메뉴 건너뛰기




Volumn 10, Issue 4, 2015, Pages 1-114

Analyzing Analytics

Author keywords

analytics; hardware acceleration; parallel algorithms

Indexed keywords

APPLICATION PROGRAMS; ARTIFICIAL INTELLIGENCE; DATA MINING; INFORMATION MANAGEMENT; LEARNING SYSTEMS; PARALLEL ALGORITHMS; RECONFIGURABLE HARDWARE;

EID: 84975032480     PISSN: 19353235     EISSN: 19353243     Source Type: Book Series    
DOI: 10.2200/S00678ED1V01Y201511CAC035     Document Type: Article
Times cited : (1)

References (417)
  • 1
    • 0002110806 scopus 로고
    • Applying integer linear programming to the fleet assignment problem
    • 39, 41
    • Jeph Abara. Applying integer linear programming to the fleet assignment problem. INTERFACES, 19(4), 1989. DOI: 10.1287/inte.19.4.20. 39, 41
    • (1989) INTERFACES , vol.19 , Issue.4
    • Abara, J.1
  • 3
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • 23
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749, 2005. DOI: 10.1109/TKDE.2005.99. 23
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 6
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large database
    • 18, 19, 20
    • Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets of items in large database. In Proc. of the 1993 ACM SIGMOD Conference, pages 207-216, 1993. DOI: 10.1145/170035.170072. 18, 19, 20
    • (1993) Proc. of the 1993 ACM SIGMOD Conference , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 9
    • 33644921425 scopus 로고    scopus 로고
    • Configurable string matching hardware for speeding up intrusion detection
    • March 58
    • Monther Aldwairi, Thomas Conte, and Paul Franzon. Configurable string matching hardware for speeding up intrusion detection. ACM SIGARCH Computer Architecture News, 33(1), March 2005. DOI: 10.1145/1055626.1055640. 58
    • (2005) ACM SIGARCH Computer Architecture News , vol.33 , Issue.1
    • Aldwairi, M.1    Conte, T.2    Franzon, P.3
  • 10
    • 84949221689 scopus 로고    scopus 로고
    • Spectral techniques in graph algorithms
    • 46
    • N. Alon. Spectral techniques in graph algorithms. Lecture Notes in Computer Science 1380, pages 206-215, 1998. DOI: 10.1007/BFb0054322. 46
    • (1998) Lecture Notes in Computer Science 1380 , pp. 206-215
    • Alon, N.1
  • 12
    • 37549058056 scopus 로고    scopus 로고
    • Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
    • 18
    • Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Communications of the ACM, 51(1):117-122, 2008. DOI: 10.1145/1327452.1327494. 18
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 117-122
    • Andoni, A.1    Indyk, P.2
  • 14
    • 0042414012 scopus 로고    scopus 로고
    • Business applications of data mining
    • August 9
    • Chidanand Apte, Bing Liu, Edwin Pednault, and Padhraic Smyth. Business applications of data mining. Communications of the ACM, 45(8), August 2002. DOI: 10.1145/545151.545178. 9
    • (2002) Communications of the ACM , vol.45 , Issue.8
    • Apte, C.1    Liu, B.2    Pednault, E.3    Smyth, P.4
  • 15
    • 2642517731 scopus 로고    scopus 로고
    • UPS optimizes its air network
    • January-February 2, 9, 41
    • Andrew P. Armacost, Cynthia Barnhart, Keith A. Ware, and Alysia M. Wilson. UPS Optimizes Its Air Network. Interfaces, 34(1), January-February 2004. DOI: 10.1287/inte.1030.0060. 2, 9, 41
    • (2004) Interfaces , vol.34 , Issue.1
    • Armacost, A.P.1    Barnhart, C.2    Ware, K.A.3    Wilson, A.M.4
  • 17
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching in fixed dimensions
    • 17, 18
    • Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM, 45(6):891-923, 1998. DOI: 10.1145/293347.293348. 17, 18
    • (1998) Journal of the ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    Wu, A.Y.5
  • 20
    • 0038513959 scopus 로고    scopus 로고
    • Scale-free networks
    • May 45, 46
    • Albert-Laszlo Barabasi and Eric Bonabeau. Scale-free networks. Scientific American, 288:60-69, May 2003. DOI: 10.1038/scientificamerican0503-60. 45, 46
    • (2003) Scientific American , vol.288 , pp. 60-69
    • Barabasi, A.1    Bonabeau, E.2
  • 21
    • 0000816725 scopus 로고    scopus 로고
    • Branch-and-price: Column generation for solving huge integer programs
    • May-June 41
    • Cynthia Barnhart, Ellis L. Johnson, George Nemhauser, Martin W. P. Savelbergh, and Pamela H. Vance. Branch-and-price: Column generation for solving huge integer programs. Optimization, 46(3):316-329, May-June 1998. DOI: 10.1287/opre.46.3.316. 41
    • (1998) Optimization , vol.46 , Issue.3 , pp. 316-329
    • Barnhart, C.1    Johnson, E.L.2    Nemhauser, G.3    Savelbergh, M.W.P.4    Vance, P.H.5
  • 22
    • 33750709703 scopus 로고    scopus 로고
    • Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism
    • 46
    • Kim Baskerville and Maya Paczuski. Subgraph ensembles and motif discovery using an alternative heuristic for graph isomorphism. Physical Review E 74, pages 051903:1-11, 2006. 46
    • (2006) Physical Review E 74 , vol.1-11 , pp. 051903
    • Baskerville, K.1    Paczuski, M.2
  • 26
    • 78751623608 scopus 로고    scopus 로고
    • All together now: A perspective on the netflix prize
    • 9, 16, 18, 23
    • Robert M. Bell, Yehuda Koren, and Chris Volinsky. All Together Now: A Perspective on the Netflix Prize. Chance, 23(1):24-29, 2010. DOI: 10.1080/09332480.2010.10739787. 9, 16, 18, 23
    • (2010) Chance , vol.23 , Issue.1 , pp. 24-29
    • Bell, R.M.1    Koren, Y.2    Volinsky, C.3
  • 27
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • 27, 59, 61
    • Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2 (1), 2009. DOI: 10.1561/2200000006. 27, 59, 61
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1
    • Bengio, Y.1
  • 28
    • 84944735469 scopus 로고    scopus 로고
    • Book in preparation for MIT Press, 13, 27, 34
    • Yoshua Bengio, Ian J. Goodfellow, and Aaron Courville. Deep learning. Book in preparation for MIT Press, 2014. http://www.iro.umontreal.ca/~bengioy/dlbook. 13, 27, 34
    • (2014) Deep Learning
    • Bengio, Y.1    Goodfellow, I.J.2    Courville, A.3
  • 29
    • 0001907967 scopus 로고    scopus 로고
    • Support vector machines: Hype or hallelujah?
