-
1
-
-
0035289717
-
Chromosomal stability and the DNA double-stranded break connection
-
[1] van Gent, D.C., Hoeijmakers, J.H., Kanaar, R., Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2 (2001), 196–206.
-
(2001)
Nat Rev Genet
, vol.2
, pp. 196-206
-
-
van Gent, D.C.1
Hoeijmakers, J.H.2
Kanaar, R.3
-
3
-
-
84870738828
-
Diseases associated with defective responses to DNA damage
-
[3] O'Driscoll, M., Diseases associated with defective responses to DNA damage. Cold Spring Harb Perspect Biol, 2012, 4, 10.1101/cshperspect.a012773.
-
(2012)
Cold Spring Harb Perspect Biol
, pp. 4
-
-
O'Driscoll, M.1
-
4
-
-
84908623023
-
Quality control of homologous recombination
-
[4] Liu, T., Huang, J., Quality control of homologous recombination. Cell Mol Life Sci 71 (2014), 3779–3797.
-
(2014)
Cell Mol Life Sci
, vol.71
, pp. 3779-3797
-
-
Liu, T.1
Huang, J.2
-
5
-
-
50649100744
-
Mechanism of eukaryotic homologous recombination
-
[5] San Filippo, J., Sung, P., Klein, H., Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77 (2008), 229–257.
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 229-257
-
-
San Filippo, J.1
Sung, P.2
Klein, H.3
-
6
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
[6] Lieber, M.R., The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79 (2010), 181–211.
-
(2010)
Annu Rev Biochem
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
7
-
-
84896717088
-
Is non-homologous end-joining really an inherently error-prone process?
-
[7] Betermier, M., Bertrand, P., Lopez, B.S., Is non-homologous end-joining really an inherently error-prone process?. PLoS Genet, 10, 2014, e1004086.
-
(2014)
PLoS Genet
, vol.10
, pp. e1004086
-
-
Betermier, M.1
Bertrand, P.2
Lopez, B.S.3
-
8
-
-
33747889217
-
Differential usage of non-homologous end-joining and homologous recombination in double strand break repair
-
[8] Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y., Takeda, S., Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5 (2006), 1021–1029.
-
(2006)
DNA Repair (Amst)
, vol.5
, pp. 1021-1029
-
-
Sonoda, E.1
Hochegger, H.2
Saberi, A.3
Taniguchi, Y.4
Takeda, S.5
-
9
-
-
77956395354
-
Mechanisms and regulation of DNA end resection
-
[9] Longhese, M.P., Bonetti, D., Manfrini, N., Clerici, M., Mechanisms and regulation of DNA end resection. EMBO J 29 (2010), 2864–2874.
-
(2010)
EMBO J
, vol.29
, pp. 2864-2874
-
-
Longhese, M.P.1
Bonetti, D.2
Manfrini, N.3
Clerici, M.4
-
10
-
-
79951857925
-
DNA end resection–unraveling the tail
-
[10] Mimitou, E.P., Symington, L.S., DNA end resection–unraveling the tail. DNA Repair (Amst) 10 (2011), 344–348.
-
(2011)
DNA Repair (Amst)
, vol.10
, pp. 344-348
-
-
Mimitou, E.P.1
Symington, L.S.2
-
11
-
-
77449086623
-
DNA resection in eukaryotes: deciding how to fix the break
-
[11] Huertas, P., DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17 (2010), 11–16.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 11-16
-
-
Huertas, P.1
-
12
-
-
68249116573
-
DNA end resection: many nucleases make light work
-
[12] Mimitou, E.P., Symington, L.S., DNA end resection: many nucleases make light work. DNA Repair (Amst) 8 (2009), 983–995.
-
(2009)
DNA Repair (Amst)
, vol.8
, pp. 983-995
-
-
Mimitou, E.P.1
Symington, L.S.2
-
13
-
-
84957672466
-
To Cut or Not to Cut: Discovery of a novel regulator of DNA break resection
-
[13] Daley, J.M., Sung, P., To Cut or Not to Cut: Discovery of a novel regulator of DNA break resection. Mol Cell 61 (2016), 325–326.
