메뉴 건너뛰기




Volumn 85, Issue , 2016, Pages 765-792

Reactive Oxygen Species and Neutrophil Function

Author keywords

Antimicrobial; Cell death; Chloramine; Hydrogen peroxide; Hypochlorous acid; Hypothiocyanous acid; Inflammation; Myeloperoxidase; Redox signaling; Superoxide

Indexed keywords

HYDROGEN PEROXIDE; HYPOCHLOROUS ACID; MYELOPEROXIDASE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE 2; SUPEROXIDE; CHLORAMINE DERIVATIVE; CYBB PROTEIN, HUMAN; HYPOTHIOCYANOUS ACID; MEMBRANE PROTEIN; PEROXIDASE; PHORBOL 13 ACETATE 12 MYRISTATE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE; THIOCYANIC ACID DERIVATIVE; TOSYLCHLORAMIDE SODIUM; ZYMOSAN;

EID: 84974721064     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060815-014442     Document Type: Article
Times cited : (587)

References (161)
  • 1
    • 33344468233 scopus 로고    scopus 로고
    • Neutrophils and immunity: Challenges and opportunities
    • Nathan C. 2006. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6:173-82
    • (2006) Nat. Rev. Immunol. , vol.6 , pp. 173-182
    • Nathan, C.1
  • 2
    • 84875442814 scopus 로고    scopus 로고
    • Neutrophil recruitment and function in health and inflammation
    • Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13:159-75
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 159-175
    • Kolaczkowska, E.1    Kubes, P.2
  • 3
    • 84859872348 scopus 로고    scopus 로고
    • Neutrophils in innate host defense against Staphylococcus aureus infections
    • Rigby KM, DeLeo FR. 2012. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin. Immunopathol. 34:237-59
    • (2012) Semin. Immunopathol. , vol.34 , pp. 237-259
    • Rigby, K.M.1    DeLeo, F.R.2
  • 6
    • 27144535425 scopus 로고    scopus 로고
    • Regulation and termination of NADPH oxidase activity
    • Decoursey TE, Ligeti E. 2005. Regulation and termination of NADPH oxidase activity. Cell. Mol. Life Sci. 62:2173-93
    • (2005) Cell. Mol. Life Sci. , vol.62 , pp. 2173-2193
    • Decoursey, T.E.1    Ligeti, E.2
  • 7
    • 84885386368 scopus 로고    scopus 로고
    • Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis
    • Nunes P, DemaurexN, Dinauer MC. 2013. Regulation of the NADPH oxidase and associated ion fluxes during phagocytosis. Traffic 14:1118-31
    • (2013) Traffic , vol.14 , pp. 1118-1131
    • Nunes, P.1    Demaurex, N.2    Dinauer, M.C.3
  • 8
    • 84897019491 scopus 로고    scopus 로고
    • Nox enzymes and new thinking on reactive oxygen: A double-edged sword revisited
    • Lambeth JD, Neish AS. 2014. Nox enzymes and new thinking on reactive oxygen: A double-edged sword revisited. Annu. Rev. Pathol. Mech. Dis. 9:119-45
    • (2014) Annu. Rev. Pathol. Mech. Dis. , vol.9 , pp. 119-145
    • Lambeth, J.D.1    Neish, A.S.2
  • 9
    • 77949593677 scopus 로고    scopus 로고
    • Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases
    • Leto TL, Morand S, Hurt D, Ueyama T. 2009. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 11:2607-19
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 2607-2619
    • Leto, T.L.1    Morand, S.2    Hurt, D.3    Ueyama, T.4
  • 10
    • 47149105471 scopus 로고    scopus 로고
    • Nox enzymes in immune cells
    • Nauseef WM. 2008. Nox enzymes in immune cells. Semin. Immunopathol. 30:195-208
    • (2008) Semin. Immunopathol. , vol.30 , pp. 195-208
    • Nauseef, W.M.1
  • 11
    • 3042527868 scopus 로고    scopus 로고
    • The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems
    • Cross AR, Segal AW. 2004. The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta 1657:1-22
    • (2004) Biochim. Biophys. Acta , vol.1657 , pp. 1-22
    • Cross, A.R.1    Segal, A.W.2
  • 12
    • 0018712161 scopus 로고
    • Effects of oxygen tension and pH on the respiratory burst of human neutrophils
    • Gabig TG, Bearman SI, Babior BM. 1979. Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood 53:1133-39
    • (1979) Blood , vol.53 , pp. 1133-1139
    • Gabig, T.G.1    Bearman, S.I.2    Babior, B.M.3
  • 13
    • 0015380565 scopus 로고
    • Comparative study of the metabolic and bactericidal characteristics of severely glucose-6-phosphate dehydrogenase-deficient polymorphonuclear leukocytes and leukocytes from children with chronic granulomatous disease
    • Baehner RL, Johnston RB Jr. , Nathan DG. 1972. Comparative study of the metabolic and bactericidal characteristics of severely glucose-6-phosphate dehydrogenase-deficient polymorphonuclear leukocytes and leukocytes from children with chronic granulomatous disease. J. Reticuloendothel. Soc. 12:150-69
    • (1972) J. Reticuloendothel. Soc. , vol.12 , pp. 150-169
    • Baehner, R.L.1    Johnston, R.B.2    Nathan, D.G.3
  • 14
    • 76349113357 scopus 로고    scopus 로고
    • Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes
    • DeCoursey TE. 2010. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology 25:27-40
    • (2010) Physiology , vol.25 , pp. 27-40
    • DeCoursey, T.E.1
  • 15
    • 84929494374 scopus 로고    scopus 로고
    • Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity
    • Levine AP, Duchen MR, de Villiers S, Rich PR, Segal AW. 2015. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity. PLOS ONE 10:e0125906
    • (2015) PLOS ONE , vol.10 , pp. e0125906
    • Levine, A.P.1    Duchen, M.R.2    De Villiers, S.3    Rich, P.R.4    Segal, A.W.5
  • 16
    • 84890128687 scopus 로고    scopus 로고
    • Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases
    • Nauseef WM. 2014. Detection of superoxide anion and hydrogen peroxide production by cellular NADPH oxidases. Biochim. Biophys. Acta 1840:757-67
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 757-767
    • Nauseef, W.M.1
  • 17
    • 0031975515 scopus 로고    scopus 로고
    • Identification of intracellular sites of superoxide production in stimulated neutrophils
    • KobayashiT, Robinson JM, Seguchi H. 1998. Identification of intracellular sites of superoxide production in stimulated neutrophils. J. Cell Sci. 111:81-91
    • (1998) J. Cell Sci. , vol.111 , pp. 81-91
    • Kobayashi, T.1    Robinson, J.M.2    Seguchi, H.3
  • 18
    • 48749128084 scopus 로고    scopus 로고
    • Reactive oxygen species in phagocytic leukocytes
    • Robinson JM. 2008. Reactive oxygen species in phagocytic leukocytes. Histochem. Cell Biol. 130:281-97
    • (2008) Histochem. Cell Biol. , vol.130 , pp. 281-297
    • Robinson, J.M.1
  • 19
    • 84890114880 scopus 로고    scopus 로고
    • The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
    • Winterbourn CC. 2014. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 1840:730-38
    • (2014) Biochim. Biophys. Acta , vol.1840 , pp. 730-738
    • Winterbourn, C.C.1
  • 22
    • 78650180144 scopus 로고    scopus 로고
    • Intracellular generation of superoxide by the phagocyte NADPH oxidase: How, where, and what for?
