pp. 700
    • Couturier-Maillard, A.1    Secher, T.2    Rehman, A.3
  • 51
    • 84878971321 scopus 로고    scopus 로고
    • Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer
    • Hu, B., Elinav, E., Huber, S. et al. 2013. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl Acad. Sci. USA 110:9862.
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 9862
    • Hu, B.1    Elinav, E.2    Huber, S.3
  • 52
    • 79957576718 scopus 로고    scopus 로고
    • NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
    • Elinav, E., Strowig, T., Kau, A. L. et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745.
    • (2011) Cell , vol.145 , pp. 745
    • Elinav, E.1    Strowig, T.2    Kau, A.L.3
  • 53
    • 84879888338 scopus 로고    scopus 로고
    • Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
    • Yoshimoto, S., Loo, T. M., Atarashi, K. et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97.
    • (2013) Nature , vol.499 , pp. 97
    • Yoshimoto, S.1    Loo, T.M.2    Atarashi, K.3
  • 54
    • 84922202505 scopus 로고    scopus 로고
    • Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation
    • Rutkowski, M. R., Stephen, T. L., Svoronos, N. et al. 2015. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27.
    • (2015) Cancer Cell , vol.27 , pp. 27
    • Rutkowski, M.R.1    Stephen, T.L.2    Svoronos, N.3
  • 56
    • 84919884555 scopus 로고    scopus 로고
    • Microbiota organization is a distinct feature of proximal colorectal cancers
    • Dejea, C. M., Wick, E. C., Hechenbleikner, E. M. et al. 2014. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111:18321.
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 18321
    • Dejea, C.M.1    Wick, E.C.2    Hechenbleikner, E.M.3
  • 57
    • 84867192879 scopus 로고    scopus 로고
    • Intestinal inflammation targets cancer-inducing activity of the microbiota
    • Arthur, J. C., Perez-Chanona, E., Mühlbauer, M. et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120.
    • (2012) Science , vol.338 , pp. 120
    • Arthur, J.C.1    Perez-Chanona, E.2    Mühlbauer, M.3
  • 58
    • 84907363534 scopus 로고    scopus 로고
    • Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer
    • Arthur, J. C., Gharaibeh, R. Z., Mühlbauer, M. et al. 2014. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 5:4724.
    • (2014) Nat. Commun , vol.5 , pp. 4724
    • Arthur, J.C.1    Gharaibeh, R.Z.2    Mühlbauer, M.3
  • 59
    • 84882354326 scopus 로고    scopus 로고
    • Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment
    • Kostic, A. D., Chun, E., Robertson, L. et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207.
    • (2013) Cell Host Microbe , vol.14 , pp. 207
    • Kostic, A.D.1    Chun, E.2    Robertson, L.3
  • 60
    • 84923053706 scopus 로고    scopus 로고
    • Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack
    • Gur, C., Ibrahim, Y., Isaacson, B. et al. 2015. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344.
    • (2015) Immunity , vol.42 , pp. 344
    • Gur, C.1    Ibrahim, Y.2    Isaacson, B.3
  • 61
    • 84888059687 scopus 로고    scopus 로고
    • The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide
    • Viaud, S., Saccheri, F., Mignot, G. et al. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971.
    • (2013) Science , vol.342 , pp. 971
    • Viaud, S.1    Saccheri, F.2    Mignot, G.3
  • 62
    • 84888049920 scopus 로고    scopus 로고
    • Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
    • Iida, N., Dzutsev, A., Stewart, C. A. et al. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967.
    • (2013) Science , vol.342 , pp. 967
    • Iida, N.1    Dzutsev, A.2    Stewart, C.A.3
  • 63
  • 65
    • 78650310810 scopus 로고    scopus 로고
    • The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling
    • Spits, H. and Di Santo, J. P. 2011. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12:21.
    • (2011) Nat. Immunol , vol.12 , pp. 21
    • Spits, H.1    Di Santo, J.P.2
  • 66
    • 84867636023 scopus 로고    scopus 로고
    • Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine
    • Tait Wojno, E. D. and Artis, D. 2012. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12:445.