-
(2016)
Mol Cell
, vol.61
, pp. 325-326
-
-
Daley, J.M.1
Sung, P.2
-
14
-
-
84900411285
-
DNA DSB repair pathway choice: an orchestrated handover mechanism
-
[14] Kakarougkas, A., Jeggo, P.A., DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol, 87, 2014, 20130685.
-
(2014)
Br J Radiol
, vol.87
, pp. 20130685
-
-
Kakarougkas, A.1
Jeggo, P.A.2
-
15
-
-
0031881815
-
Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells
-
[15] Ohta, K., Nicolas, A., Furuse, M., Nabetani, A., Ogawa, H., Shibata, T., Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc Natl Acad Sci U S A 95 (1998), 646–651.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 646-651
-
-
Ohta, K.1
Nicolas, A.2
Furuse, M.3
Nabetani, A.4
Ogawa, H.5
Shibata, T.6
-
16
-
-
0036276388
-
The Mre11 complex: at the crossroads of dna repair and checkpoint signalling
-
[16] D'Amours, D., Jackson, S.P., The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 3 (2002), 317–327.
-
(2002)
Nat Rev Mol Cell Biol
, vol.3
, pp. 317-327
-
-
D'Amours, D.1
Jackson, S.P.2
-
17
-
-
1542571462
-
Yeast Xrs2 binds DNA and helps target Rad50 and Mre11 to DNA ends
-
[17] Trujillo, K.M., Roh, D.H., Chen, L., Van Komen, S., Tomkinson, A., Sung, P., Yeast Xrs2 binds DNA and helps target Rad50 and Mre11 to DNA ends. J Biol Chem 278 (2003), 48957–48964.
-
(2003)
J Biol Chem
, vol.278
, pp. 48957-48964
-
-
Trujillo, K.M.1
Roh, D.H.2
Chen, L.3
Van Komen, S.4
Tomkinson, A.5
Sung, P.6
-
18
-
-
3342915628
-
Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention
-
[18] Lukas, C., Melander, F., Stucki, M., Falck, J., Bekker-Jensen, S., Goldberg, M., et al. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 23 (2004), 2674–2683.
-
(2004)
EMBO J
, vol.23
, pp. 2674-2683
-
-
Lukas, C.1
Melander, F.2
Stucki, M.3
Falck, J.4
Bekker-Jensen, S.5
Goldberg, M.6
-
19
-
-
0035906860
-
Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase
-
[19] Hopfner, K.P., Karcher, A., Craig, L., Woo, T.T., Carney, J.P., Tainer, J.A., Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105 (2001), 473–485.
-
(2001)
Cell
, vol.105
, pp. 473-485
-
-
Hopfner, K.P.1
Karcher, A.2
Craig, L.3
Woo, T.T.4
Carney, J.P.5
Tainer, J.A.6
-
20
-
-
0031983191
-
A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis
-
[20] Tsubouchi, H., Ogawa, H., A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol Cell Biol 18 (1998), 260–268.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 260-268
-
-
Tsubouchi, H.1
Ogawa, H.2
-
21
-
-
0032476658
-
Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination
-
[21] Furuse, M., Nagase, Y., Tsubouchi, H., Murakami-Murofushi, K., Shibata, T., Ohta, K., Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J 17 (1998), 6412–6425.
-
(1998)
EMBO J
, vol.17
, pp. 6412-6425
-
-
Furuse, M.1
Nagase, Y.2
Tsubouchi, H.3
Murakami-Murofushi, K.4
Shibata, T.5
Ohta, K.6
-
22
-
-
0038610906
-
The coiled-coil of the human Rad50 DNA repair protein contains specific segments of increased flexibility
-
[22] van Noort, J., van Der Heijden, T., de Jager, M., Wyman, C., Kanaar, R., Dekker, C., The coiled-coil of the human Rad50 DNA repair protein contains specific segments of increased flexibility. Proc Natl Acad Sci U S A 100 (2003), 7581–7586.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 7581-7586
-
-
van Noort, J.1
van Der Heijden, T.2
de Jager, M.3
Wyman, C.4
Kanaar, R.5
Dekker, C.6
-
23
-
-
20444447564
-
Rad50 connects by hook or by crook
-
[23] Lichten, M., Rad50 connects by hook or by crook. Nat Struct Mol Biol 12 (2005), 392–393.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 392-393
-
-
Lichten, M.1
-
24
-
-
0035977089
-
New glimpses of an old machine
-
[24] Paull, T.T., New glimpses of an old machine. Cell 107 (2001), 563–565.