    • Bylund J, Brown KL, Movitz C, Dahlgren C, Karlsson A. 2010. Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic. Biol. Med. 49:1834-45
    • (2010) Free Radic. Biol. Med. , vol.49 , pp. 1834-1845
    • Bylund, J.1    Brown, K.L.2    Movitz, C.3    Dahlgren, C.4    Karlsson, A.5
  • 23
    • 65249097263 scopus 로고    scopus 로고
    • A fluorescently tagged C-terminal fragment of p47phox detects NADPH oxidase dynamics during phagocytosis
    • Li XJ, Tian W, Stull ND, Grinstein S, Atkinson S, et al. 2009. A fluorescently tagged C-terminal fragment of p47phox detects NADPH oxidase dynamics during phagocytosis. Mol. Biol. Cell 20:1520-32
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1520-1532
    • Li, X.J.1    Tian, W.2    Stull, N.D.3    Grinstein, S.4    Atkinson, S.5
  • 24
    • 34250807959 scopus 로고    scopus 로고
    • Development of a highly specific rhodaminebased fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis
    • Kenmoku S, Urano Y, Kojima H, Nagano T. 2007. Development of a highly specific rhodaminebased fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc. 129:7313-18
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 7313-7318
    • Kenmoku, S.1    Urano, Y.2    Kojima, H.3    Nagano, T.4
  • 25
    • 79954997251 scopus 로고    scopus 로고
    • A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production
    • Chen X, Lee KA, Ha EM, Lee KM, Seo YY, et al. 2011. A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chem. Commun. 47:4373-75
    • (2011) Chem. Commun. , vol.47 , pp. 4373-4375
    • Chen, X.1    Lee, K.A.2    Ha, E.M.3    Lee, K.M.4    Seo, Y.Y.5
  • 26
    • 84859510524 scopus 로고    scopus 로고
    • Endotoxin priming of neutrophils requires endocytosis and NADPH oxidase-dependent endosomal reactive oxygen species
    • Lamb FS, Hook JS, Hilkin BM, Huber JN, Volk AP, et al. 2012. Endotoxin priming of neutrophils requires endocytosis and NADPH oxidase-dependent endosomal reactive oxygen species. J. Biol. Chem. 287:12395-404
    • (2012) J. Biol. Chem. , vol.287 , pp. 12395-12404
    • Lamb, F.S.1    Hook, J.S.2    Hilkin, B.M.3    Huber, J.N.4    Volk, A.P.5
  • 27
    • 78649757606 scopus 로고    scopus 로고
    • PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils
    • Anderson KE, Chessa TA, Davidson K, Henderson RB, Walker S, et al. 2010. PtdIns3P and Rac direct the assembly of the NADPH oxidase on a novel, pre-phagosomal compartment during FcR-mediated phagocytosis in primary mouse neutrophils. Blood 116:4978-89
    • (2010) Blood , vol.116 , pp. 4978-4989
    • Anderson, K.E.1    Chessa, T.A.2    Davidson, K.3    Henderson, R.B.4    Walker, S.5
  • 28
    • 0029913108 scopus 로고    scopus 로고
    • Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: Only half the story has been told
    • Lundqvist H, Follin P, Khalfan L, Dahlgren C. 1996. Phorbol myristate acetate-induced NADPH oxidase activity in human neutrophils: only half the story has been told. J. Leukoc. Biol. 59:270-79
    • (1996) J. Leukoc. Biol. , vol.59 , pp. 270-279
    • Lundqvist, H.1    Follin, P.2    Khalfan, L.3    Dahlgren, C.4
  • 29
    • 84884834986 scopus 로고    scopus 로고
    • ROS production in phagocytes: Why, when, and where?
    • Dupre-Crochet S, Erard M, Nubetae O. 2013. ROS production in phagocytes: why, when, and where? J. Leukoc. Biol. 94:657-70
    • (2013) J. Leukoc. Biol. , vol.94 , pp. 657-670
    • Dupre-Crochet, S.1    Erard, M.2    Nubetae, O.3
  • 30
    • 70350451062 scopus 로고    scopus 로고
    • A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity
    • Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, et al. 2009. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity. Blood 114:3309-15
    • (2009) Blood , vol.114 , pp. 3309-3315
    • Matute, J.D.1    Arias, A.A.2    Wright, N.A.3    Wrobel, I.4    Waterhouse, C.C.5
  • 31
    • 0033822418 scopus 로고    scopus 로고
    • Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: Dependent or independent of phosphatidylinositol 3-kinase
    • KarlssonA, Nixon JB, McPhail LC. 2000. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J. Leukoc. Biol. 67:396-404
    • (2000) J. Leukoc. Biol. , vol.67 , pp. 396-404
    • Karlsson, A.1    Nixon, J.B.2    McPhail, L.C.3
  • 32
    • 0035017408 scopus 로고    scopus 로고
    • An intact cytoskeleton is required for prolonged respiratory burst activity during neutrophil phagocytosis
    • Granfeldt D, Dahlgren C. 2001. An intact cytoskeleton is required for prolonged respiratory burst activity during neutrophil phagocytosis. Inflammation 25:165-69
    • (2001) Inflammation , vol.25 , pp. 165-169
    • Granfeldt, D.1    Dahlgren, C.2
  • 34
    • 79151480820 scopus 로고    scopus 로고
    • Kinetic analysis of phagosomal production of reactive oxygen species
    • Tlili A, Dupre-Crochet S, Erard M, Nusse O. 2011. Kinetic analysis of phagosomal production of reactive oxygen species. Free Radic. Biol. Med. 50:438-47
    • (2011) Free Radic. Biol. Med. , vol.50 , pp. 438-447
    • Tlili, A.1    Dupre-Crochet, S.2    Erard, M.3    Nusse, O.4
  • 35
    • 0034792757 scopus 로고    scopus 로고
    • Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase
    • Arnhold J, Furtmuller PG, Regelsberger G, Obinger C. 2001. Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. Eur. J. Biochem. 268:5142-48
    • (2001) Eur. J. Biochem. , vol.268 , pp. 5142-5148
    • Arnhold, J.1    Furtmuller, P.G.2    Regelsberger, G.3    Obinger, C.4
  • 37
    • 0030915481 scopus 로고    scopus 로고
    • Myeloperoxidase: A key regulator of neutrophil oxidant production
    • Kettle AJ, Winterbourn CC. 1997. Myeloperoxidase: A key regulator of neutrophil oxidant production. Redox Rep. 3:3-15
    • (1997) Redox Rep. , vol.3 , pp. 3-15
    • Kettle, A.J.1    Winterbourn, C.C.2
  • 38
  • 39
    • 0023878505 scopus 로고
    • Radical formation during the peroxidase catalysed metabolism of carcinogens and xenobiotics: The reactivity of these radicals with GSH, DNA, and unsaturated lipid
    • O'Brien PJ. 1988. Radical formation during the peroxidase catalysed metabolism of carcinogens and xenobiotics: The reactivity of these radicals with GSH, DNA, and unsaturated lipid. Free Radic. Biol. Med. 4:169-84
    • (1988) Free Radic. Biol. Med. , vol.4 , pp. 169-184
    • O'Brien, P.J.1
  • 40
    • 0028063436 scopus 로고
    • Transformation of lupus-inducing drugs to cytotoxic products by activated neutrophils
    • Jiang X, Khursigara G, Rubin RL. 1994. Transformation of lupus-inducing drugs to cytotoxic products by activated neutrophils. Science 266:810-13
    • (1994) Science , vol.266 , pp. 810-813
    • Jiang, X.1    Khursigara, G.2    Rubin, R.L.3
  • 41
    • 84872476329 scopus 로고    scopus 로고
    • Redox reactions and microbial killing in the neutrophil phagosome
    • Winterbourn CC, Kettle AJ. 2013. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid. Redox Signal. 18:642-60
    • (2013) Antioxid. Redox Signal. , vol.18 , pp. 642-660
    • Winterbourn, C.C.1    Kettle, A.J.2
  • 43
    • 79953882405 scopus 로고    scopus 로고
    • Urate as a physiological substrate for myeloperoxidase: Implications for hyperuricemia and inflammation
    • Meotti FC, Jameson GN, Turner R, Harwood DT, Stockwell S, et al. 2011. Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J. Biol. Chem. 286:12901-11
    • (2011) J. Biol. Chem. , vol.286 , pp. 12901-12911
    • Meotti, F.C.1    Jameson, G.N.2    Turner, R.3    Harwood, D.T.4    Stockwell, S.5
  • 44
    • 33845997473 scopus 로고    scopus 로고
    • Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: Implications for microbial killing
    • Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ. 2006. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J. Biol. Chem. 281:39860-69
    • (2006) J. Biol. Chem. , vol.281 , pp. 39860-39869
    • Winterbourn, C.C.1    Hampton, M.B.2    Livesey, J.H.3    Kettle, A.J.4
  • 45
    • 0031438748 scopus 로고    scopus 로고
    • Relative chlorinating, nitrating, and oxidizing capabilities of neutrophils determined with phagocytosable probes
    • Jiang Q, Hurst JK. 1997. Relative chlorinating, nitrating, and oxidizing capabilities of neutrophils determined with phagocytosable probes. J. Biol. Chem. 272:32767-72
    • (1997) J. Biol. Chem. , vol.272 , pp. 32767-32772
    • Jiang, Q.1    Hurst, J.K.2
  • 46
    • 0028920250 scopus 로고
    • Immunocytochemical detection of lipid peroxidation in phagosomes of human neutrophils: Correlation with expression of flavocytochrome b
    • Quinn MT, Linner JG, Siemsen D, Dratz EA, Buescher ES, et al. 1995. Immunocytochemical detection of lipid peroxidation in phagosomes of human neutrophils: correlation with expression of flavocytochrome b. J. Leukoc. Biol. 57:415-21
    • (1995) J. Leukoc. Biol. , vol.57 , pp. 415-421
    • Quinn, M.T.1    Linner, J.G.2    Siemsen, D.3    Dratz, E.A.4    Buescher, E.S.5
  • 47
    • 84927127416 scopus 로고    scopus 로고
    • Myeloperoxidasedependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils
    • Wilkie-Grantham RP, Magon NJ, Harwood DT, Kettle AJ, Vissers MC, et al. 2015. Myeloperoxidasedependent lipid peroxidation promotes the oxidative modification of cytosolic proteins in phagocytic neutrophils. J. Biol. Chem. 290:9896-905
    • (2015) J. Biol. Chem. , vol.290 , pp. 9896-9905
    • Wilkie-Grantham, R.P.1    Magon, N.J.2    Harwood, D.T.3    Kettle, A.J.4    Vissers, M.C.5
  • 48
    • 33646537788 scopus 로고    scopus 로고
    • Direct measurement of free chloride concentrations in the phagolysosomes of human neutrophils
    • Painter RG, Wang G. 2006. Direct measurement of free chloride concentrations in the phagolysosomes of human neutrophils. Anal. Chem. 78:3133-37
    • (2006) Anal. Chem. , vol.78 , pp. 3133-3137
    • Painter, R.G.1    Wang, G.2
  • 50
    • 84863430573 scopus 로고    scopus 로고
    • What really happens in the neutrophil phagosome?
    • Hurst JK. 2012. What really happens in the neutrophil phagosome? Free Radic. Biol. Med. 53:508-20
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 508-520
    • Hurst, J.K.1
  • 51
    • 0037155914 scopus 로고    scopus 로고
    • Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus
    • Chapman ALP, Hampton MB, Senthilmohan R, Winterbourn CC, Kettle AJ. 2002. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J. Biol. Chem. 277:9757-62
    • (2002) J. Biol. Chem. , vol.277 , pp. 9757-9762
    • Chapman, A.L.P.1    Hampton, M.B.2    Senthilmohan, R.3    Winterbourn, C.C.4    Kettle, A.J.5
  • 52
    • 33748654201 scopus 로고    scopus 로고
    • CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis
    • Painter RG, Valentine VG, Lanson NA Jr. , Leidal K, Zhang Q, et al. 2006. CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 45:10260-69
    • (2006) Biochemistry , vol.45 , pp. 10260-10269
    • Painter, R.G.1    Valentine, V.G.2    Lanson, N.A.3    Leidal, K.4    Zhang, Q.5
  • 53
    • 84908456643 scopus 로고    scopus 로고
    • Protein chlorination in neutrophil phagosomes and correlation with bacterial killing
    • Green JN, Kettle AJ, Winterbourn CC. 2014. Protein chlorination in neutrophil phagosomes and correlation with bacterial killing. Free Radic. Biol. Med. 77:49-56
    • (2014) Free Radic. Biol. Med. , vol.77 , pp. 49-56
    • Green, J.N.1    Kettle, A.J.2    Winterbourn, C.C.3
  • 54
    • 73249129955 scopus 로고    scopus 로고
    • Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils
    • Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW, et al. 2009. Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. PNAS 106:18686-91
    • (2009) PNAS , vol.106 , pp. 18686-18691
    • Rosen, H.1    Klebanoff, S.J.2    Wang, Y.3    Brot, N.4    Heinecke, J.W.5
  • 55
    • 34548588559 scopus 로고    scopus 로고
    • How human neutrophils kill and degrade microbes: An integrated view
    • Nauseef WM. 2007. How human neutrophils kill and degrade microbes: An integrated view. Immunol. Rev. 219:88-102
    • (2007) Immunol. Rev. , vol.219 , pp. 88-102
    • Nauseef, W.M.1
  • 56
    • 18244390487 scopus 로고    scopus 로고
    • Myeloperoxidase: Friend and foe
    • Klebanoff SJ. 2005. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77:598-625
    • (2005) J. Leukoc. Biol. , vol.77 , pp. 598-625
    • Klebanoff, S.J.1
  • 57
    • 0034128751 scopus 로고    scopus 로고
    • Genetic, biochemical, and clinical features of chronic granulomatous disease
    • Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. 2000. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine 79:170-200
    • (2000) Medicine , vol.79 , pp. 170-200
    • Segal, B.H.1    Leto, T.L.2    Gallin, J.I.3    Malech, H.L.4    Holland, S.M.5
  • 59
    • 45949103092 scopus 로고    scopus 로고
    • The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils
    • Painter RG, Bonvillain RW, Valentine VG, Lombard GA, LaPlace SG, et al. 2008. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J. Leukoc. Biol. 83:1345-53
    • (2008) J. Leukoc. Biol. , vol.83 , pp. 1345-1353
    • Painter, R.G.1    Bonvillain, R.W.2    Valentine, V.G.3    Lombard, G.A.4    LaPlace, S.G.5
  • 60
    • 84906968886 scopus 로고    scopus 로고
    • Neutrophil-mediated phagocytic host defense defect in myeloid CFTR-inactivated mice
    • Ng HP, Zhou Y, Song K, Hodges CA, Drumm ML, et al. 2014. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice. PLOS ONE 9:e106813
    • (2014) PLOS ONE , vol.9 , pp. e106813
    • Ng, H.P.1    Zhou, Y.2    Song, K.3    Hodges, C.A.4    Drumm, M.L.5
  • 61
    • 0021262832 scopus 로고
    • Chlorination of endogenous amines by isolated neutrophils: Ammonia-dependent bactericidal, cytotoxic, and cytolytic activities of the chloramines
    • Grisham MB, Jefferson MM, Melton DF, Thomas EL. 1984. Chlorination of endogenous amines by isolated neutrophils: Ammonia-dependent bactericidal, cytotoxic, and cytolytic activities of the chloramines. J. Biol. Chem. 259:10404-13
    • (1984) J. Biol. Chem. , vol.259 , pp. 10404-10413
    • Grisham, M.B.1    Jefferson, M.M.2    Melton, D.F.3    Thomas, E.L.4
  • 62
    • 78650910627 scopus 로고    scopus 로고
    • Myeloperoxidase selectively binds and selectively kills microbes
    • Allen RC, Stephens JT Jr. 2011. Myeloperoxidase selectively binds and selectively kills microbes. Infect. Immun. 79:474-85
    • (2011) Infect. Immun. , vol.79 , pp. 474-485
    • Allen, R.C.1    Stephens, J.T.2
  • 63
    • 0024422606 scopus 로고
    • General mechanism for the bacterial toxicity of hypochlorous acid: Abolition of ATP production
    • Barrette WCJ, Hannum DM, Wheeler WD, Hurst JC. 1989. General mechanism for the bacterial toxicity of hypochlorous acid: Abolition of ATP production. Biochemistry 28:9172-78
    • (1989) Biochemistry , vol.28 , pp. 9172-9178
    • Barrette, W.C.J.1    Hannum, D.M.2    Wheeler, W.D.3    Hurst, J.C.4
  • 64
    • 84927151857 scopus 로고    scopus 로고
    • Redox regulation by reversible protein S-thiolation in bacteria
    • Loi VV, Rossius M, AntelmannH. 2015. Redox regulation by reversible protein S-thiolation in bacteria. Front. Microbiol. 6:187
    • (2015) Front. Microbiol. , vol.6 , pp. 187
    • Loi, V.V.1    Rossius, M.2    Antelmann, H.3
  • 65
    • 84871776673 scopus 로고    scopus 로고
    • S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in Firmicutes bacteria