    • (2012) Cell Host Microbe , vol.12 , pp. 445
    • Tait Wojno, E.D.1    Artis, D.2
  • 67
    • 84929996266 scopus 로고    scopus 로고
    • Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology
    • Eberl, G., Colonna, M., Di Santo, J. P. and McKenzie, A. N. 2015. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348:aaa6566.
    • (2015) Science , vol.348
    • Eberl, G.1    Colonna, M.2    Di Santo, J.P.3    McKenzie, A.N.4
  • 68
    • 84872977452 scopus 로고    scopus 로고
    • Innate lymphoid cells-a proposal for uniform nomenclature
    • Spits, H., Artis, D., Colonna, M. et al. 2013. Innate lymphoid cells-a proposal for uniform nomenclature. Nat. Rev. Immunol. 13:145.
    • (2013) Nat. Rev. Immunol , vol.13 , pp. 145
    • Spits, H.1    Artis, D.2    Colonna, M.3
  • 69
    • 84923436228 scopus 로고    scopus 로고
    • Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets
    • Robinette, M. L., Fuchs, A., Cortez, V. S. et al.; Immunological Genome Consortium. 2015. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16:306.
    • (2015) Nat. Immunol , vol.16 , pp. 306
    • Robinette, M.L.1    Fuchs, A.2    Cortez, V.S.3
  • 70
    • 84936892270 scopus 로고    scopus 로고
    • Innate lymphoid cells in the initiation, regulation and resolution of inflammation
    • Sonnenberg, G. F. and Artis, D. 2015. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21:698.
    • (2015) Nat. Med , vol.21 , pp. 698
    • Sonnenberg, G.F.1    Artis, D.2
  • 71
    • 84873729246 scopus 로고    scopus 로고
    • A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells
    • Klose, C. S., Kiss, E. A., Schwierzeck, V. et al. 2013. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494:261.
    • (2013) Nature , vol.494 , pp. 261
    • Klose, C.S.1    Kiss, E.A.2    Schwierzeck, V.3
  • 72
    • 84931569282 scopus 로고    scopus 로고
    • Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection
    • Hernández, P. P., Mahlakõiv, T., Yang, I. et al. 2015. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat. Immunol. 16:698.
    • (2015) Nat. Immunol , vol.16 , pp. 698
    • Hernández, P.P.1    Mahlakõiv, T.2    Yang, I.3
  • 73
    • 59649099774 scopus 로고    scopus 로고
    • A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity
    • Cella, M., Fuchs, A., Vermi, W. et al. 2009. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722.
    • (2009) Nature , vol.457 , pp. 722
    • Cella, M.1    Fuchs, A.2    Vermi, W.3
  • 74
    • 77954627022 scopus 로고    scopus 로고
    • Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity
    • Cella, M., Otero, K. and Colonna, M. 2010. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107:10961.
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 10961
    • Cella, M.1    Otero, K.2    Colonna, M.3
  • 75
    • 57849131584 scopus 로고    scopus 로고
    • Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells
    • Cupedo, T., Crellin, N. K., Papazian, N. et al. 2009. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 10:66.
    • (2009) Nat. Immunol , vol.10 , pp. 66
    • Cupedo, T.1    Crellin, N.K.2    Papazian, N.3
  • 76
    • 57849145994 scopus 로고    scopus 로고
    • Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin
    • Luci, C., Reynders, A., Ivanov, I. I. et al. 2009. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10:75.
    • (2009) Nat. Immunol , vol.10 , pp. 75
    • Luci, C.1    Reynders, A.2    Ivanov, I.I.3
  • 77
    • 79960641541 scopus 로고    scopus 로고
    • Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt-lymphoid cells
    • Reynders, A., Yessaad, N., Vu Manh, T. P. et al. 2011. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt-lymphoid cells. EMBO J. 30:2934.
    • (2011) EMBO J , vol.30 , pp. 2934
    • Reynders, A.1    Yessaad, N.2    Vu Manh, T.P.3
  • 78
    • 79955030498 scopus 로고    scopus 로고
    • Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
    • Sonnenberg, G. F., Fouser, L. A. and Artis, D. 2011. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12:383.