    • 23, 25
    • Kristin Bennett and Colin Campbell. Support vector machines: Hype or hallelujah? SIGKDD Explorations, 2(2), 2000. DOI: 10.1145/380995.380999. 23, 25
    • (2000) SIGKDD Explorations , vol.2 , Issue.2
    • Bennett, K.1    Campbell, C.2
  • 30
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • 17, 18
    • Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509-517, 1975. DOI: 10.1145/361002.361007. 17, 18
    • (1975) Communications of the ACM , vol.18 , Issue.9 , pp. 509-517
    • Louis Bentley, J.1
  • 31
    • 0018999905 scopus 로고
    • Multidimensional divide and conquer
    • 17, 18
    • Jon Louis Bentley. Multidimensional divide and conquer. Communications of the ACM, 23(4): 214-229, 1980. DOI: 10.1145/358841.358850. 17, 18
    • (1980) Communications of the ACM , vol.23 , Issue.4 , pp. 214-229
    • Louis Bentley, J.1
  • 33
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • Computer Science Department, University of Tennessee, Knoxville, December 48, 50
    • M. W. Berry, S. T. Dumais, and G. W. O'Brien. Using linear algebra for intelligent information retrieval. Technical Report CS-94-270, Computer Science Department, University of Tennessee, Knoxville, December 1994. DOI: 10.1137/1037127. 48, 50
    • (1994) Technical Report CS-94-270
    • Berry, M.W.1    Dumais, S.T.2    O'Brien, G.W.3
  • 34
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • December 58
    • Michael W. Berry, Susan T. Dumais, and Gavin W. O'Brien. Using linear algebra for intelligent information retrieval. SIAM Rev., 37(4), December 1995. DOI: 10.1137/1037127. 58
    • (1995) SIAM Rev. , vol.37 , Issue.4
    • Berry, M.W.1    Dumais, S.T.2    O'Brien, G.W.3
  • 39
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden markov models
    • International Computer Science Institute, April. 15
    • Jeff A. Bilmes. A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Technical Report TR-97-021, International Computer Science Institute, April 1998. 15
    • (1998) Technical Report TR-97-021
    • Bilmes, J.A.1
  • 42
    • 84975059502 scopus 로고    scopus 로고
    • Financial risk modeling on low-power accelerators: Xperimental performance evaluation of tk1 with fpga, March 2015
    • 63, 64
    • Rajesh Bordawekar and Daniel Beece. Financial risk modeling on low-power accelerators: xperimental performance evaluation of tk1 with fpga, March 2015. Nvidia Global Technology Conference. 63, 64
    • Nvidia Global Technology Conference
    • Bordawekar, R.1    Beece, D.2
  • 43
    • 84876590483 scopus 로고    scopus 로고
    • Analyzing analytics, part 1: A survey of business analytics models and algorithms
    • IBM T. J. Watson Research Center, July 8
    • Rajesh Bordawekar, Bob Blainey, Chidanand Apte, and Michael McRoberts. Analyzing analytics, part 1: A survey of business analytics models and algorithms. Technical Report RC25186, IBM T. J. Watson Research Center, July 2011. DOI: 10.1145/2590989.2590993. 8
    • (2011) Technical Report RC25186
    • Bordawekar, R.1    Blainey, B.2    Apte, C.3    McRoberts, M.4
  • 44
    • 0141972655 scopus 로고    scopus 로고
    • Accelerating the cky parsing using fpgas
    • May 57, 58
    • Jacir L. Bordim, Yasuaki Ito, and Koji Nakano. Accelerating the cky parsing using fpgas. IEICE Trans. Inf. and Syst., E86-D(5), May 2003. DOI: 10.1007/3-540-36265-7-5. 57, 58
    • (2003) IEICE Trans. Inf. and Syst. , vol.E86-D , Issue.5
    • Bordim, J.L.1    Ito, Y.2    Nakano, K.3
  • 47
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • 53
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122, 2011. DOI: 10.1561/2200000016. 53
    • (2011) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 49
    • 0000605667 scopus 로고
    • Options: A monte carlo approach
    • 36, 37
    • Phelim P. Boyle. Options: A monte carlo approach. Journal of Financial Economics, 4:323-338, 1977. DOI: 10.1016/0304-405X(77)90005-8. 36, 37
    • (1977) Journal of Financial Economics , vol.4 , pp. 323-338
    • Boyle, P.P.1
  • 52
    • 84976668743 scopus 로고
    • Algorithm 457: Finding all cliques of an undirected graph
    • 46
    • Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9):575-577, 1973. DOI: 10.1145/362342.362367. 46
    • (1973) Communications of the ACM , vol.16 , Issue.9 , pp. 575-577
    • Bron, C.1    Kerbosch, J.2
  • 53
    • 33748361351 scopus 로고    scopus 로고
    • The $25,000,000,000 eigenvector: The linear algebra behind google
    • March 67, 68
    • Kurt Bryan and Tanya Leise. The $25,000,000,000 eigenvector: The linear algebra behind google. SIAM Rev., 48(3), March 2006. DOI: 10.1137/050623280. 67, 68
    • (2006) SIAM Rev. , vol.48 , Issue.3
    • Bryan, K.1    Leise, T.2
  • 54
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • 23, 25
    • Christopher Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167, 1998. DOI: 10.1023/A:1009715923555. 23, 25
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.1
  • 58
    • 4644368900 scopus 로고    scopus 로고
    • Technical Report Research Paper No. 9711, Federal Reserve Bank of New York, March 9
    • Richard Cantor, Frank Packer, and Kevin Cole. Split ratings and the pricing of credit risk. Technical Report Research Paper No. 9711, Federal Reserve Bank of New York, March 1997. DOI: 10.3905/jfi.1997.408217. 9
    • (1997) Split Ratings and the Pricing of Credit Risk
    • Cantor, R.1    Packer, F.2    Cole, K.3
  • 60
    • 33745790274 scopus 로고    scopus 로고
    • Graph mining: Laws, generators, and algorithms
    • March 44, 45, 46
    • Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms. ACM Computing Surveys, 38(2), March 2006. DOI: 10.1145/1132952.1132954. 44, 45, 46
    • (2006) ACM Computing Surveys , vol.38 , Issue.2
    • Chakrabarti, D.1    Faloutsos, C.2
  • 63
    • 0344811122 scopus 로고    scopus 로고
    • An overview of data warehousing and OLAP technology
    • 41, 42, 43, 44
    • S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD Record, 26:65-74, 1997. DOI: 10.1145/248603.248616. 41, 42, 43, 44
    • (1997) SIGMOD Record , vol.26 , pp. 65-74
    • Chaudhuri, S.1    Dayal, U.2
  • 71
    • 84929293756 scopus 로고    scopus 로고
    • Hardware accelerators for financial mathematics-methodology, results and benchmarks
    • February. 62, 64
    • Henning Marxen Christian de Schryver and Daniel Schmidt. Hardware accelerators for financial mathematics-methodology, results and benchmarks. In Proc. Young Researcher's Symposium (YRS), February 2011. 62, 64
    • (2011) Proc. Young Researcher's Symposium (YRS)
    • De Schryver, H.M.C.1    Schmidt, D.2
  • 76
    • 0003307653 scopus 로고
    • Beyond decision support
    • 27, July 41, 43
    • E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993b. DOI: 10.1016/0360-8352(88)90043-5. 41, 43
    • (1993) Computer World
    • Codd, E.F.1    Codd, S.B.2    Salley, C.T.3
  • 82
    • 84975037655 scopus 로고    scopus 로고
    • University College Cork. CSP tutorial, 40, 41
    • Cork Constraint Computation Centre, University College Cork. CSP tutorial, 2011. http: //4c.ucc.ie/web/outreach/tutorial.html. 40, 41
    • (2011)
    • Cork Constraint Computation Centre1
  • 83
    • 34249753618 scopus 로고
    • Support vector networks
    • Corinna Cortes and Vladimir Vapnik. Support vector networks. Machine Learning, 20:273-297, 1995. DOI: 10.1007/BF00994018. 23, 25
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 84
    • 33846898271 scopus 로고    scopus 로고
    • Families of fpga-based accelerators for approximate string matching
    • March 23, 25
    • Tom Van Court and Martin C. Herbordt. Families of fpga-based accelerators for approximate string matching. Microprocess Microsyst., 31(2), March 2007. DOI: 10.1016/j.micpro.2006.04.001. 58
