메뉴 건너뛰기




Volumn 40, Issue 3, 2000, Pages 203-228

Comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; DECISION THEORY; ERROR ANALYSIS; LEARNING SYSTEMS; NEURAL NETWORKS; REGRESSION ANALYSIS; TREES (MATHEMATICS);

EID: 0034274591     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007608224229     Document Type: Article
Times cited : (924)

References (50)
  • 2
    • 0342636181 scopus 로고    scopus 로고
    • Increasing the efficiency of data mining algorithms with breadth-first marker propagation
    • D. Heckerman, H. Mannila, D. Pregibon, & R. Uthurusamy (Eds.), Menlo Park, CA: AAAI Press
    • Aronis, J. M. & Provost, F. J. (1997). Increasing the efficiency of data mining algorithms with breadth-first marker propagation. In D. Heckerman, H. Mannila, D. Pregibon, & R. Uthurusamy (Eds.), Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (pp. 119-122). Menlo Park, CA: AAAI Press.
    • (1997) Proceedings of the Third International Conference on Knowledge Discovery and Data Mining , pp. 119-122
    • Aronis, J.M.1    Provost, F.J.2
  • 3
    • 85013576689 scopus 로고
    • Theory and applications of agnostic PAC-learning with small decision trees
    • A. Prieditis & S. Russell (Eds.), San Francisco, CA: Morgan Kaufmann
    • Auer, P., Holte, R. C., & Maass, W. (1995). Theory and applications of agnostic PAC-learning with small decision trees. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 21-29). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 21-29
    • Auer, P.1    Holte, R.C.2    Maass, W.3
  • 8
    • 0037575076 scopus 로고
    • Technical Report 92-8, Department of Computer Science, University of Massachusetts, Amherst, MA
    • Brodley, C. E. & Utgoff, P. E. (1992). Multivariate versus univariate decision trees. Technical Report 92-8, Department of Computer Science, University of Massachusetts, Amherst, MA.
    • (1992) Multivariate Versus Univariate Decision Trees
    • Brodley, C.E.1    Utgoff, P.E.2
  • 10
    • 0027607617 scopus 로고
    • A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems
    • Brown, D. E., Corruble, V., & Pittard, C. L. (1993). A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems. Pattern Recognition, 26, 953-961.
    • (1993) Pattern Recognition , vol.26 , pp. 953-961
    • Brown, D.E.1    Corruble, V.2    Pittard, C.L.3
  • 11
    • 0009202949 scopus 로고
    • Analysis of attitudes toward workplace smoking restrictions
    • N. Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest, & J. Greenhouse (Eds.), New York, NY: John Wiley & Sons
    • Bull, S. (1994). Analysis of attitudes toward workplace smoking restrictions. In N. Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest, & J. Greenhouse (Eds.), Case Studies in Biometry (pp. 249-271). New York, NY: John Wiley & Sons.
    • (1994) Case Studies in Biometry , pp. 249-271
    • Bull, S.1
  • 12
    • 0002980086 scopus 로고
    • Learning classification trees
    • Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2, 63-73.
    • (1992) Statistics and Computing , vol.2 , pp. 63-73
    • Buntine, W.1
  • 14
    • 41249092227 scopus 로고
    • Tree-based models
    • J. M. Chambers & T. J. Hastie (Eds.), New York, NY: Chapman & Hall
    • Clark, L. A. & Pregibon, D. (1993). Tree-based models. In J. M. Chambers & T. J. Hastie (Eds.), Statistical Models in S (pp. 377-419). New York, NY: Chapman & Hall.
    • (1993) Statistical Models in S , pp. 377-419
    • Clark, L.A.1    Pregibon, D.2
  • 15
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • A. Prieditis & S. Russell (Eds.), San Francisco, CA: Morgan Kaufmann
    • Cohen, W. W. (1995). Fast effective rule induction. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 115-123). San Francisco, CA: Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 115-123
    • Cohen, W.W.1
  • 16
    • 0028416730 scopus 로고
    • Neural networks, decision tree induction and discriminant analysis: An empirical comparison
    • Curram, S. P. & Mingers, J. (1994). Neural networks, decision tree induction and discriminant analysis: An empirical comparison. Journal of the Operational Research Society, 45, 440-450.
    • (1994) Journal of the Operational Research Society , vol.45 , pp. 440-450
    • Curram, S.P.1    Mingers, J.2
  • 17
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics, 19, 1-141.