    • (2011) Nat. Immunol , vol.12 , pp. 383
    • Sonnenberg, G.F.1    Fouser, L.A.2    Artis, D.3
  • 80
    • 80054122238 scopus 로고    scopus 로고
    • The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
    • Vaishnava, S., Yamamoto, M., Severson, K. M. et al. 2011. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334:255.
    • (2011) Science , vol.334 , pp. 255
    • Vaishnava, S.1    Yamamoto, M.2    Severson, K.M.3
  • 82
    • 33749318470 scopus 로고    scopus 로고
    • Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides
    • Liang, S. C., Tan, X. Y., Luxenberg, D. P. et al. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203:2271.
    • (2006) J. Exp. Med , vol.203 , pp. 2271
    • Liang, S.C.1    Tan, X.Y.2    Luxenberg, D.P.3
  • 83
    • 33646552450 scopus 로고    scopus 로고
    • IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis
    • Wolk, K., Witte, E., Wallace, E. et al. 2006. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 36:1309.
    • (2006) Eur. J. Immunol , vol.36 , pp. 1309
    • Wolk, K.1    Witte, E.2    Wallace, E.3
  • 84
    • 14844342604 scopus 로고    scopus 로고
    • IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes
    • Boniface, K., Bernard, F. X., Garcia, M., Gurney, A. L., Lecron, J. C. and Morel, F. 2005. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 174:3695.
    • (2005) J. Immunol , vol.174 , pp. 3695
    • Boniface, K.1    Bernard, F.X.2    Garcia, M.3    Gurney, A.L.4    Lecron, J.C.5    Morel, F.6
  • 85
    • 40049083827 scopus 로고    scopus 로고
    • Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
    • Zheng, Y., Valdez, P. A., Danilenko, D. M. et al. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14:282.
    • (2008) Nat. Med , vol.14 , pp. 282
    • Zheng, Y.1    Valdez, P.A.2    Danilenko, D.M.3
  • 86
    • 40049098958 scopus 로고    scopus 로고
    • IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia
    • Aujla, S. J., Chan, Y. R., Zheng, M. et al. 2008. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14:275.
    • (2008) Nat. Med , vol.14 , pp. 275
    • Aujla, S.J.1    Chan, Y.R.2    Zheng, M.3
  • 87
  • 88
    • 57449118239 scopus 로고    scopus 로고
    • Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
    • Satoh-Takayama, N., Vosshenrich, C. A., Lesjean-Pottier, S. et al. 2008. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958.
    • (2008) Immunity , vol.29 , pp. 958
    • Satoh-Takayama, N.1    Vosshenrich, C.A.2    Lesjean-Pottier, S.3
  • 89
    • 77953495368 scopus 로고    scopus 로고
    • Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A
    • Sonnenberg, G. F., Nair, M. G., Kirn, T. J., Zaph, C., Fouser, L. A. and Artis, D. 2010. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J. Exp. Med. 207:1293.
    • (2010) J. Exp. Med , vol.207 , pp. 1293
    • Sonnenberg, G.F.1    Nair, M.G.2    Kirn, T.J.3    Zaph, C.4    Fouser, L.A.5    Artis, D.6
  • 90
    • 38849141814 scopus 로고    scopus 로고
    • IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis
    • Sugimoto, K., Ogawa, A., Mizoguchi, E. et al. 2008. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118:534.
    • (2008) J. Clin. Invest , vol.118 , pp. 534
    • Sugimoto, K.1    Ogawa, A.2    Mizoguchi, E.3
  • 91
    • 84908403149 scopus 로고    scopus 로고
    • Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
    • Pickard, J. M., Maurice, C. F., Kinnebrew, M. A. et al. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638.
    • (2014) Nature , vol.514 , pp. 638
    • Pickard, J.M.1    Maurice, C.F.2    Kinnebrew, M.A.3
  • 92
    • 84907208430 scopus 로고    scopus 로고
    • Innate lymphoid cells regulate intestinal epithelial cell glycosylation
    • Goto, Y., Obata, T., Kunisawa, J. et al. 2014. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009.
    • (2014) Science , vol.345
    • Goto, Y.1    Obata, T.2    Kunisawa, J.3
  • 93
    • 84908075358 scopus 로고    scopus 로고
    • Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen
    • Pham, T. A., Clare, S., Goulding, D. et al.; Sanger Mouse Genetics Project. 2014. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16:504.