    • (2007) Microprocess Microsyst. , vol.31 , Issue.2
    • Van Court, T.1    Herbordt, M.C.2
  • 85
    • 84968468396 scopus 로고
    • On the lattice structure of certain linear congruential sequences related to awc/swb generators
    • 37
    • R. Couture and P. L'Ecuyer. On the lattice structure of certain linear congruential sequences related to awc/swb generators. Mathematics of Computation, 62:799-808, 1994. DOI: 10.1090/S0025-5718-1994-1220826-X. 37
    • (1994) Mathematics of Computation , vol.62 , pp. 799-808
    • Couture, R.1    L'Ecuyer, P.2
  • 89
    • 77951575054 scopus 로고    scopus 로고
    • A 1 cycle-per-byte xml parsing accelerator
    • February 58
    • Zefu Dai, Nick Ni, and Jianwen Zhu. A 1 cycle-per-byte xml parsing accelerator. In Proc. FPGA'10, February 2010. DOI: 10.1145/1723112.1723148. 58
    • (2010) Proc. FPGA'10
    • Dai, Z.1    Ni, N.2    Zhu, J.3
  • 90
    • 0003909736 scopus 로고
    • Princeton University Press, Princeton, NJ 39, 41
    • G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963. DOI: 10.1145/997817.997857. 39, 41
    • (1963) Linear Programming and Extensions
    • Dantzig, G.B.1
  • 92
    • 4544259509 scopus 로고    scopus 로고
    • Locality-sensitive hashing scheme based on p-stable distributions
    • 18
    • Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Symposium on Computational Geometry, pages 253-262, 2004. DOI: 10.1145/997817.997857. 18
    • (2004) Symposium on Computational Geometry , pp. 253-262
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokni, V.S.4
  • 95
    • 13544249936 scopus 로고    scopus 로고
    • A review of two text-mining packages: Sas textmining and wordstat
    • February 33, 35
    • Angelique Davi, Dominique Haughton, Nada Nasr, Gaurav Shah, Maria Skaletsky, and Ruth Spack. A review of two text-mining packages: Sas textmining and wordstat. The American Statistician, 59(1):89-103, February 2005. DOI: 10.1198/000313005X22987. 33, 35
    • (2005) The American Statistician , vol.59 , Issue.1 , pp. 89-103
    • Davi, A.1    Haughton, D.2    Nasr, N.3    Shah, G.4    Skaletsky, M.5    Spack, R.6
  • 97
    • 84975082807 scopus 로고    scopus 로고
    • March. Nvidia Global Technology Conference Keynote. 60, 61, 76
    • Jeff Dean. Large scale deep learning, March 2015. Nvidia Global Technology Conference Keynote. 60, 61, 76
    • (2015) Large Scale Deep Learning
    • Dean, J.1
  • 98
    • 73649114265 scopus 로고    scopus 로고
    • Mapreduce: A flexible data processing tool
    • 8
    • Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Communications of the ACM, 53(1), 2010. DOI: 10.1145/1629175.1629198. 8
    • (2010) Communications of the ACM , vol.53 , Issue.1
    • Dean, J.1    Ghemawat, S.2
  • 103
    • 1842478680 scopus 로고    scopus 로고
    • Deep packet inspection using parallel Bloom filters
    • January 71, 75
    • Sarang Dharmapurikar, Praveen Krishnamurthy, Todd S. Sproull, and John W. Lockwood. Deep packet inspection using parallel Bloom filters. IEEE Micro, 24(1):52-61, January 2004. DOI: 10.1109/MM.2004.1268997. 71, 75
    • (2004) IEEE Micro , vol.24 , Issue.1 , pp. 52-61
    • Dharmapurikar, S.1    Krishnamurthy, P.2    Sproull, T.S.3    Lockwood, J.W.4
  • 104
    • 31844442747 scopus 로고    scopus 로고
    • A unified view of kernel k-means, spectral clustering, and graph cuts
    • Department of Computer Science, University of Texas at Austin, February. 46
    • Inderjit Dhillon, Yuqiang Guan, and Brian Kulis. A unified view of kernel k-means, spectral clustering, and graph cuts. Technical Report TR-04-25, Department of Computer Science, University of Texas at Austin, February 2005. 46
    • (2005) Technical Report TR-04-25
    • Dhillon, I.1    Guan, Y.2    Kulis, B.3
  • 105
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix tri-factorizations for clustering
    • 35
    • Chris Ding, Tao Li, Wei Peng, and Haesum Park. Orthogonal nonnegative matrix tri-factorizations for clustering. In Proc. of KDD'06, pages 126-134, 2006. DOI: 10.1145/1150402.1150420. 35
    • (2006) Proc. of KDD'06 , pp. 126-134
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 106
    • 67049146331 scopus 로고    scopus 로고
    • Nonnengative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding
    • 46
    • Chris Ding, Tao Li, and Michael I. Jordan. Nonnengative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding. In 2008 Eighth IEEE International Conference on Data Mining, pages 183-192, 2008. DOI: 10.1109/ICDM.2008.130. 46
    • (2008) 2008 Eighth IEEE International Conference on Data Mining , pp. 183-192
    • Ding, C.1    Li, T.2    Jordan, M.I.3
  • 108
    • 0346607177 scopus 로고    scopus 로고
    • A survey of mathematical programming applications in integrated steel plants
    • Fall 38, 41
    • Goutam Dutta and Robert Fourer. A survey of mathematical programming applications in integrated steel plants. Manufacturing and Service Operations Management, 3(4):387-400, Fall 2001. DOI: 10.1287/msom.3.4.387.9972. 38, 41
    • (2001) Manufacturing and Service Operations Management , vol.3 , Issue.4 , pp. 387-400
    • Dutta, G.1    Fourer, R.2
  • 110
    • 26444565569 scopus 로고
    • Finding structure in time
    • 28
    • Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179-211, 1990. DOI: 10.1207/s15516709cog1402-1. 28
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 114
  • 120
    • 33750913667 scopus 로고    scopus 로고
    • Kd-tree acceleration structures for a gpu raytracer
    • 71, 75
    • Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a gpu raytracer. Graphics Hardware, 2005. DOI: 10.1145/1071866.1071869. 71, 75
    • (2005) Graphics Hardware
    • Foley, T.1    Sugerman, J.2
  • 123
    • 84975032764 scopus 로고    scopus 로고
    • A true story: Gpu in production for intraday risk calculations, March 2015
    • 64
    • Regis Fricker. A true story: Gpu in production for intraday risk calculations, March 2015. Nvidia Global Technology Conference. 64
    • Nvidia Global Technology Conference
    • Fricker, R.1
  • 124
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • September 17, 18
    • J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209-226, September 1977. DOI: 10.1145/355744.355745. 17, 18
    • (1977) ACM Transactions on Mathematical Software , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 125
    • 84905644956 scopus 로고    scopus 로고
    • Mapgraph: A high level api for fast development of high performance graph analytics on GPUs
    • June 67, 68
    • Zhisong Fu, Bryan Thompson, and Michael Personick. Mapgraph: A high level api for fast development of high performance graph analytics on gpus. In Proc. of GRADES 2014, June 2014. DOI: 10.1145/2621934.2621936. 67, 68
    • (2014) Proc. of GRADES 2014
    • Fu, Z.1    Thompson, B.2    Personick, M.3
  • 126
    • 0019152630 scopus 로고    scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • 27
    • Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193-202, 2013. DOI: 10.1007/BF00344251. 27
    • (2013) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 127
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • 35
    • Thomas Gartner. A survey of kernels for structured data. SIGKDD Explorations, 2003. DOI: 10.1145/959242.959248. 35
    • (2003) SIGKDD Explorations
    • Gartner, T.1
  • 130
    • 0022808235 scopus 로고
    • On projected Newton barrier methods for linear programming and an equivalence to karmarkar's projective method
    • November 41
    • Philip E. Gill, Walter Murray, Michael A. Saunders, J. A. Tomlin, and Margaret H. Wright. On projected newton barrier methods for linear programming and an equivalence to karmarkar's projective method. Mathematical Programming: Series A and B, 36(2), November 1986. DOI: 10.1007/BF02592025. 41