    • Chi BK, Roberts AA, Huyen TT, Basell K, Becher D, et al. 2013. S-bacillithiolation protects conserved and essential proteins against hypochlorite stress in Firmicutes bacteria. Antioxid. Redox Signal. 18:1273-95
    • (2013) Antioxid. Redox Signal. , vol.18 , pp. 1273-1295
    • Chi, B.K.1    Roberts, A.A.2    Huyen, T.T.3    Basell, K.4    Becher, D.5
  • 66
    • 0016582569 scopus 로고
    • The role of superoxide anion generation in phagocytic bactericidal activity: Studies with normal and chronic granulomatous disease leukocytes
    • Johnston RBJ, Keele BBJ, Misra HP, Lehmeyer JE, Webb LS, et al. 1975. The role of superoxide anion generation in phagocytic bactericidal activity: studies with normal and chronic granulomatous disease leukocytes. J. Clin. Investig. 55:1357-72
    • (1975) J. Clin. Investig. , vol.55 , pp. 1357-1372
    • Johnston, R.B.J.1    Keele, B.B.J.2    Misra, H.P.3    Lehmeyer, J.E.4    Webb, L.S.5
  • 67
    • 0029846572 scopus 로고    scopus 로고
    • Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils
    • Hampton MB, Kettle AJ, Winterbourn CC. 1996. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils. Infect. Immun. 64:3512-17
    • (1996) Infect. Immun. , vol.64 , pp. 3512-3517
    • Hampton, M.B.1    Kettle, A.J.2    Winterbourn, C.C.3
  • 68
    • 0009543864 scopus 로고    scopus 로고
    • Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase
    • De Groote MA, Ochsner UA, Shiloh MU, Nathan C, McCord JM, et al. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. PNAS 94:13997-4001
    • (1997) PNAS , vol.94 , pp. 13997-14001
    • De Groote, M.A.1    Ochsner, U.A.2    Shiloh, M.U.3    Nathan, C.4    McCord, J.M.5
  • 69
    • 63349084165 scopus 로고    scopus 로고
    • Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella
    • Craig M, Slauch JM. 2009. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLOS ONE 4:e4975
    • (2009) PLOS ONE , vol.4 , pp. e4975
    • Craig, M.1    Slauch, J.M.2
  • 70
    • 84892604268 scopus 로고    scopus 로고
    • Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice
    • Burton NA, Schurmann N, Casse O, Steeb AK, Claudi B, et al. 2014. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in micE. Cell Host Microbe 15:72-83
    • (2014) Cell Host Microbe , vol.15 , pp. 72-83
    • Burton, N.A.1    Schurmann, N.2    Casse, O.3    Steeb, A.K.4    Claudi, B.5
  • 71
    • 0242608621 scopus 로고    scopus 로고
    • Pathways of oxidative damage
    • Imlay JA. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57:395-418
    • (2003) Annu. Rev. Microbiol. , vol.57 , pp. 395-418
    • Imlay, J.A.1
  • 72
    • 4844227764 scopus 로고    scopus 로고
    • Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies
    • Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2:820-32
    • (2004) Nat. Rev. Microbiol. , vol.2 , pp. 820-832
    • Fang, F.C.1
  • 73
    • 84864574150 scopus 로고    scopus 로고
    • Why do bacteria use so many enzymes to scavenge hydrogen peroxide?
    • Mishra S, Imlay J. 2012. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys. 525:145-60
    • (2012) Arch. Biochem. Biophys. , vol.525 , pp. 145-160
    • Mishra, S.1    Imlay, J.2
  • 74
    • 0036802316 scopus 로고    scopus 로고
    • mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils
    • Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H. 2002. mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J. Clin. Investig. 110:1151-63
    • (2002) J. Clin. Investig. , vol.110 , pp. 1151-1163
    • Staudinger, B.J.1    Oberdoerster, M.A.2    Lewis, P.J.3    Rosen, H.4
  • 75
    • 17644377258 scopus 로고    scopus 로고
    • How neutrophils kill microbes
    • Segal AW. 2005. How neutrophils kill microbes. Annu. Rev. Immunol. 23:197-223
    • (2005) Annu. Rev. Immunol. , vol.23 , pp. 197-223
    • Segal, A.W.1
  • 76
    • 7244253000 scopus 로고    scopus 로고
    • Dual role of phagocytic NADPH oxidase in bacterial killing
    • Rada BK, Geiszt M, Kaldi K, Timar C, Ligeti E. 2004. Dual role of phagocytic NADPH oxidase in bacterial killing. Blood 104:2947-53
    • (2004) Blood , vol.104 , pp. 2947-2953
    • Rada, B.K.1    Geiszt, M.2    Kaldi, K.3    Timar, C.4    Ligeti, E.5
  • 77
    • 65349126387 scopus 로고    scopus 로고
    • Electrophysiology of reactive oxygen production in signaling endosomes
    • Lamb FS, Moreland JG, Miller FJ Jr. 2009. Electrophysiology of reactive oxygen production in signaling endosomes. Antioxid. Redox Signal. 11:1335-47
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 1335-1347
    • Lamb, F.S.1    Moreland, J.G.2    Miller, F.J.3
  • 78
    • 79954992063 scopus 로고    scopus 로고
    • How does the oxidative burst of macrophages kill bacteria? Still an open question
    • Slauch JM. 2011. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol. Microbiol. 80:580-83
    • (2011) Mol. Microbiol. , vol.80 , pp. 580-583
    • Slauch, J.M.1
  • 79
    • 0034095005 scopus 로고    scopus 로고
    • Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase
    • Vazquez-Torres A, Xu Y, Jones-Carson J, Holden DW, Lucia SM, et al. 2000. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287:1655-58
    • (2000) Science , vol.287 , pp. 1655-1658
    • Vazquez-Torres, A.1    Xu, Y.2    Jones-Carson, J.3    Holden, D.W.4    Lucia, S.M.5
  • 80
    • 0021932424 scopus 로고
    • Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: Importance in resistance to microbicidal activities of human polymorphonuclear neutrophils
    • Beaman BL, Black CM, Doughty F, Beaman L. 1985. Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: importance in resistance to microbicidal activities of human polymorphonuclear neutrophils. Infect. Immun. 47:135-41
    • (1985) Infect. Immun. , vol.47 , pp. 135-141
    • Beaman, B.L.1    Black, C.M.2    Doughty, F.3    Beaman, L.4
  • 81
    • 40449088993 scopus 로고    scopus 로고
    • A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence
    • Liu CI, Liu GY, Song Y, Yin F, Hensler ME, et al. 2008. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319:1391-94
    • (2008) Science , vol.319 , pp. 1391-1394
    • Liu, C.I.1    Liu, G.Y.2    Song, Y.3    Yin, F.4    Hensler, M.E.5
  • 82
    • 84880234188 scopus 로고    scopus 로고
    • Virulence of endemic nonpigmented northern Australian Staphylococcus aureus clone (clonal complex 75, S. Argenteus) is not augmented by staphyloxanthin
    • Tong SY, Sharma-Kuinkel BK, Thaden JT, Whitney AR, Yang SJ, et al. 2013. Virulence of endemic nonpigmented northern Australian Staphylococcus aureus clone (clonal complex 75, S. Argenteus) is not augmented by staphyloxanthin. J. Infect. Dis. 208:520-27
    • (2013) J. Infect. Dis. , vol.208 , pp. 520-527
    • Tong, S.Y.1    Sharma-Kuinkel, B.K.2    Thaden, J.T.3    Whitney, A.R.4    Yang, S.J.5
  • 83
    • 0033524938 scopus 로고    scopus 로고
    • Chaperone activity with a redox switch
    • Jakob U, Muse W, Eser M, Bardwell JC. 1999. Chaperone activity with a redox switch. Cell 96:341-52
    • (1999) Cell , vol.96 , pp. 341-352
    • Jakob, U.1    Muse, W.2    Eser, M.3    Bardwell, J.C.4
  • 84
    • 55449092300 scopus 로고    scopus 로고
    • Bleach activates a redox-regulated chaperone by oxidative protein unfolding
    • Winter J, Ilbert M, Graf PC, Ozcelik D, Jakob U. 2008. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135:691-701
    • (2008) Cell , vol.135 , pp. 691-701
    • Winter, J.1    Ilbert, M.2    Graf, P.C.3    Ozcelik, D.4    Jakob, U.5
  • 85
  • 86
    • 84942030735 scopus 로고    scopus 로고
    • Does the transcription factor NemR use a regulatory sulfenamide bond to sense bleach?