    • (2014) Cell Host Microbe , vol.16 , pp. 504
    • Pham, T.A.1    Clare, S.2    Goulding, D.3
  • 94
    • 84890892433 scopus 로고    scopus 로고
    • IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism
    • Eken, A., Singh, A. K., Treuting, P. M. and Oukka, M. 2014. IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism. Mucosal Immunol. 7:143.
    • (2014) Mucosal Immunol , vol.7 , pp. 143
    • Eken, A.1    Singh, A.K.2    Treuting, P.M.3    Oukka, M.4
  • 95
    • 77951878587 scopus 로고    scopus 로고
    • Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
    • Buonocore, S., Ahern, P. P., Uhlig, H. H. et al. 2010. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371.
    • (2010) Nature , vol.464 , pp. 1371
    • Buonocore, S.1    Ahern, P.P.2    Uhlig, H.H.3
  • 96
    • 84861989207 scopus 로고    scopus 로고
    • Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
    • Sonnenberg, G. F., Monticelli, L. A., Alenghat, T. et al. 2012. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321.
    • (2012) Science , vol.336 , pp. 1321
    • Sonnenberg, G.F.1    Monticelli, L.A.2    Alenghat, T.3
  • 97
    • 84882668842 scopus 로고    scopus 로고
    • Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora
    • Qiu, J., Guo, X., Chen, Z. M. et al. 2013. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39:386.
    • (2013) Immunity , vol.39 , pp. 386
    • Qiu, J.1    Guo, X.2    Chen, Z.M.3
  • 98
    • 84898679249 scopus 로고    scopus 로고
    • Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
    • Goto, Y., Panea, C., Nakato, G. et al. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40:594.
    • (2014) Immunity , vol.40 , pp. 594
    • Goto, Y.1    Panea, C.2    Nakato, G.3
  • 99
    • 77956175900 scopus 로고    scopus 로고
    • New insights into the development of lymphoid tissues
    • van de Pavert, S. A. and Mebius, R. E. 2010. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10:664.
    • (2010) Nat. Rev. Immunol , vol.10 , pp. 664
    • van de Pavert, S.A.1    Mebius, R.E.2
  • 100
    • 84899530446 scopus 로고    scopus 로고
    • The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms
    • Randall, T. D. and Mebius, R. E. 2014. The development and function of mucosal lymphoid tissues: a balancing act with micro-organisms. Mucosal Immunol. 7:455.
    • (2014) Mucosal Immunol , vol.7 , pp. 455
    • Randall, T.D.1    Mebius, R.E.2
  • 101
    • 84889247024 scopus 로고    scopus 로고
    • Nonredundant function of soluble LTa3 produced by innate lymphoid cells in intestinal homeostasis
    • Kruglov, A. A., Grivennikov, S. I., Kuprash, D. V. et al. 2013. Nonredundant function of soluble LTa3 produced by innate lymphoid cells in intestinal homeostasis. Science 342:1243.
    • (2013) Science , vol.342 , pp. 1243
    • Kruglov, A.A.1    Grivennikov, S.I.2    Kuprash, D.V.3
  • 102
    • 84921468104 scopus 로고    scopus 로고
    • Role of group 3 innate lymphoid cells in antibody production
    • Magri, G. and Cerutti, A. 2015. Role of group 3 innate lymphoid cells in antibody production. Curr. Opin. Immunol. 33:36.
    • (2015) Curr. Opin. Immunol , vol.33 , pp. 36
    • Magri, G.1    Cerutti, A.2
  • 103
    • 84897053496 scopus 로고    scopus 로고
    • Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
    • Mortha, A., Chudnovskiy, A., Hashimoto, D. et al. 2014. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343:1249288.
    • (2014) Science , vol.343
    • Mortha, A.1    Chudnovskiy, A.2    Hashimoto, D.3
  • 104
    • 18944364129 scopus 로고    scopus 로고
    • OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3-inducer cells: evidence that IL-7 signals regulate CD30 ligand but not OX40 ligand expression
    • Kim, M. Y., Anderson, G., White, A. et al. 2005. OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3-inducer cells: evidence that IL-7 signals regulate CD30 ligand but not OX40 ligand expression. J. Immunol. 174:6686.