    • (1986) Mathematical Programming: Series A and B , vol.36 , Issue.2
    • Gill, P.E.1    Murray, W.2    Saunders, M.A.3    Tomlin, J.A.4    Wright, M.H.5
  • 133
    • 84976668719 scopus 로고
    • Using collaborative filtering to weave an information tapestry
    • 23
    • D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992. DOI: 10.1145/138859.138867. 23
    • (1992) Communications of the ACM , vol.35 , Issue.12 , pp. 61-70
    • Goldberg, D.1    Nichols, D.2    Oki, B.3    Terry, D.4
  • 135
    • 84873930897 scopus 로고    scopus 로고
    • Sending the police before there's a crime
    • August 16, 2, 9
    • Erica Goode. Sending the police before there's a crime. The New York Times, August 16, 2011. 2, 9
    • (2011) The New York Times
    • Goode, E.1
  • 137
    • 84876003326 scopus 로고    scopus 로고
    • Accelerating financial applications on the gpu
    • March 64
    • Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos. Accelerating financial applications on the gpu. In Proc. of GPGPU-6, March 2013. DOI: 10.1145/2458523.2458536. 64
    • (2013) Proc. of GPGPU-6
    • Grauer-Gray, S.1    Killian, W.2    Searles, R.3    Cavazos, J.4
  • 139
    • 84899663050 scopus 로고    scopus 로고
    • INFORMS Computing Society, February. (ongoing, first posted October). 38, 41 42, 43, 44
    • H. J. Greenberg. Myths and Counter-examples in Mathematical Programming. INFORMS Computing Society, http://glossary.computing.society.informs.org, February 2010. (ongoing, first posted October 2008). 38, 41
    • (2008) Myths and Counter-examples in Mathematical Programming
    • Greenberg, H.J.1
  • 140
    • 34547469442 scopus 로고    scopus 로고
    • Network motif discovery using subgraph enumeration and symmetry-breaking
    • 46
    • Joshua A. Grochow and Manolis Kellis. Network motif discovery using subgraph enumeration and symmetry-breaking. In RECOMB, 2007, 2007. DOI: 10.1007/978-3-540-71681-5-7. 46
    • (2007) RECOMB, 2007
    • Grochow, J.A.1    Kellis, M.2
  • 141
    • 84975054474 scopus 로고    scopus 로고
    • Revisiting stochastic computation: Approximate estimation of machine learning kernels
    • 73, 76
    • Suyog Gupta and Kailash Gopalakrishnan. Revisiting stochastic computation: Approximate estimation of machine learning kernels. In Proc. of WACAS 2014, 2014. 73, 76
    • (2014) Proc. of WACAS 2014
    • Gupta, S.1    Gopalakrishnan, K.2
  • 144
    • 79951730930 scopus 로고    scopus 로고
    • 23, 25
    • Isabelle Guyon. SVM application list, 2006. http://www.clopinet.com/isabelle/Projec ts/SVM/applist.html. 23, 25
    • (2006) SVM Application List
    • Guyon, I.1
  • 145
    • 76749092270 scopus 로고    scopus 로고
    • The weka data mining software: An update
    • 9, 14, 16, 20, 25, 28, 30, 33
    • Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1), 2009. www.cs.waikato.ac.nz/ml/weka. DOI: 10.1145/1656274.1656278. 9, 14, 16, 20, 25, 28, 30, 33
    • (2009) SIGKDD Explorations , vol.11 , Issue.1
    • Hall, M.1    Frank, E.2    Holmes, G.3    Pfahringer, B.4    Reutemann, P.5    Witten, I.H.6
  • 146
    • 0014705837 scopus 로고
    • A retrospective and prospective survey of the monte carlo method
    • 36, 37
    • J. H. Halton. A retrospective and prospective survey of the monte carlo method. SIAM Review, 12(1):1-63, 1970. DOI: 10.1137/1012001. 36, 37
    • (1970) SIAM Review , vol.12 , Issue.1 , pp. 1-63
    • Halton, J.H.1
  • 148
    • 84964735578 scopus 로고    scopus 로고
    • Morgan Kaufmann Publishers, 7, 9, 14, 15, 16, 18, 20, 29, 30
    • Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2006. 7, 9, 14, 15, 16, 18, 20, 29, 30
    • (2006) Data Mining: Concepts and Techniques
    • Han, J.1    Kamber, M.2
  • 149
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • 20
    • Jiawei Han, Jain Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8:53-87, 2004. DOI: 10.1023/B:DAMI.0000005258.31418.83. 20
    • (2004) Data Mining and Knowledge Discovery , vol.8 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 151
    • 0003780715 scopus 로고
    • Addison-Wesley, Reading, MA, 46
    • Frank Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969. 46
    • (1969) Graph Theory
    • Harary, F.1
  • 155
    • 70450200605 scopus 로고    scopus 로고
    • Large graph algorithms for massively multithreaded architectures
    • Indian Institute of Information Technology, 68
    • Pawan Harish, Vibhav Vineet, and P. J. Narayanan. Large graph algorithms for massively multithreaded architectures. Technical Report IIIT/TR/2009/74, Indian Institute of Information Technology, 2009. 68
    • (2009) Technical Report IIIT/TR/2009/74
    • Harish, P.1    Vineet, V.2    Narayanan, P.J.3
  • 158
  • 161
    • 84975039835 scopus 로고    scopus 로고
    • SPARC at oracle: Vectoring processor architecture at the database, September 2015
    • 66
    • Rick Hetherington. SPARC at Oracle: Vectoring Processor Architecture at the Database, September 2015. Keynote presentation at the ADMS'15 Workshop. 66
    • Keynote Presentation at the ADMS'15 Workshop
    • Hetherington, R.1
  • 163
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mining: A general survey and comparison
    • 19, 20
    • Jochen Hipp, Ulrich Guntzer, and Gholamreza Nakhaeizadeh. Algorithms for association rule mining: A general survey and comparison. SIGKDD Explorations, 2(1):58-64, 2000. DOI: 10.1145/360402.360421. 19, 20
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 58-64
    • Hipp, J.1    Guntzer, U.2    Nakhaeizadeh, G.3
  • 165
    • 0034538651 scopus 로고    scopus 로고
    • Combinatorial optimization: History and future challenges
    • 40, 41
    • Karla Hoffman. Combinatorial optimization: History and future challenges. Journal of Applied and Computational Mathematics, 124:341-360, 2000. DOI: 10.1016/S0377-0427(00)00430-1. 40, 41
    • (2000) Journal of Applied and Computational Mathematics , vol.124 , pp. 341-360
    • Hoffman, K.1
  • 166
    • 85015566165 scopus 로고    scopus 로고
    • INFORMS Computing Society, Originally authored by Harvey J. Greenberg, 1999-2006. 38, 40, 41
    • A. Holder, editor. Mathematical Programming Glossary. INFORMS Computing Society, ht tp://glossary.computing.society.informs.org, 2006-2008. Originally authored by Harvey J. Greenberg, 1999-2006. 38, 40, 41
    • (2006) Mathematical Programming Glossary
    • Holder, A.1
  • 167
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational ability
    • April 27, 28
    • John J. Hopfield. Neural networks and physical systems with emergent collective computational ability. Proc. of the National Academy of Sciences of the USA, 79(8):2554-2558, April 1982. DOI: 10.1073/pnas.79.8.2554. 27, 28
    • (1982) Proc. of the National Academy of Sciences of the USA , vol.79 , Issue.8 , pp. 2554-2558
    • Hopfield, J.J.1
  • 176
    • 84975032780 scopus 로고    scopus 로고
    • 16, 25, 28, 30, 33, 46
    • IBM SPSS. SPSS Modeler, 2010a. 16, 25, 28, 30, 33, 46
    • (2010) SPSS Modeler
    • IBM SPSS1
  • 179
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • 18
    • P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proc. of 30th Sympo. on Theory of Computing, pages 604-613, 1998. DOI: 10.1145/276698.276876. 18
    • (1998) Proc. of 30th Sympo. on Theory of Computing , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 183
    • 74549217758 scopus 로고    scopus 로고
    • Language classification using n-grams accelerated by fpgabased bloom filters
    • November 76
    • Arpith Jacob and Maya Gokhale. Language classification using n-grams accelerated by fpgabased bloom filters. In Proc. HPRCTA'07, November 2007. DOI: 10.1145/1328554.1328564. 76
    • (2007) Proc. HPRCTA'07