    • Gray MJ, Li Y, Leichert LI, Xu Z, Jakob U. 2015. Does the transcription factor NemR use a regulatory sulfenamide bond to sense bleach? Antioxid. Redox Signal. 23:747-54
    • (2015) Antioxid. Redox Signal. , vol.23 , pp. 747-754
    • Gray, M.J.1    Li, Y.2    Leichert, L.I.3    Xu, Z.4    Jakob, U.5
  • 87
    • 84887458268 scopus 로고    scopus 로고
    • The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli
    • Parker BW, Schwessinger EA, Jakob U, GrayMJ. 2013. The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. J. Biol. Chem. 288:32574-84
    • (2013) J. Biol. Chem. , vol.288 , pp. 32574-32584
    • Parker, B.W.1    Schwessinger, E.A.2    Jakob, U.3    Gray, M.J.4
  • 88
    • 84878675814 scopus 로고    scopus 로고
    • Methionine oxidation activates a transcription factor in response to oxidative stress
    • Drazic A, MiuraH, Peschek J, Le Y, Bach NC, et al. 2013. Methionine oxidation activates a transcription factor in response to oxidative stress. PNAS 110:9493-98
    • (2013) PNAS , vol.110 , pp. 9493-9498
    • Drazic, A.1    Miura, H.2    Peschek, J.3    Le, Y.4    Bach, N.C.5
  • 89
    • 33745216502 scopus 로고    scopus 로고
    • Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2
    • Mazaki Y, Hashimoto S, Tsujimura T, Morishige M, Hashimoto A, et al. 2006. Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2. Nat. Immunol. 7:724-31
    • (2006) Nat. Immunol. , vol.7 , pp. 724-731
    • Mazaki, Y.1    Hashimoto, S.2    Tsujimura, T.3    Morishige, M.4    Hashimoto, A.5
  • 90
    • 83055161506 scopus 로고    scopus 로고
    • Rac regulates PtdInsP3 signaling and the chemotactic compass through a redox-mediated feedback loop
    • Kuiper JW, Sun C, MagalhaesMA, Glogauer M. 2011. Rac regulates PtdInsP3 signaling and the chemotactic compass through a redox-mediated feedback loop. Blood 118:6164-71
    • (2011) Blood , vol.118 , pp. 6164-6171
    • Kuiper, J.W.1    Sun, C.2    Magalhaes, M.A.3    Glogauer, M.4
  • 91
    • 84922061750 scopus 로고    scopus 로고
    • Autophagy mediates neutrophil responses to bacterial infection
    • Chargui A, El May MV. 2014. Autophagy mediates neutrophil responses to bacterial infection. APMIS 122:1047-58
    • (2014) APMIS , vol.122 , pp. 1047-1058
    • Chargui, A.1    El May, M.V.2
  • 92
  • 95
    • 34147124139 scopus 로고    scopus 로고
    • Netting bacteria in sepsis
    • Urban C, Zychlinsky A. 2007. Netting bacteria in sepsis. Nat. Med. 13:403-4
    • (2007) Nat. Med. , vol.13 , pp. 403-404
    • Urban, C.1    Zychlinsky, A.2
  • 96
    • 34447525439 scopus 로고    scopus 로고
    • Beneficial suicide: Why neutrophils die to make NETs
    • Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 5:577-82
    • (2007) Nat. Rev. Microbiol. , vol.5 , pp. 577-582
    • Brinkmann, V.1    Zychlinsky, A.2
  • 98
    • 84866360345 scopus 로고    scopus 로고
    • Neutrophil extracellular traps: Is immunity the second function of chromatin?
    • Brinkmann V, Zychlinsky A. 2012. Neutrophil extracellular traps: Is immunity the second function of chromatin? J. Cell Biol. 198:773-83
    • (2012) J. Cell Biol. , vol.198 , pp. 773-783
    • Brinkmann, V.1    Zychlinsky, A.2
  • 99
    • 40749128547 scopus 로고    scopus 로고
    • Histone deimination as a response to inflammatory stimuli in neutrophils
    • Neeli I, Khan SN, Radic M. 2008. Histone deimination as a response to inflammatory stimuli in neutrophils. J. Immunol. 180:1895-902
    • (2008) J. Immunol. , vol.180 , pp. 1895-1902
    • Neeli, I.1    Khan, S.N.2    Radic, M.3
  • 100
    • 78049496216 scopus 로고    scopus 로고
    • Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps
    • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191:677-91
    • (2010) J. Cell Biol. , vol.191 , pp. 677-691
    • Papayannopoulos, V.1    Metzler, K.D.2    Hakkim, A.3    Zychlinsky, A.4
  • 101
    • 79651473201 scopus 로고    scopus 로고
    • Neutrophil extracellular trap cell death requires both autophagy and superoxide generation
    • Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, et al. 2011. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21:290-304
    • (2011) Cell Res. , vol.21 , pp. 290-304
    • Remijsen, Q.1    Vanden Berghe, T.2    Wirawan, E.3    Asselbergh, B.4    Parthoens, E.5
  • 102
    • 84874270372 scopus 로고    scopus 로고
    • Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps
    • Parker H, Winterbourn CC. 2013. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front. Immunol. 3:424
    • (2013) Front. Immunol. , vol.3 , pp. 424
    • Parker, H.1    Winterbourn, C.C.2
  • 103
    • 33846432787 scopus 로고    scopus 로고
    • Novel cell death program leads to neutrophil extracellular traps
    • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, et al. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176:231-41
    • (2007) J. Cell Biol. , vol.176 , pp. 231-241
    • Fuchs, T.A.1    Abed, U.2    Goosmann, C.3    Hurwitz, R.4    Schulze, I.5
  • 104
    • 84866177387 scopus 로고    scopus 로고
    • Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus
    • Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. 2012. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J. Leukoc. Biol. 92:841-49
    • (2012) J. Leukoc. Biol. , vol.92 , pp. 841-849
    • Parker, H.1    Dragunow, M.2    Hampton, M.B.3    Kettle, A.J.4    Winterbourn, C.C.5
  • 106
    • 78751693139 scopus 로고    scopus 로고
    • Myeloperoxidase is required for neutrophil extracellular trap formation: Implications for innate immunity
    • Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, et al. 2011. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117:953-59
    • (2011) Blood , vol.117 , pp. 953-959
    • Metzler, K.D.1    Fuchs, T.A.2    Nauseef, W.M.3    Reumaux, D.4    Roesler, J.5
  • 107
    • 84908201445 scopus 로고    scopus 로고
    • Amyeloperoxidasecontaining complex regulates neutrophil elastase release and actin dynamics during NETosis
    • MetzlerKD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. 2014. Amyeloperoxidasecontaining complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8:883-96
    • (2014) Cell Rep. , vol.8 , pp. 883-896
    • Metzler, K.D.1    Goosmann, C.2    Lubojemska, A.3    Zychlinsky, A.4    Papayannopoulos, V.5
  • 108
    • 84946110072 scopus 로고    scopus 로고
    • Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species
    • Bjornsdottir H, Welin A, Michaelsson E, Osla V, Berg S, et al. 2015. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species. Free Radic. Biol. Med. 89:1024-35
    • (2015) Free Radic. Biol. Med. , vol.89 , pp. 1024-1035
    • Bjornsdottir, H.1    Welin, A.2    Michaelsson, E.3    Osla, V.4    Berg, S.5
  • 110
    • 0032535016 scopus 로고    scopus 로고
    • Involvement of caspases in neutrophil apoptosis: Regulation by reactive oxygen species