    • (2005) J. Immunol , vol.174 , pp. 6686
    • Kim, M.Y.1    Anderson, G.2    White, A.3
  • 105
    • 79957561768 scopus 로고    scopus 로고
    • - OX40Lhigh cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues
    • - OX40Lhigh cells express IL-22 and display an LTi phenotype in human secondary lymphoid tissues. Eur. J. Immunol. 41:1563.
    • (2011) Eur. J. Immunol , vol.41 , pp. 1563
    • Kim, S.1    Han, S.2    Withers, D.R.3
  • 106
    • 84865411384 scopus 로고    scopus 로고
    • Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue
    • Withers, D. R., Gaspal, F. M., Mackley, E. C. et al. 2012. Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J. Immunol. 189:2094.
    • (2012) J. Immunol , vol.189 , pp. 2094
    • Withers, D.R.1    Gaspal, F.M.2    Mackley, E.C.3
  • 107
    • 84896631269 scopus 로고    scopus 로고
    • Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells
    • Magri, G., Miyajima, M., Bascones, S. et al. 2014. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat. Immunol. 15:354.
    • (2014) Nat. Immunol , vol.15 , pp. 354
    • Magri, G.1    Miyajima, M.2    Bascones, S.3
  • 108
    • 84986631150 scopus 로고    scopus 로고
    • + ILCs creates a unique microenvironment within mucosal draining lymph nodes
    • + ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6:5862.
    • (2015) Nat. Commun , vol.6 , pp. 5862
    • Mackley, E.C.1    Houston, S.2    Marriott, C.L.3
  • 109
    • 77952231121 scopus 로고    scopus 로고
    • Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21
    • Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. and Swartz, M. A. 2010. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328:749.
    • (2010) Science , vol.328 , pp. 749
    • Shields, J.D.1    Kourtis, I.C.2    Tomei, A.A.3    Roberts, J.M.4    Swartz, M.A.5
  • 110
    • 77958153282 scopus 로고    scopus 로고
    • IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46
    • Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. and Becher, B. 2010. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11:1030.
    • (2010) Nat. Immunol , vol.11 , pp. 1030
    • Eisenring, M.1    vom Berg, J.2    Kristiansen, G.3    Saller, E.4    Becher, B.5
  • 111
    • 70149094177 scopus 로고    scopus 로고
    • Cutting edge: IL-7 regulates the peripheral pool of adult ROR gamma+ lymphoid tissue inducer cells
    • Schmutz, S., Bosco, N., Chappaz, S. et al. 2009. Cutting edge: IL-7 regulates the peripheral pool of adult ROR gamma+ lymphoid tissue inducer cells. J. Immunol. 183:2217.
    • (2009) J. Immunol , vol.183 , pp. 2217
    • Schmutz, S.1    Bosco, N.2    Chappaz, S.3
  • 112
    • 34248573325 scopus 로고    scopus 로고
    • Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells
    • Meier, D., Bornmann, C., Chappaz, S. et al. 2007. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26:643.
    • (2007) Immunity , vol.26 , pp. 643
    • Meier, D.1    Bornmann, C.2    Chappaz, S.3
  • 113
    • 8444243249 scopus 로고    scopus 로고
    • Induction of secondary and tertiary lymphoid structures in the skin
    • Cupedo, T., Jansen, W., Kraal, G. and Mebius, R. E. 2004. Induction of secondary and tertiary lymphoid structures in the skin. Immunity 21:655.
    • (2004) Immunity , vol.21 , pp. 655
    • Cupedo, T.1    Jansen, W.2    Kraal, G.3    Mebius, R.E.4
  • 114
    • 35748964994 scopus 로고    scopus 로고
    • Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue
    • Schrama, D., Voigt, H., Eggert, A. O. et al. 2008. Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue. Cancer Immunol. Immunother. 57:85.
    • (2008) Cancer Immunol. Immunother , vol.57 , pp. 85
    • Schrama, D.1    Voigt, H.2    Eggert, A.O.3
  • 115
    • 0035102225 scopus 로고    scopus 로고
    • Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue
    • Schrama, D., Thorstraten, P., Fischer, W. H. et al. 2001. Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14:111.