    • Jacob, A.1    Gokhale, M.2
  • 184
    • 0038548185 scopus 로고    scopus 로고
    • Coordination of groups of mobile autonomous agents using nearest neighbor rules
    • June 16, 18
    • Ali Jadbabaie, Jie Lin, and A. Stephen Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 40(6), June 2003. DOI: 10.1109/TAC.2003.817537. 16, 18
    • (2003) IEEE Transactions on Automatic Control , vol.40 , Issue.6
    • Jadbabaie, A.1    Lin, J.2    Stephen Morse, A.3
  • 188
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Berlin,. Springer 34, 35
    • T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In European Conference on Machine Learning (ECML), pages 137-142, Berlin, 1998. Springer. DOI: 10.1007/BFb0026683. 34, 35
    • (1998) European Conference on Machine Learning (ECML) , pp. 137-142
    • Joachims, T.1
  • 191
    • 79953796513 scopus 로고    scopus 로고
    • Pandora and the music genome project
    • September. 9, 16, 18
    • John Joyce. Pandora and the Music Genome Project. Scientific Computing, 23(10):40-41, September 2006. 9, 16, 18
    • (2006) Scientific Computing , vol.23 , Issue.10 , pp. 40-41
    • Joyce, J.1
  • 192
    • 84863403456 scopus 로고    scopus 로고
    • Fpga acceleration of multifactor cdo pricing
    • May 63, 64
    • Alexander Kaganov, Asif Lakhany, and Paul Chow. Fpga acceleration of multifactor cdo pricing. ACM Trans. Reconfigurable Technol. Syst., 4(2), May 2011. DOI: 10.1145/1968502.1968511. 63, 64
    • (2011) ACM Trans. Reconfigurable Technol. Syst. , vol.4 , Issue.2
    • Kaganov, A.1    Lakhany, A.2    Chow, P.3
  • 194
    • 51249181779 scopus 로고
    • A new polynomial-time algorithm for linear programming
    • 39
    • N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4: 373-395, 1984. DOI: 10.1007/BF02579150. 39
    • (1984) Combinatorica , vol.4 , pp. 373-395
    • Karmarkar, N.1
  • 195
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • 30
    • G. V. Kass. An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29(2):119-127, 1980. DOI: 10.2307/2986296. 30
    • (1980) Applied Statistics , vol.29 , Issue.2 , pp. 119-127
    • Kass, G.V.1
  • 196
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • 41
    • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983. DOI: 10.1126/science.220.4598.671. 41
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 202
    • 51749084072 scopus 로고    scopus 로고
    • Kohonen network
    • 28
    • Teuvo Kohonen and Timo Honkela. Kohonen network, 2007. Scholarpedia, 2(1):1568. 28
    • (2007) Scholarpedia , vol.2 , Issue.1 , pp. 1568
    • Kohonen, T.1    Honkela, T.2
  • 204
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • 23
    • Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009. DOI: 10.1109/MC.2009.263. 23
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 206
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: A review of classification techniques
    • 29, 30
    • S. B. Kotsiantis. Supervised machine learning: A review of classification techniques. Informatica, 31:249-268, 2007. 29, 30
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.B.1
  • 208
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • March 14
    • Hans-Peter Kriegel, Peer Kroger, and Arthur Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data, 3:1:1-1:58, March 2009. DOI: 10.1145/1497577.1497578. 14
    • (2009) ACM Trans. Knowl. Discov. Data , vol.3 , pp. 11-158
    • Kriegel, H.1    Kroger, P.2    Zimek, A.3
  • 211
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a non metric hypothesis
    • 14
    • J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a non metric hypothesis. Psychometrika, 29(1):1-27, 1964. DOI: 10.1007/BF02289565. 14
    • (1964) Psychometrika , vol.29 , Issue.1 , pp. 1-27
    • Kruskal, J.1
  • 217
    • 1142291601 scopus 로고    scopus 로고
    • Qc-trees: An efficient summary structure for semantic olap
    • June 53
    • Laks V.S. Lakshmanan, Jian Pei, and Yan Zhao. Qc-trees: An efficient summary structure for semantic olap. In Proc. of SIGMOD'03, June 2003. DOI: 10.1145/872757.872768. 53
    • (2003) Proc. of SIGMOD'03
    • Lakshmanan, L.V.S.1    Pei, J.2    Zhao, Y.3
  • 218
    • 79951749297 scopus 로고    scopus 로고
    • Latent semantic analysis
    • 35
    • Thomas K. Landauer and Susan Dumais. Latent semantic analysis. Scholarpedia, 3(11):4356, 2008. 35
    • (2008) Scholarpedia , vol.3 , Issue.11 , pp. 4356
    • Landauer, T.K.1    Dumais, S.2
  • 219
    • 80053431219 scopus 로고    scopus 로고
    • An introduction to latent semantic analysis
    • 35
    • Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An introduction to latent semantic analysis. Discourse Processes, 25:259-298, 1998. DOI: 10.1080/01638539809545028. 35
    • (1998) Discourse Processes , vol.25 , pp. 259-298
    • Landauer, T.K.1    Foltz, P.W.2    Laham, D.3
  • 223
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • 27
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. of the IEEE, 86(11):2278-2324, 1998. DOI: 10.1109/5.726791. 27
    • (1998) Proc. of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 224
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • 22, 23, 35
    • Daniel Lee and Sabastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999. DOI: 10.1038/44565. 22, 23, 35
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, S.2
  • 225
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • 35
    • Daniel Lee and Sabastian Seung. Algorithms for non-negative matrix factorization. Adv. Neural Info. Proc. Systems, 13:556-562, 2001. 35
    • (2001) Adv. Neural Info. Proc. Systems , vol.13 , pp. 556-562
    • Lee, D.1    Seung, S.2
  • 228
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • 29, 30
    • T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 40: 203-229, 2000. DOI: 10.1023/A:1007608224229. 29, 30
    • (2000) Machine Learning , vol.40 , pp. 203-229
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 229
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-toitem collaborative filtering
    • 23
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-toitem collaborative filtering. IEEE Internet Computing, 7(1):76-80, 2003. DOI: 10.1109/MIC.2003.1167344. 23
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 232
    • 33745369515 scopus 로고    scopus 로고
    • New algorithms for efficient highdimensional non-parametric classification
    • 18
    • Ting Liu, Andrew W. Moore, and Alexander Gray. New algorithms for efficient highdimensional non-parametric classification. Journal of Machine Learning Research, 7:1135-1158, 2006. 18
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1135-1158
    • Liu, T.1    Moore, A.W.2    Gray, A.3
  • 235
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • 29, 30
    • W.-Y. Loh and Y.-S. Shih. Split selection methods for classification trees. Statistica Sinica, 7: 815-840, 1997. 29, 30
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 236
    • 1642306090 scopus 로고    scopus 로고
    • Airline schedule planning: Integrated models and algorithms for schedule design and fleet assignment
    • February 9
    • Manoj Lohatepanont and Cynthia Barnhart. Airline Schedule Planning: Integrated Models and Algorithms for Schedule Design and Fleet Assignment. Transportation Science, 38(1), February 2004. DOI: 10.1287/trsc.1030.0026. 9
    • (2004) Transportation Science , vol.38 , Issue.1
    • Lohatepanont, M.1    Barnhart, C.2
  • 238
    • 33847169137 scopus 로고    scopus 로고
    • Comments on the "core Vector Machines: Fast SVM Training on Very Large Data Sets"
    • 25
    • Gaelle Loosli and Stephane Canu. Comments on the "Core Vector Machines: Fast SVM Training on Very Large Data Sets". Journal of Machine Learning Research, 8:291-301, 2007. 25