    • Fadeel B, Å hlin A, Henter J, Orrenius S, Hampton MB. 1998. Involvement of caspases in neutrophil apoptosis: regulation by reactive oxygen species. Blood 92:4808-18
    • (1998) Blood , vol.92 , pp. 4808-4818
    • Fadeel, B.1    Hlin A, Å.2    Henter, J.3    Orrenius, S.4    Hampton, M.B.5
  • 111
    • 0036587574 scopus 로고    scopus 로고
    • Oxidant-mediated phosphatidylserine exposure and macrophage uptake of activated neutrophils: Possible impairment in chronic granulomatous disease
    • Hampton MB, Keenan JI, Vissers MCM, Winterbourn CC. 2002. Oxidant-mediated phosphatidylserine exposure and macrophage uptake of activated neutrophils: possible impairment in chronic granulomatous disease. J. Leukoc. Biol. 71:775-81
    • (2002) J. Leukoc. Biol. , vol.71 , pp. 775-781
    • Hampton, M.B.1    Keenan, J.I.2    Vissers, M.C.M.3    Winterbourn, C.C.4
  • 113
    • 34247235049 scopus 로고    scopus 로고
    • Nitrosative stress inhibits the aminophospholipid translocase resulting in phosphatidylserine externalization and macrophage engulfment: Implications for the resolution of inflammation
    • Tyurina YY, Basova LV, KonduruNV, Tyurin VA, Potapovich AI, et al. 2007. Nitrosative stress inhibits the aminophospholipid translocase resulting in phosphatidylserine externalization and macrophage engulfment: implications for the resolution of inflammation. J. Biol. Chem. 282:8498-509
    • (2007) J. Biol. Chem. , vol.282 , pp. 8498-8509
    • Tyurina, Y.Y.1    Basova, L.V.2    Konduru, N.V.3    Tyurin, V.A.4    Potapovich, A.I.5
  • 114
    • 33645959522 scopus 로고    scopus 로고
    • Involvement of the Na+/H+ exchanger in membrane phosphatidylserine exposure during human platelet activation
    • Bucki R, Pastore JJ, Giraud F, Janmey PA, Sulpice JC. 2006. Involvement of the Na+/H+ exchanger in membrane phosphatidylserine exposure during human platelet activation. Biochim. Biophys. Acta 1761:195-204
    • (2006) Biochim. Biophys. Acta , vol.1761 , pp. 195-204
    • Bucki, R.1    Pastore, J.J.2    Giraud, F.3    Janmey, P.A.4    Sulpice, J.C.5
  • 115
    • 34447265315 scopus 로고    scopus 로고
    • A functional NADPH oxidase prevents caspase involvement in the clearance of phagocytic neutrophils
    • Wilkie RP, Vissers MC, Dragunow M, Hampton MB. 2007. A functional NADPH oxidase prevents caspase involvement in the clearance of phagocytic neutrophils. Infect. Immun. 75:3256-63
    • (2007) Infect. Immun. , vol.75 , pp. 3256-3263
    • Wilkie, R.P.1    Vissers, M.C.2    Dragunow, M.3    Hampton, M.B.4
  • 116
    • 0041707781 scopus 로고    scopus 로고
    • Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: Cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation
    • Zhang B, Hirahashi J, Cullere X, Mayadas TN. 2003. Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J. Biol. Chem. 278:28443-54
    • (2003) J. Biol. Chem. , vol.278 , pp. 28443-28454
    • Zhang, B.1    Hirahashi, J.2    Cullere, X.3    Mayadas, T.N.4
  • 118
    • 84901253655 scopus 로고    scopus 로고
    • Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis
    • Greenlee-Wacker MC, Rigby KM, Kobayashi SD, Porter AR, DeLeo FR, et al. 2014. Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. J. Immunol. 192:4709-17
    • (2014) J. Immunol. , vol.192 , pp. 4709-4717
    • Greenlee-Wacker, M.C.1    Rigby, K.M.2    Kobayashi, S.D.3    Porter, A.R.4    DeLeo, F.R.5
  • 120
    • 84857862903 scopus 로고    scopus 로고
    • Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide
    • Parker H, Albrett AM, Kettle AJ, Winterbourn CC. 2012. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide. J. Leukoc. Biol. 91:369-76
    • (2012) J. Leukoc. Biol. , vol.91 , pp. 369-376
    • Parker, H.1    Albrett, A.M.2    Kettle, A.J.3    Winterbourn, C.C.4
  • 121
    • 33646757884 scopus 로고    scopus 로고
    • Myeloperoxidase and its contributory role in inflammatory vascular disease
    • Lau D, Baldus S. 2006. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol. Ther. 111:16-26
    • (2006) Pharmacol. Ther. , vol.111 , pp. 16-26
    • Lau, D.1    Baldus, S.2
  • 122
    • 33750564770 scopus 로고    scopus 로고
    • Reactions of myeloperoxidase-derived oxidants with biological substrates: Gaining chemical insight into human inflammatory diseases
    • Pattison DI, Davies MJ. 2006. Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr. Med. Chem. 13:3271-90
    • (2006) Curr. Med. Chem. , vol.13 , pp. 3271-3290
    • Pattison, D.I.1    Davies, M.J.2
  • 123
    • 84863890440 scopus 로고    scopus 로고
    • Reactions and reactivity of myeloperoxidase-derived oxidants: Differential biological effects of hypochlorous and hypothiocyanous acids
    • Pattison DI, Davies MJ, Hawkins CL. 2012. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic. Res. 46:975-95
    • (2012) Free Radic. Res. , vol.46 , pp. 975-995
    • Pattison, D.I.1    Davies, M.J.2    Hawkins, C.L.3
  • 124
    • 84901052763 scopus 로고    scopus 로고
    • Hypochlorite-induced structural modifications enhance the chaperone activity of human ?2-macroglobulin
    • Wyatt AR, Kumita JR, Mifsud RW, Gooden CA, Wilson MR, et al. 2014. Hypochlorite-induced structural modifications enhance the chaperone activity of human ?2-macroglobulin. PNAS 111:E2081-90
    • (2014) PNAS , vol.111 , pp. E2081-E2090
    • Wyatt, A.R.1    Kumita, J.R.2    Mifsud, R.W.3    Gooden, C.A.4    Wilson, M.R.5
  • 125
    • 33646826643 scopus 로고    scopus 로고
    • Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid
    • Malle E, Marsche G, Arnhold J, Davies MJ. 2006. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim. Biophys. Acta 1761:392-415
    • (2006) Biochim. Biophys. Acta , vol.1761 , pp. 392-415
    • Malle, E.1    Marsche, G.2    Arnhold, J.3    Davies, M.J.4
  • 126
    • 77953497990 scopus 로고    scopus 로고
    • Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export
    • Shao B, Tang C, Heinecke JW, Oram JF. 2010. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J. Lipid Res. 51:1849-58
    • (2010) J. Lipid Res. , vol.51 , pp. 1849-1858
    • Shao, B.1    Tang, C.2    Heinecke, J.W.3    Oram, J.F.4
  • 127
    • 0030997757 scopus 로고    scopus 로고
    • Hypochlorous acid disrupts the adhesive properties of subendothelial matrix
    • Vissers MCM, Thomas C. 1997. Hypochlorous acid disrupts the adhesive properties of subendothelial matrix. Free Radic. Biol. Med. 23:401-11
    • (1997) Free Radic. Biol. Med. , vol.23 , pp. 401-411
    • Vissers, M.C.M.1    Thomas, C.2
  • 128
    • 84921396309 scopus 로고    scopus 로고
    • Hypochlorous acid generated by neutrophils inactivates ADAMTS13: An oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation
    • WangY, Chen J, Ling M, Lopez JA, ChungDW, et al. 2015. Hypochlorous acid generated by neutrophils inactivates ADAMTS13: An oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J. Biol. Chem. 290:1422-31