    • (1991) Annals of Statistics , vol.19 , pp. 1-141
    • Friedman, J.1
  • 18
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675-701.
    • (1937) Journal of the American Statistical Association , vol.32 , pp. 675-701
    • Friedman, M.1
  • 25
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 30
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh, W.-Y. & Shih, Y-S. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815-840.
    • (1997) Statistica Sinica , vol.7 , pp. 815-840
    • Loh, W.-Y.1    Shih, Y.-S.2
  • 31
    • 84950459261 scopus 로고
    • Tree-structured classification via generalized discriminant analysis
    • Loh, W.-Y. & Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis (with discussion). Journal of the American Statistical Association, 83, 715-728.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 715-728
    • Loh, W.-Y.1    Vanichsetakul, N.2
  • 32
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian, O. L. & Wolberg, W H. (1990). Cancer diagnosis via linear programming. Siam News, 23, 1-18.
    • (1990) Siam News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 33
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • Merz, C. J. & Murphy, P. M. (1996). UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California, Irvine, CA (http://www.ics.uci.edu/~mlearn/MLRepository.html).
    • (1996) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 36
    • 21844514350 scopus 로고
    • Automatic construction of decision trees for classification
    • Müller, W. & Wysotzki, F. (1994). Automatic construction of decision trees for classification. Annals of Operations Research, 52, 231-247.
    • (1994) Annals of Operations Research , vol.52 , pp. 231-247
    • Müller, W.1    Wysotzki, F.2
  • 37
    • 0141952585 scopus 로고    scopus 로고
    • The decision-tree algorithm CAL5 based on a statistical approach to its splitting algorithm
    • G. Nakhaeizadeh & C. C. Taylor (Eds.), New York, NY: John Wiley & Sons
    • Müller, W. & Wysotzki, F. (1997). The decision-tree algorithm CAL5 based on a statistical approach to its splitting algorithm. In G. Nakhaeizadeh & C. C. Taylor (Eds.), Machine Learning and Statistics: The Interface (pp. 45-65). New York, NY: John Wiley & Sons.
    • (1997) Machine Learning and Statistics: the Interface , pp. 45-65
    • Müller, W.1    Wysotzki, F.2
  • 40
    • 0002125069 scopus 로고    scopus 로고
    • The effects of training set size on decision tree complexity
    • D. H. Fisher, Jr. (Ed.), San Francisco, CA: Morgan Kaufmann
    • Oates, T. & Jensen, D. (1997). The effects of training set size on decision tree complexity. In D. H. Fisher, Jr. (Ed.), Proceedings of the Fourteenth International Conference on Machine Learning (pp. 254-262). San Francisco, CA: Morgan Kaufmann.
    • (1997) Proceedings of the Fourteenth International Conference on Machine Learning , pp. 254-262
    • Oates, T.1    Jensen, D.2
  • 45
    • 0004282518 scopus 로고
    • SAS Institute, Inc., Cary, NC
    • SAS Institute, Inc. SAS/STAT User's Guide, Version 6, (Vois. 1 & 2). SAS Institute, Inc., Cary, NC, 1990.
    • (1990) SAS/STAT User's Guide, Version 6 , vol.1-2
  • 46
    • 0026119038 scopus 로고
    • Symbolic and neural learning algorithms: An empirical comparison
    • Shavlik, J. W., Mooney, R. J., & Towell G. G. (1991). Symbolic and neural learning algorithms: an empirical comparison. Machine Learning, 6, 111-144.
    • (1991) Machine Learning , vol.6 , pp. 111-144
    • Shavlik, J.W.1    Mooney, R.J.2    Towell, G.G.3
  • 49
    • 0024375473 scopus 로고
    • Fine needle aspiration for breast mass diagnosis
    • Wolberg, W. H., Tanner, M. A., & Loh, W.-Y. (1989). Fine needle aspiration for breast mass diagnosis. Archives of Surgery, 124, 814-818.
    • (1989) Archives of Surgery , vol.124 , pp. 814-818
    • Wolberg, W.H.1    Tanner, M.A.2    Loh, W.-Y.3
  • 50
    • 0023513606 scopus 로고
    • Statistical approach to fine needle aspiration diagnosis of breast masses
    • Wolberg, W. H., Tanner, M. A., Loh, W.-Y., & Vanichsetakul, N. (1987). Statistical approach to fine needle aspiration diagnosis of breast masses. Acta Cytologica, 31, 737-741.
    • (1987) Acta Cytologica , vol.31 , pp. 737-741
    • Wolberg, W.H.1    Tanner, M.A.2    Loh, W.-Y.3    Vanichsetakul, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.