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 291-301
    • Loosli, G.1    Canu, S.2
  • 239
    • 84876512847 scopus 로고    scopus 로고
    • Many-core accelerated libor swaption portfolio pricing
    • 64
    • Jorg Lotze, Paul Sutton, and Hicham Lahlou. Many-core accelerated libor swaption portfolio pricing. SC Companion, pages 1185-1192, 2012. DOI: 10.1109/SC.Companion.2012.143. 64
    • (2012) SC Companion , pp. 1185-1192
    • Lotze, J.1    Sutton, P.2    Lahlou, H.3
  • 246
    • 0034366238 scopus 로고    scopus 로고
    • Optimizing database architecture for the new bottleneck: Memory access
    • December 65, 66
    • Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing database architecture for the new bottleneck: Memory access. The VLDB Journal, 9(3), December 2000. DOI: 10.1007/s007780000031. 65, 66
    • (2000) The VLDB Journal , vol.9 , Issue.3
    • Manegold, S.1    Boncz, P.A.2    Kersten, M.L.3
  • 249
    • 0002692460 scopus 로고
    • A new class of random number generators
    • 37
    • George Marsaglia and Arif Zaman. A new class of random number generators. The Annals of Applied Probability, 1(3):462-480, 1991. DOI: 10.1214/aoap/1177005878. 37
    • (1991) The Annals of Applied Probability , vol.1 , Issue.3 , pp. 462-480
    • Marsaglia, G.1    Zaman, A.2
  • 250
    • 0001659901 scopus 로고
    • Interior point methods for linear programming: Just call Newton, lagrange, and fiacco and mccormick
    • July-August 41
    • Roy Marsten, Radhika Subramanian, Matthew Saltzeman, Irvin Lustig, and David Shanno. Interior point methods for linear programming: Just call newton, lagrange, and fiacco and mccormick. Interfaces, The Practice of Mathematical Programming, 20(4), July-August 1990. DOI: 10.1287/inte.20.4.105. 41
    • (1990) Interfaces, the Practice of Mathematical Programming , vol.20 , Issue.4
    • Marsten, R.1    Subramanian, R.2    Saltzeman, M.3    Lustig, I.4    Shanno, D.5
  • 251
    • 0031599142 scopus 로고    scopus 로고
    • Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator
    • January 37, 63, 64
    • M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Transactions on Modeling and Computer Simulation, 8(1):3-30, January 1998. DOI: 10.1145/272991.272995. 37, 63, 64
    • (1998) ACM Transactions on Modeling and Computer Simulation , vol.8 , Issue.1 , pp. 3-30
    • Matsumoto, M.1    Nishimura, T.2
  • 253
    • 0001673996 scopus 로고    scopus 로고
    • A comparison of event models for naive bayes text classification
    • Technical Report WS-98-05. 35
    • Andrew McCallum and Kamal Nigam. A comparison of event models for naive bayes text classification. In AAAI/ICML-98 Workshop on Learning for Text Categorization, pages 41-48, 1998. Technical Report WS-98-05. 35
    • (1998) AAAI/ICML-98 Workshop on Learning for Text Categorization , pp. 41-48
    • McCallum, A.1    Nigam, K.2
  • 255
    • 0000561116 scopus 로고
    • On the implementation of a primal-dual interior point method
    • 41
    • S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal Optimization, 2:575-601, 1992. DOI: 10.1137/0802028. 41
    • (1992) SIAM Journal Optimization , vol.2 , pp. 575-601
    • Mehrotra, S.1
  • 259
    • 79959718248 scopus 로고    scopus 로고
    • High performance and scalable radix sorting: A case study of implementing dynamic parallelism for GPU computing
    • 72, 76
    • Duane Merrill and Andrew Grimshaw. High performance and scalable radix sorting: A case study of implementing dynamic parallelism for GPU computing. Parallel Processing Letters, 21(02):245-272, 2011. DOI: 10.1142/S0129626411000187. 72, 76
    • (2011) Parallel Processing Letters , vol.21 , Issue.2 , pp. 245-272
    • Merrill, D.1    Grimshaw, A.2
  • 262
    • 33745955275 scopus 로고
    • The monte carlo method
    • September 36, 37
    • Nicholas Metropolis and Stanislav Ulam. The monte carlo method. Journal of the American Statistical Association, 44(247):335-341, September 1949. DOI: 10.1080/01621459.1949.10483310. 36, 37
    • (1949) Journal of the American Statistical Association , vol.44 , Issue.247 , pp. 335-341
    • Metropolis, N.1    Ulam, S.2
  • 266
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • abs/1301.3781,. 34
    • Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781, 2013. 34
    • (2013) CoRR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 267
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: Simple building blocks of complex networks
    • October 44, 46
    • R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building blocks of complex networks. Science, 298(5594):824-827, October 2002. DOI: 10.1126/science.298.5594.824. 44, 46
    • (2002) Science , vol.298 , Issue.5594 , pp. 824-827
    • Milo, R.1    Shen-Orr, S.2    Itzkovitz, S.3    Kashtan, N.4    Chklovskii, D.5    Alon, U.6
  • 268
    • 84944089297 scopus 로고    scopus 로고
    • IACT: A software-hardware framework for understanding the scope of approximate computing
    • 73, 76
    • Asit K. Mishra, Rajkishore Barik, and Somnath Paul. iACT: A Software-Hardware Framework For Understanding the Scope of Approximate Computing. In Proc. of WACAS 2014, 2014. 73, 76
    • (2014) Proc. of WACAS 2014
    • Mishra, A.K.1    Barik, R.2    Paul, S.3
  • 276
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data: A multidisciplinary survey
    • 28, 30
    • Sreerama K. Murthy. Automatic construction of decision trees from data: A multidisciplinary survey. Data Mining and Knowledge Discovery, 2:345-389, 1998. DOI: 10.1023/A:1009744630224. 28, 30
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 345-389
    • Murthy, S.K.1
  • 277
    • 84055225466 scopus 로고    scopus 로고
    • Customer churn analysis - A case study
    • Technical Research Centre of Finland,. 7
    • Teemu Mutanen. Customer churn analysis - a case study. Technical Report VTT-R-01184-06, Technical Research Centre of Finland, 2006. 7
    • (2006) Technical Report VTT-R-01184-06
    • Mutanen, T.1
  • 279
    • 84975033887 scopus 로고    scopus 로고
    • Big data needs approximate computing: Technical perspective
    • December 73, 76
    • Ravi Nair. Big data needs approximate computing: Technical perspective. Commun. ACM, 58 (1):104-104, December 2014. DOI: 10.1145/2688072. 73, 76
    • (2014) Commun. ACM , vol.58 , Issue.1 , pp. 104
    • Nair, R.1
  • 280
    • 84891087813 scopus 로고    scopus 로고
    • Flexible query processor on fpgas
    • August 76
    • Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. Flexible query processor on fpgas. Proc. VLDB Endow., 6(12):1310-1313, August 2013. DOI: 10.14778/2536274.2536303. 76
    • (2013) Proc. VLDB Endow. , vol.6 , Issue.12 , pp. 1310-1313
    • Najafi, M.1    Sadoghi, M.2    Jacobsen, H.3
  • 283
    • 2942655185 scopus 로고    scopus 로고
    • Complete search in continuous global optimization and constraint satisfaction
    • 41
    • Arnold Neumaier. Complete search in continuous global optimization and constraint satisfaction. Acta Numerica, 2004. DOI: 10.1017/S0962492904000194. 41
    • (2004) Acta Numerica
    • Neumaier, A.1
  • 287
    • 56349094668 scopus 로고    scopus 로고
    • Application of data mining techniques in customer relationship management: A literature review and classification
    • 9
    • E. W. T. Ngai, L. Xiu, and D. C. K. Chau. Application of data mining techniques in customer relationship management: A literature review and classification. Expert Systems with Applications, 36:2592-2602, 2009. DOI: 10.1016/j.eswa.2008.02.021. 9
    • (2009) Expert Systems with Applications , vol.36 , pp. 2592-2602
    • Ngai, E.W.T.1    Xiu, L.2    Chau, D.C.K.3
  • 292
    • 33845703344 scopus 로고    scopus 로고
    • What is a support vector machine?