    • (2015) J. Biol. Chem. , vol.290 , pp. 1422-1431
    • Wang, Y.1    Chen, J.2    Ling, M.3    Lopez, J.A.4    Chung, D.W.5
  • 129
    • 84936760059 scopus 로고    scopus 로고
    • Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: Relevance to infections in cystic fibrosis
    • Magon NJ, Turner R, Gearry RB, Hampton MB, Sly PD, et al. 2015. Oxidation of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows bacterial growth: relevance to infections in cystic fibrosis. Free Radic. Biol. Med. 86:133-44
    • (2015) Free Radic. Biol. Med. , vol.86 , pp. 133-144
    • Magon, N.J.1    Turner, R.2    Gearry, R.B.3    Hampton, M.B.4    Sly, P.D.5
  • 130
    • 84881158368 scopus 로고    scopus 로고
    • Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation
    • Bayer SB, Maghzal G, StockerR, HamptonMB, Winterbourn CC. 2013. Neutrophil-mediated oxidation of erythrocyte peroxiredoxin 2 as a potential marker of oxidative stress in inflammation. FASEB J. 27:3315-22
    • (2013) FASEB J. , vol.27 , pp. 3315-3322
    • Bayer, S.B.1    Maghzal, G.2    Stocker, R.3    Hampton, M.B.4    Winterbourn, C.C.5
  • 131
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redoxdependent signalling
    • Holmstrom KM, Finkel T. 2014. Cellular mechanisms and physiological consequences of redoxdependent signalling. Nat. Rev. Mol. Cell Biol. 15:411-21
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 132
    • 84880277784 scopus 로고    scopus 로고
    • The biological chemistry of hydrogen peroxide
    • Winterbourn CC. 2013. The biological chemistry of hydrogen peroxide. Methods Enzymol. 528:3-25
    • (2013) Methods Enzymol. , vol.528 , pp. 3-25
    • Winterbourn, C.C.1
  • 133
    • 84898829582 scopus 로고    scopus 로고
    • Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells
    • Rayner BS, Love DT, Hawkins CL. 2014. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic. Biol. Med. 71:240-55
    • (2014) Free Radic. Biol. Med. , vol.71 , pp. 240-255
    • Rayner, B.S.1    Love, D.T.2    Hawkins, C.L.3
  • 134
    • 84939478604 scopus 로고    scopus 로고
    • Metabolic remodeling in times of stress: Who shoots faster than his shadow?
    • Dick TP, Ralser M. 2015. Metabolic remodeling in times of stress: Who shoots faster than his shadow? Mol. Cell 59:519-21
    • (2015) Mol. Cell , vol.59 , pp. 519-521
    • Dick, T.P.1    Ralser, M.2
  • 135
    • 20344407558 scopus 로고    scopus 로고
    • Chlorine transfer between glycine, taurine, and histamine: Reaction rates and impact on cellular reactivity
    • Peskin AV, Midwinter RG, Harwood DT, Winterbourn CC. 2005. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity. Free Radic. Biol. Med. 38:397-405
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 397-405
    • Peskin, A.V.1    Midwinter, R.G.2    Harwood, D.T.3    Winterbourn, C.C.4
  • 136
    • 38649142892 scopus 로고    scopus 로고
    • Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid
    • Pi J, Zhang Q, Woods CG, Wong V, Collins S, et al. 2008. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid. Toxicol. Appl. Pharmacol. 226:236-43
    • (2008) Toxicol. Appl. Pharmacol. , vol.226 , pp. 236-243
    • Pi, J.1    Zhang, Q.2    Woods, C.G.3    Wong, V.4    Collins, S.5
  • 137
    • 3542993225 scopus 로고    scopus 로고
    • Extracellular oxidation by taurine chloramine activates ERK via the epidermal growth factor receptor
    • Midwinter RG, Peskin AV, Vissers MCM, Winterbourn CC. 2004. Extracellular oxidation by taurine chloramine activates ERK via the epidermal growth factor receptor. J. Biol. Chem. 279:32205-11
    • (2004) J. Biol. Chem. , vol.279 , pp. 32205-32211
    • Midwinter, R.G.1    Peskin, A.V.2    Vissers, M.C.M.3    Winterbourn, C.C.4
  • 138
    • 0037024693 scopus 로고    scopus 로고
    • Oxidation of I?B?at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-?B activation
    • KanayamaA, Inoue J, Sugita-Konishi Y, ShimizuM, Miyamoto Y. 2002. Oxidation of I?B?at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-?B activation. J. Biol. Chem. 277:24049-56
    • (2002) J. Biol. Chem. , vol.277 , pp. 24049-24056
    • Kanayama, A.1    Inoue, J.2    Sugita-Konishi, Y.3    Shimizu, M.4    Miyamoto, Y.5
  • 139
    • 33646761969 scopus 로고    scopus 로고
    • I?B is a sensitive target for oxidation by cell-permeable chloramines: Inhibition of NF-?B activity by glycine chloramine through methionine oxidation
    • Midwinter RG, Cheah FC, Moskovitz J, Vissers MC, Winterbourn CC. 2006. I?B is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-?B activity by glycine chloramine through methionine oxidation. Biochem. J. 396:71-78
    • (2006) Biochem. J. , vol.396 , pp. 71-78
    • Midwinter, R.G.1    Cheah, F.C.2    Moskovitz, J.3    Vissers, M.C.4    Winterbourn, C.C.5
  • 140
    • 0036177247 scopus 로고    scopus 로고
    • Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes
    • Park E, Jia J, Quinn MR, Schuller-Levis G. 2002. Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes. Clin. Immunol. 102:179-84
    • (2002) Clin. Immunol. , vol.102 , pp. 179-184
    • Park, E.1    Jia, J.2    Quinn, M.R.3    Schuller-Levis, G.4
  • 141
    • 0036453553 scopus 로고    scopus 로고
    • Taurine chloramine modulates cytokine production by human peripheral blood mononuclear cells
    • Chorazy M, Kontny E, Marcinkiewicz J, Maslinski W. 2002. Taurine chloramine modulates cytokine production by human peripheral blood mononuclear cells. Amino Acids 23:407-13
    • (2002) Amino Acids , vol.23 , pp. 407-413
    • Chorazy, M.1    Kontny, E.2    Marcinkiewicz, J.3    Maslinski, W.4
  • 142
    • 84886744224 scopus 로고    scopus 로고
    • Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells
    • Lloyd MM, Grima MA, Rayner BS, Hadfield KA, Davies MJ, et al. 2013. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Free Radic. Biol. Med. 65:1352-62
    • (2013) Free Radic. Biol. Med. , vol.65 , pp. 1352-1362
    • Lloyd, M.M.1    Grima, M.A.2    Rayner, B.S.3    Hadfield, K.A.4    Davies, M.J.5
  • 143
    • 77955511053 scopus 로고    scopus 로고
    • Hypothiocyanous acid is a potent inhibitor of apoptosis and caspase 3 activation in endothelial cells
    • Bozonet SM, Scott-Thomas AP, Nagy P, Vissers MC. 2010. Hypothiocyanous acid is a potent inhibitor of apoptosis and caspase 3 activation in endothelial cells. Free Radic. Biol. Med. 49:1054-63
    • (2010) Free Radic. Biol. Med. , vol.49 , pp. 1054-1063
    • Bozonet, S.M.1    Scott-Thomas, A.P.2    Nagy, P.3    Vissers, M.C.4
  • 144
    • 84929126104 scopus 로고    scopus 로고
    • Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health
    • Chandler JD, Day BJ. 2015. Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radic. Res. 49:695-710
    • (2015) Free Radic. Res. , vol.49 , pp. 695-710
    • Chandler, J.D.1    Day, B.J.2
  • 145
  • 146