    • (2001) Immunity , vol.14 , pp. 111
    • Schrama, D.1    Thorstraten, P.2    Fischer, W.H.3
  • 116
    • 10744227434 scopus 로고    scopus 로고
    • Priming of naive T cells inside tumors leads to eradication of established tumors
    • Yu, P., Lee, Y., Liu, W. et al. 2004. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat. Immunol. 5:141.
    • (2004) Nat. Immunol , vol.5 , pp. 141
    • Yu, P.1    Lee, Y.2    Liu, W.3
  • 117
    • 84929379918 scopus 로고    scopus 로고
    • Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity
    • Peske, J. D., Thompson, E. D., Gemta, L., Baylis, R. A., Fu, Y. X. and Engelhard, V. H. 2015. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat. Commun. 6:7114.
    • (2015) Nat. Commun , vol.6 , pp. 7114
    • Peske, J.D.1    Thompson, E.D.2    Gemta, L.3    Baylis, R.A.4    Fu, Y.X.5    Engelhard, V.H.6
  • 119
    • 84903376485 scopus 로고    scopus 로고
    • Ectopic lymphoid-like structures in infection, cancer and autoimmunity
    • Pitzalis, C., Jones, G. W., Bombardieri, M. and Jones, S. A. 2014. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14:447.
    • (2014) Nat. Rev. Immunol , vol.14 , pp. 447
    • Pitzalis, C.1    Jones, G.W.2    Bombardieri, M.3    Jones, S.A.4
  • 120
    • 84893851804 scopus 로고    scopus 로고
    • Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells
    • Goc, J., Germain, C., Vo-Bourgais, T. K. et al. 2014. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74:705.
    • (2014) Cancer Res , vol.74 , pp. 705
    • Goc, J.1    Germain, C.2    Vo-Bourgais, T.K.3
  • 121
    • 84897391372 scopus 로고    scopus 로고
    • Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer
    • Germain, C., Gnjatic, S., Tamzalit, F. et al. 2014. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am. J. Respir. Crit. Care Med. 189:832.
    • (2014) Am. J. Respir. Crit. Care Med , vol.189 , pp. 832
    • Germain, C.1    Gnjatic, S.2    Tamzalit, F.3
  • 122
    • 84879661529 scopus 로고    scopus 로고
    • + follicular helper T cell infiltration predicts breast cancer survival
    • + follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123:2873.
    • (2013) J. Clin. Invest , vol.123 , pp. 2873
    • Gu-Trantien, C.1    Loi, S.2    Garaud, S.3
  • 123
    • 84896957921 scopus 로고    scopus 로고
    • Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers
    • Di Caro, G., Bergomas, F., Grizzi, F. et al. 2014. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. Clin. Cancer Res. 20:2147.
    • (2014) Clin. Cancer Res , vol.20 , pp. 2147
    • Di Caro, G.1    Bergomas, F.2    Grizzi, F.3
  • 124
    • 78651500757 scopus 로고    scopus 로고
    • Microbiotainduced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells
    • Lochner, M., Ohnmacht, C., Presley, L. et al. 2011. Microbiotainduced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J. Exp. Med. 208:125.
    • (2011) J. Exp. Med , vol.208 , pp. 125
    • Lochner, M.1    Ohnmacht, C.2    Presley, L.3
  • 125
    • 84902077790 scopus 로고    scopus 로고
    • The role of the IL-22/IL-22R1 axis in cancer
    • Lim, C. and Savan, R. 2014. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. 25:257.
    • (2014) Cytokine Growth Factor Rev , vol.25 , pp. 257
    • Lim, C.1    Savan, R.2
  • 126
    • 84868615556 scopus 로고    scopus 로고
    • IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine
    • Huber, S., Gagliani, N., Zenewicz, L. A. et al. 2012. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491:259.