    • December 23, 25
    • William S. Noble. What is a support vector machine? Nature Biotechnology, 24(12), December 2006. DOI: 10.1038/nbt1206-1565. 23, 25
    • (2006) Nature Biotechnology , vol.24 , Issue.12
    • Noble, W.S.1
  • 293
    • 0043023536 scopus 로고
    • Efficient algorithms with neural network behaviour
    • 17, 18
    • S. M. Omohundro. Efficient algorithms with neural network behaviour. Journal of Complex Systems, 1(2):273-347, 1987. 17, 18
    • (1987) Journal of Complex Systems , vol.1 , Issue.2 , pp. 273-347
    • Omohundro, S.M.1
  • 295
  • 301
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up? Sentiment classification using machine learning techniques
    • 35
    • Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques. In Processings of EMNLP, pages 79-86, 2002. DOI: 10.3115/1118693.1118704. 35
    • (2002) Processings of EMNLP , pp. 79-86
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 303
    • 84946878590 scopus 로고    scopus 로고
    • Potential future exposure and collateral modelling of the trading book using nvidia GPUs, March 2015
    • 64
    • Grigorios Papamanousakis, Jinzhe Yang, and Grzegorz Kozikowski. Potential future exposure and collateral modelling of the trading book using nvidia gpus, March 2015. Nvidia Global Technology Conference. 64
    • Nvidia Global Technology Conference
    • Papamanousakis, G.1    Yang, J.2    Kozikowski, G.3
  • 304
    • 0033325071 scopus 로고    scopus 로고
    • A framework for collaborative, content-based and demographic filtering
    • 23
    • M. J. Pazzani. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5-6):313-331, 1999. DOI: 10.1023/A:1006544522159. 23
    • (1999) Artificial Intelligence Review , vol.13 , Issue.5-6 , pp. 313-331
    • Pazzani, M.J.1
  • 305
    • 0031168547 scopus 로고    scopus 로고
    • Learning and revising user profiles: The identification of interesting web sites
    • 23
    • M. J. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27(3):313-331, 1997. DOI: 10.1023/A:1007369909943. 23
    • (1997) Machine Learning , vol.27 , Issue.3 , pp. 313-331
    • Pazzani, M.J.1    Billsus, D.2
  • 307
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Mathematics in Brain Imaging 23
    • Francisco Pereira, Tom Mitchell, and Matthew Botvinick. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45(1):S199-S209, 2009. Mathematics in Brain Imaging. DOI: 10.1016/j.neuroimage.2008.11.007. 23
    • (2009) NeuroImage , vol.45 , Issue.1 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 308
    • 0029692966 scopus 로고
    • Faster evaluation of financial derivatives
    • 37
    • S. H. Peskov and J. F. Traub. Faster evaluation of financial derivatives. Journal of Portfolio Management, 22(1):113-120, 1995. DOI: 10.3905/jpm.1995.409541. 37
    • (1995) Journal of Portfolio Management , vol.22 , Issue.1 , pp. 113-120
    • Peskov, S.H.1    Traub, J.F.2
  • 311
    • 61949359014 scopus 로고    scopus 로고
    • Common pharmacophore identification using frequent clique detection algorithm
    • 46
    • Yevgeniy Podolyan and George Karypis. Common pharmacophore identification using frequent clique detection algorithm. Journal of Chemical Information and Modeling, 2008. DOI: 10.1021/ci8002478. 46
    • (2008) Journal of Chemical Information and Modeling
    • Podolyan, Y.1    Karypis, G.2
  • 314
    • 33744584654 scopus 로고
    • Induction of decision trees
    • March 29, 30
    • J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, March 1986. DOI: 10.1023/A:1022643204877. 29, 30
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Ross Quinlan, J.1
  • 318
    • 84975064974 scopus 로고    scopus 로고
    • 14, 16, 20, 25, 28, 30, 33, 35
    • Rapid-i. RapidMiner Data and Text Mining. rapid-i.com/. 14, 16, 20, 25, 28, 30, 33, 35
    • RapidMiner Data and Text Mining
  • 324
    • 79958755223 scopus 로고    scopus 로고
    • Efficient event processing through reconfigurable hardware for algorithmic trading
    • 64
    • Mohammad Sadoghi, Martin Labrecque, Harsh Singh, Warren Shum, and Hans-Arno Jacobsen. Efficient event processing through reconfigurable hardware for algorithmic trading. Proc. of the VLDB Endowment, 3(2), 2010. DOI: 10.14778/1920841.1921029. 64
    • (2010) Proc. of the VLDB Endowment , vol.3 , Issue.2
    • Sadoghi, M.1    Labrecque, M.2    Singh, H.3    Shum, W.4    Jacobsen, H.5
  • 331
    • 84973253430 scopus 로고
    • An efficient algorithm for mining association rules in large databases
    • 20
    • Ashok Savasere, Edward Omiecinski, and Shamkant Navathe. An efficient algorithm for mining association rules in large databases. In Proc. of the 21st VLDB Conference, pages 432-444, 1995. 20
    • (1995) Proc. of the 21st VLDB Conference , pp. 432-444
    • Savasere, A.1    Omiecinski, E.2    Navathe, S.3
  • 336
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • abs/1404.7828 27, 61
    • J. Schmidhuber. Deep learning in neural networks: An overview. CoRR, abs/1404.7828, 2014. DOI: 10.1016/j.neunet.2014.09.003. 27, 61
    • (2014) CoRR
    • Schmidhuber, J.1
  • 339
    • 84867847033 scopus 로고    scopus 로고
    • Dealing with data
    • February. 9
    • Science Special Issue. Dealing with data. Science, 331(6018), February 2011. 9
    • (2011) Science , vol.331 , Issue.6018
    • Science Special Issue1
  • 340
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • 34
    • Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34:1-47, 2002. DOI: 10.1145/505282.505283. 34
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 343
    • 79957454283 scopus 로고    scopus 로고
    • Accelerating search and recognition workloads with sse 4.2 string and text processing instructions
    • 2011.5762731. 58
    • Guangyu Shi, Min Li, and Mikko Lipasti. Accelerating search and recognition workloads with sse 4.2 string and text processing instructions. In Proc. ISPASS'11, 2011. DOI: 10.1109/ISPASS. 2011.5762731. 58
    • (2011) Proc. ISPASS'11
    • Shi, G.1    Li, M.2    Lipasti, M.3
  • 347
    • 84891055251 scopus 로고    scopus 로고
    • Sap hana: The evolution from a modern main-memory data platform to an enterprise application platform
    • August 65, 66
    • Vishal Sikka, Franz Färber, Anil Goel, and Wolfgang Lehner. Sap hana: The evolution from a modern main-memory data platform to an enterprise application platform. Proc. VLDB Endow., 6(11), August 2013. DOI: 10.14778/2536222.2536251. 65, 66
    • (2013) Proc. VLDB Endow. , vol.6 , Issue.11
    • Sikka, V.1    Färber, F.2    Goel, A.3    Lehner, W.4
  • 348
    • 81555199208 scopus 로고    scopus 로고
    • Extracting insights from social media with large-scale matrix approximations
    • Sept-Oct 9
    • Vikas Sindhwani, Amol Ghoting, Edison Ting, and Richard Lawrence. Extracting insights from social media with large-scale matrix approximations. IBM Journal of Research and Development, 55(5):9:1-9:13, Sept-Oct 2011. DOI: 10.1147/JRD.2011.2163281. 9
    • (2011) IBM Journal of Research and Development , vol.55 , Issue.5 , pp. 91-913
    • Sindhwani, V.1    Ghoting, A.2    Ting, E.3    Lawrence, R.4
  • 354
    • 0032619115 scopus 로고    scopus 로고
    • Application of nearest-neighbor and cluster analyses in pharmaceutical lead discovery
    • 16, 18
    • David T. Stanton, Timothy W. Morris, Siddhartha Roychoudhury, and Christian N. Parker. Application of nearest-neighbor and cluster analyses in pharmaceutical lead discovery. J. Chem. Inf. Comput. Sci., 39(1):21-27, 1999. DOI: 10.1021/ci9801015. 16, 18
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , Issue.1 , pp. 21-27
    • Stanton, D.T.1    Morris, T.W.2    Roychoudhury, S.3    Parker, C.N.4
  • 356
    • 84975054071 scopus 로고    scopus 로고
    • Christos stergiou and dimitrios siganos
    • 25, 28
    • Christos Stergiou and Dimitrios Siganos. Neural Networks. 25, 28
    • Neural Networks
  • 358
    • 84975085378 scopus 로고    scopus 로고
    • Multi-dimensional, in-gpu-memory databases: Streaming conditional calculations in big data sets
    • 65
    • Peter Strohm. Multi-dimensional, in-gpu-memory databases: Streaming conditional calculations in big data sets, 2015. Nvidia Global Developer Conference. 65
    • (2015) Nvidia Global Developer Conference
    • Strohm, P.1
  • 360
    • 77954418047 scopus 로고    scopus 로고
    • A survey of collaborative filetring techniques
    • 23
    • X. Su and T. M. Khoshgoftaar. A survey of collaborative filetring techniques. In Advances in Artificial Intelligence, pages 1-20, 2009. DOI: 10.1155/2009/421425. 23
    • (2009) Advances in Artificial Intelligence , pp. 1-20