    • 84880052989 scopus 로고    scopus 로고
    • Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense
    • Chandler JD, Nichols DP, Nick JA, Hondal RJ, Day BJ. 2013. Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J. Biol. Chem. 288:18421-28
    • (2013) J. Biol. Chem. , vol.288 , pp. 18421-18428
    • Chandler, J.D.1    Nichols, D.P.2    Nick, J.A.3    Hondal, R.J.4    Day, B.J.5
  • 147
    • 33845403071 scopus 로고    scopus 로고
    • Thiocyanate-dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: A novel HOSCN-specific oxidant mechanism to amplify inflammation
    • Wang JG, Mahmud SA, Nguyen J, Slungaard A. 2006. Thiocyanate-dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: A novel HOSCN-specific oxidant mechanism to amplify inflammation. J. Immunol. 177:8714-22
    • (2006) J. Immunol. , vol.177 , pp. 8714-8722
    • Wang, J.G.1    Mahmud, S.A.2    Nguyen, J.3    Slungaard, A.4
  • 148
    • 84939428903 scopus 로고    scopus 로고
    • NOX2 as a target for drug development: Indications, possible complications, and progress
    • Diebold BA, Smith SM, Li Y, Lambeth JD. 2015. NOX2 as a target for drug development: indications, possible complications, and progress. Antioxid. Redox Signal. 23:375-405
    • (2015) Antioxid. Redox Signal. , vol.23 , pp. 375-405
    • Diebold, B.A.1    Smith, S.M.2    Li, Y.3    Lambeth, J.D.4
  • 149
    • 0033596854 scopus 로고    scopus 로고
    • The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds
    • Doussiere J, Gaillard J, Vignais PV. 1999. The heme component of the neutrophil NADPH oxidase complex is a target for aryliodonium compounds. Biochemistry 38:3694-703
    • (1999) Biochemistry , vol.38 , pp. 3694-3703
    • Doussiere, J.1    Gaillard, J.2    Vignais, P.V.3
  • 150
    • 77949332958 scopus 로고    scopus 로고
    • Diapocynin versus apocynin as pretranscriptional inhibitors of NADPH oxidase and cytokine production by peripheral blood mononuclear cells
    • Kanegae MP, Condino-Neto A, Pedroza LA, de Almeida AC, Rehder J, et al. 2010. Diapocynin versus apocynin as pretranscriptional inhibitors of NADPH oxidase and cytokine production by peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 393:551-54
    • (2010) Biochem. Biophys. Res. Commun. , vol.393 , pp. 551-554
    • Kanegae, M.P.1    Condino-Neto, A.2    Pedroza, L.A.3    De Almeida, A.C.4    Rehder, J.5
  • 151
    • 77249152615 scopus 로고    scopus 로고
    • Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations
    • KoelschM, Mallak R, Graham GG, Kajer T, Milligan MK, et al. 2010. Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations. Biochem. Pharmacol. 79:1156-64
    • (2010) Biochem. Pharmacol. , vol.79 , pp. 1156-1164
    • Koelsch, M.1    Mallak, R.2    Graham, G.G.3    Kajer, T.4    Milligan, M.K.5
  • 152
    • 80054798514 scopus 로고    scopus 로고
    • 2-Thioxanthines are suicide inhibitors of myeloperoxidase that block oxidative stress during inflammation
    • Tiden AK, Sjogren T, SvessonM, Bernlind A, Senthilmohan R, et al. 2011. 2-Thioxanthines are suicide inhibitors of myeloperoxidase that block oxidative stress during inflammation. J. Biol. Chem. 286:37578-89
    • (2011) J. Biol. Chem. , vol.286 , pp. 37578-37589
    • Tiden, A.K.1    Sjogren, T.2    Svesson, M.3    Bernlind, A.4    Senthilmohan, R.5
  • 153
    • 84890909211 scopus 로고    scopus 로고
    • Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates
    • Forbes LV, Sjogren T, Auchere F, Jenkins DW, Thong B, et al. 2013. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. J. Biol. Chem. 288:36636-47
    • (2013) J. Biol. Chem. , vol.288 , pp. 36636-36647
    • Forbes, L.V.1    Sjogren, T.2    Auchere, F.3    Jenkins, D.W.4    Thong, B.5
  • 154
    • 42249088093 scopus 로고    scopus 로고
    • Reconciling the chemistry and biology of reactive oxygen species
    • Winterbourn CC. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4:278-86
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 278-286
    • Winterbourn, C.C.1
  • 155
    • 0035283131 scopus 로고    scopus 로고
    • Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate
    • Peskin AV, Winterbourn CC. 2001. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic. Biol. Med. 30:572-79
    • (2001) Free Radic. Biol. Med. , vol.30 , pp. 572-579
    • Peskin, A.V.1    Winterbourn, C.C.2
  • 156
    • 0034282230 scopus 로고    scopus 로고
    • Biomarkers of myeloperoxidase-derived hypochlorous acid
    • Winterbourn CC, Kettle AJ. 2000. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med. 29:403-9
    • (2000) Free Radic. Biol. Med. , vol.29 , pp. 403-409
    • Winterbourn, C.C.1    Kettle, A.J.2
  • 157
    • 33749422853 scopus 로고    scopus 로고
    • Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC-MS/MS method
    • Harwood DT, Kettle AJ, Winterbourn CC. 2006. Production of glutathione sulfonamide and dehydroglutathione from GSH by myeloperoxidase-derived oxidants and detection using a novel LC-MS/MS method. Biochem. J. 399:161-68
    • (2006) Biochem. J. , vol.399 , pp. 161-168
    • Harwood, D.T.1    Kettle, A.J.2    Winterbourn, C.C.3
  • 158
    • 0037192149 scopus 로고    scopus 로고
    • Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: A potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase
    • Fu X, MuellerDM, Heinecke JW. 2002. Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: A potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase. Biochemistry 41:1293-301
    • (2002) Biochemistry , vol.41 , pp. 1293-1301
    • Fu, X.1    Mueller, D.M.2    Heinecke, J.W.3
  • 159
    • 70350222052 scopus 로고    scopus 로고
    • Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils
    • Peskin AV, Turner R, Maghzal GJ, Winterbourn CC, Kettle AJ. 2009. Oxidation of methionine to dehydromethionine by reactive halogen species generated by neutrophils. Biochemistry 48:10175-82
    • (2009) Biochemistry , vol.48 , pp. 10175-10182
    • Peskin, A.V.1    Turner, R.2    Maghzal, G.J.3    Winterbourn, C.C.4    Kettle, A.J.5
  • 160
    • 0032865515 scopus 로고    scopus 로고
    • Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide
    • Winterbourn CC, Metodiewa D. 1999. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27:322-28
    • (1999) Free Radic. Biol. Med. , vol.27 , pp. 322-328
    • Winterbourn, C.C.1    Metodiewa, D.2
  • 161
    • 84901803984 scopus 로고    scopus 로고
    • Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach
    • StorkeyC, DaviesMJ, Pattison DI. 2014. Reevaluation of the rate constants for the reaction of hypochlorous acid (HOCl) with cysteine, methionine, and peptide derivatives using a new competition kinetic approach. Free Radic. Biol. Med. 73:60-66
    • (2014) Free Radic. Biol. Med. , vol.73 , pp. 60-66
    • Storkey, C.1    Davies, M.J.2    Pattison, D.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.