    • (2012) Nature , vol.491 , pp. 259
    • Huber, S.1    Gagliani, N.2    Zenewicz, L.A.3
  • 127
  • 128
    • 84896688553 scopus 로고    scopus 로고
    • Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4+ T cells correlate with pancreatic cancer progression
    • Xu, X., Tang, Y., Guo, S. et al. 2014. Increased intratumoral interleukin 22 levels and frequencies of interleukin 22-producing CD4+ T cells correlate with pancreatic cancer progression. Pancreas 43:470.
    • (2014) Pancreas , vol.43 , pp. 470
    • Xu, X.1    Tang, Y.2    Guo, S.3
  • 129
    • 84866171319 scopus 로고    scopus 로고
    • Interleukin 22-producing CD4+ T cells in malignant pleural effusion
    • Ye, Z. J., Zhou, Q., Yin, W. et al. 2012. Interleukin 22-producing CD4+ T cells in malignant pleural effusion. Cancer Lett. 326:23.
    • (2012) Cancer Lett , vol.326 , pp. 23
    • Ye, Z.J.1    Zhou, Q.2    Yin, W.3
  • 130
    • 84878249123 scopus 로고    scopus 로고
    • Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer
    • Liu, T., Peng, L., Yu, P. et al. 2012. Increased circulating Th22 and Th17 cells are associated with tumor progression and patient survival in human gastric cancer. J. Clin. Immunol. 32:1332.
    • (2012) J. Clin. Immunol , vol.32 , pp. 1332
    • Liu, T.1    Peng, L.2    Yu, P.3
  • 131
    • 84871018340 scopus 로고    scopus 로고
    • Increased intratumoral IL-22-producing CD4(+) T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival
    • Zhuang, Y., Peng, L. S., Zhao, Y. L. et al. 2012. Increased intratumoral IL-22-producing CD4(+) T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol. Immunother. 61:1965.
    • (2012) Cancer Immunol. Immunother , vol.61 , pp. 1965
    • Zhuang, Y.1    Peng, L.S.2    Zhao, Y.L.3
  • 132
    • 84927654352 scopus 로고    scopus 로고
    • Th22 cell accumulation is associated with colorectal cancer development
    • Huang, Y. H., Cao, Y. F., Jiang, Z. Y., Zhang, S. and Gao, F. 2015. Th22 cell accumulation is associated with colorectal cancer development. World J. Gastroenterol. 21:4216.
    • (2015) World J. Gastroenterol , vol.21 , pp. 4216
    • Huang, Y.H.1    Cao, Y.F.2    Jiang, Z.Y.3    Zhang, S.4    Gao, F.5
  • 133
    • 33746534417 scopus 로고    scopus 로고
    • IL-23 promotes tumour incidence and growth
    • Langowski, J. L., Zhang, X., Wu, L. et al. 2006. IL-23 promotes tumour incidence and growth. Nature 442:461.
    • (2006) Nature , vol.442 , pp. 461
    • Langowski, J.L.1    Zhang, X.2    Wu, L.3
  • 134
    • 84868613705 scopus 로고    scopus 로고
    • Adenomalinked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth
    • Grivennikov, S. I., Wang, K., Mucida, D. et al. 2012. Adenomalinked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254.
    • (2012) Nature , vol.491 , pp. 254
    • Grivennikov, S.I.1    Wang, K.2    Mucida, D.3
  • 135
    • 79951815749 scopus 로고    scopus 로고
    • Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer
    • Tosolini, M., Kirilovsky, A., Mlecnik, B. et al. 2011. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263.
    • (2011) Cancer Res , vol.71 , pp. 1263
    • Tosolini, M.1    Kirilovsky, A.2    Mlecnik, B.3
  • 136
    • 84900459331 scopus 로고    scopus 로고
    • IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L
    • Kryczek, I., Lin, Y., Nagarsheth, N. et al. 2014. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40:772.
    • (2014) Immunity , vol.40 , pp. 772
    • Kryczek, I.1    Lin, Y.2    Nagarsheth, N.3
  • 137
    • 79953681584 scopus 로고    scopus 로고
    • IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma
    • Liu, J., Duan, Y., Cheng, X. et al. 2011. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem. Biophys. Res. Commun. 407:348.
    • (2011) Biochem. Biophys. Res. Commun , vol.407 , pp. 348
    • Liu, J.1    Duan, Y.2    Cheng, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.