    • Su, X.1    Khoshgoftaar, T.M.2
  • 368
    • 67650723834 scopus 로고    scopus 로고
    • A comparison of cpus, GPUs, fpgas, and massively parallel processor arrays for random number generation
    • February 63, 64
    • David Thomas, Lee Howes, and Wayne Luk. A comparison of cpus, gpus, fpgas, and massively parallel processor arrays for random number generation. In Proc. of FPGA'09, February 2009. DOI: 10.1145/1508128.1508139. 63, 64
    • (2009) Proc. of FPGA'09
    • Thomas, D.1    Howes, L.2    Luk, W.3
  • 369
    • 84946849149 scopus 로고
    • Parallel parsers for context-free grammars: Two actual implementations compared
    • 57, 58
    • Henry Thompson. Parallel parsers for context-free grammars: Two actual implementations compared. Parallel Natural Language Processing, pages 168-187, 1994. 57, 58
    • (1994) Parallel Natural Language Processing , pp. 168-187
    • Thompson, H.1
  • 370
    • 0010691873 scopus 로고    scopus 로고
    • The many facets of linear programming
    • 39, 41
    • Michael J. Todd. The many facets of linear programming. Mathematical Programming, 91(3): 417-436, 2002. DOI: 10.1007/s101070100261. 39, 41
    • (2002) Mathematical Programming , vol.91 , Issue.3 , pp. 417-436
    • Todd, M.J.1
  • 371
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • 25
    • Ivor W. Tsang, James T. Kwok, and Pat-Ming Cheung. Core Vector Machines: Fast SVM Training on Very Large Data Sets. Journal of Machine Learning Research, 6:363-392, 2005. 25
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.3
  • 373
    • 0026256261 scopus 로고
    • Satisfying general proximity/similarity queries with metric trees
    • 17, 18
    • Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Processing Letters, 40:175-179, 1991. DOI: 10.1016/0020-0190(91)90074-R. 17, 18
    • (1991) Information Processing Letters , vol.40 , pp. 175-179
    • Uhlmann, J.K.1
  • 376
    • 54149095921 scopus 로고    scopus 로고
    • Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain
    • 44, 46
    • M. van den Heuvel, C. Stam, H. Boersma, and H. H. Pol. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage, 43 (3):528-539, 2008. DOI: 10.1016/j.neuroimage.2008.08.010. 44, 46
    • (2008) NeuroImage , vol.43 , Issue.3 , pp. 528-539
    • Heuvel Den Van, M.1    Stam, C.2    Boersma, H.3    Pol, H.H.4
  • 378
    • 0003991806 scopus 로고    scopus 로고
    • John Wiley, and Sons, Inc., New York,. 23, 25
    • Vladimir Vapnik. Statistical Learning Theory. John Wiley, and Sons, Inc., New York, 1998. 23, 25
    • (1998) Statistical Learning Theory
    • Vapnik, V.1
  • 379
    • 84946878611 scopus 로고    scopus 로고
    • Fast convolutional nets with fbfft: A GPU performance evaluation
    • abs/1412.7580,. 59
    • Nicolas Vasilache, Jeff Johnson, Michaël Mathieu, Soumith Chintala, Serkan Piantino, and Yann LeCun. Fast convolutional nets with fbfft: A GPU performance evaluation. CoRR, abs/1412.7580, 2014. 59
    • (2014) CoRR
    • Vasilache, N.1    Johnson, J.2    Mathieu, M.3    Chintala, S.4    Piantino, S.5    LeCun, Y.6
  • 382
    • 84980324146 scopus 로고    scopus 로고
    • Oracle's sonoma processor: Advanced low-cost sparc processor for enterprise workloads, August 2015
    • 66
    • Basant Vinaik and Rahoul Puri. Oracle's sonoma processor: Advanced low-cost sparc processor for enterprise workloads, August 2015. Hot Chips 27. 66
    • Hot Chips 27
    • Vinaik, B.1    Puri, R.2
  • 388
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • June 45, 46
    • Duncan J. Watts and Steven H. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440-442, June 1998. DOI: 10.1038/30918. 45, 46
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 389
    • 84946878615 scopus 로고    scopus 로고
    • Hardware accelerators for financial mathematics-methodology, results, and benchmarks
    • July. 62, 64
    • Norbert Wehn. Hardware accelerators for financial mathematics-methodology, results, and benchmarks. In Proc. 11th International Forum on Embedded MPSoC and Multicore, July 2011. 62, 64
    • (2011) Proc. 11th International Forum on Embedded MPSoC and Multicore
    • Wehn, N.1
  • 390
    • 84946878616 scopus 로고    scopus 로고
    • Predictor-corrector methods
    • 41
    • Eric W. Weisstein. Predictor-corrector methods. In MathWorld-A Wolfram Web Resource, http: //mathworld.wolfram.com/Predictor-CorrectorMethods.html, 2011. 41
    • (2011) MathWorld-A Wolfram Web Resource
    • Weisstein, E.W.1
  • 393
    • 0028387642 scopus 로고
    • Neural networks: Applications in industry, business and science
    • March 25, 28
    • Bernard Widrow, David E. Rumelhart, and Michael A. Lehr. Neural networks: applications in industry, business and science. Communications of the ACM, 37:93-105, March 1994. DOI: 10.1145/175247.175257. 25, 28
    • (1994) Communications of the ACM , vol.37 , pp. 93-105
    • Widrow, B.1    Rumelhart, D.E.2    Lehr, M.A.3
  • 394
    • 84975041581 scopus 로고    scopus 로고
    • 18
    • wiki. Wikipedia. www.wikipedia.org. 18
  • 395
    • 84855233023 scopus 로고    scopus 로고
    • SIMD-scan: Ultra fast in-memory table scan using on-chip vector processing units
    • August 44
    • Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and Jan Schaffner. SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units. Proc. VLDB Endowment, 2:385-394, August 2009a. DOI: 10.14778/1687627.1687671. 44
    • (2009) Proc. VLDB Endowment , vol.2 , pp. 385-394
    • Willhalm, T.1    Popovici, N.2    Boshmaf, Y.3    Plattner, H.4    Zeier, A.5    Schaffner, J.6
  • 396
    • 84855233023 scopus 로고    scopus 로고
    • Simd-scan: Ultra fast in-memory table scan using on-chip vector processing units
    • August 65, 66
    • Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and Jan Schaffner. Simd-scan: Ultra fast in-memory table scan using on-chip vector processing units. Proc. VLDB Endow., 2(1), August 2009b. DOI: 10.14778/1687627.1687671. 65, 66
    • (2009) Proc. VLDB Endow. , vol.2 , Issue.1
    • Willhalm, T.1    Popovici, N.2    Boshmaf, Y.3    Plattner, H.4    Zeier, A.5    Schaffner, J.6
  • 400
    • 84946878620 scopus 로고    scopus 로고
    • Deep image: Scaling up image recognition
    • abs/1501.02876. 61, 75, 76
    • Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. Deep image: Scaling up image recognition. CoRR, abs/1501.02876, 2015. 61, 75, 76
    • (2015) CoRR
    • Wu, R.1    Yan, S.2    Shan, Y.3    Dang, Q.4    Sun, G.5
  • 405
    • 84996522937 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • August 35
    • Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative matrix factorization. In Proc. of SIGIR'03, August 2003. DOI: 10.1145/860435.860485. 35
    • (2003) Proc. of SIGIR'03
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 409
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • 20
    • Mohammed J. Zaki. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3):372-390, 2000. DOI: 10.1109/69.846291. 20
    • (2000) IEEE Transactions on Knowledge and Data Engineering , vol.12 , Issue.3 , pp. 372-390
    • Zaki, M.J.1
  • 410
    • 84946878625 scopus 로고    scopus 로고
    • Clarifai: Enabling next geneation intelligent applications
    • 61
    • Matthew Zeiler. Clarifai: Enabling next geneation intelligent applications. Nvidia GTC'14 Presentation. 61
    • Nvidia GTC'14 Presentation
    • Zeiler, M.1
  • 412
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • 15, 16
    • Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An efficient data clustering method for very large databases. In Proc. of the ACM SIGMOD Conference, 1996. DOI: 10.1145/235968.233324. 15, 16
    • (1996) Proc. of the ACM SIGMOD Conference
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 414
    • 24044537630 scopus 로고    scopus 로고
    • Hierarchical clustering algorithms for document datasets
    • 34
    • Ying Zhao and George Karypis. Hierarchical clustering algorithms for document datasets. Data Mining and Knowledge Discovery, 10(2):141-168, 2005a. DOI: 10.1007/s10618-005-0361-3. 34
    • (2005) Data Mining and Knowledge Discovery , vol.10 , Issue.2 , pp. 141-168
    • Zhao, Y.1    Karypis, G.2
  • 415
    • 84880093929 scopus 로고    scopus 로고
    • Topic-driven clustering for document datasets
    • 34, 35
    • Ying Zhao and George Karypis. Topic-driven clustering for document datasets. In SIAM International Conference on Data Mining, pages 358-369, 2005b. DOI: 10.1137/1.9781611972757.32. 34, 35
    • (2005) SIAM International Conference on Data Mining , pp. 358-369
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.