-
(2001)
Cell
, vol.107
, pp. 563-565
-
-
Paull, T.T.1
-
25
-
-
0035930329
-
Human Rad50/Mre11 is a flexible complex that can tether DNA ends
-
[25] de Jager, M., van Noort, J., van Gent, D.C., Dekker, C., Kanaar, R., Wyman, C., Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8 (2001), 1129–1135.
-
(2001)
Mol Cell
, vol.8
, pp. 1129-1135
-
-
de Jager, M.1
van Noort, J.2
van Gent, D.C.3
Dekker, C.4
Kanaar, R.5
Wyman, C.6
-
26
-
-
0036682314
-
The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair
-
[26] Hopfner, K.P., Craig, L., Moncalian, G., Zinkel, R.A., Usui, T., Owen, B.A., et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418 (2002), 562–566.
-
(2002)
Nature
, vol.418
, pp. 562-566
-
-
Hopfner, K.P.1
Craig, L.2
Moncalian, G.3
Zinkel, R.A.4
Usui, T.5
Owen, B.A.6
-
27
-
-
1842431822
-
Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex
-
[27] Lee, J.H., Paull, T.T., Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304 (2004), 93–96.
-
(2004)
Science
, vol.304
, pp. 93-96
-
-
Lee, J.H.1
Paull, T.T.2
-
28
-
-
0032567041
-
The many interfaces of Mre11
-
[28] Haber, J.E., The many interfaces of Mre11. Cell 95 (1998), 583–586.
-
(1998)
Cell
, vol.95
, pp. 583-586
-
-
Haber, J.E.1
-
29
-
-
23944459784
-
Endonucleolytic processing of covalent protein-linked DNA double-strand breaks
-
[29] Neale, M.J., Pan, J., Keeney, S., Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436 (2005), 1053–1057.
-
(2005)
Nature
, vol.436
, pp. 1053-1057
-
-
Neale, M.J.1
Pan, J.2
Keeney, S.3
-
30
-
-
78951474460
-
The MRE11 complex: starting from the ends
-
[30] Stracker, T.H., Petrini, J.H., The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12 (2011), 90–103.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 90-103
-
-
Stracker, T.H.1
Petrini, J.H.2
-
31
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
[31] Mimitou, E.P., Symington, L.S., Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455 (2008), 770–774.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
32
-
-
84892369333
-
DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities
-
[32] Shibata, A., Moiani, D., Arvai, A.S., Perry, J., Harding, S.M., Genois, M.M., et al. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53 (2014), 7–18.
-
(2014)
Mol Cell
, vol.53
, pp. 7-18
-
-
Shibata, A.1
Moiani, D.2
Arvai, A.S.3
Perry, J.4
Harding, S.M.5
Genois, M.M.6
-
33
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
[33] Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E., Ira, G., Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134 (2008), 981–994.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shim, E.Y.3
Lee, S.E.4
Ira, G.5
-
34
-
-
53649090109
-
DNA helicases Sgs1 and BLM promote DNA double-strand break resection
-
[34] Gravel, S., Chapman, J.R., Magill, C., Jackson, S.P., DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22 (2008), 2767–2772.
-
(2008)
Genes Dev
, vol.22
, pp. 2767-2772
-
-
Gravel, S.1
Chapman, J.R.2
Magill, C.3
Jackson, S.P.4
-
35
-
-
34248579748
-
The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex
-
[35] Stracker, T.H., Morales, M., Couto, S.S., Hussein, H., Petrini, J.H., The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 447 (2007), 218–221.
-
(2007)
Nature
, vol.447
, pp. 218-221
-
-
Stracker, T.H.1
Morales, M.2
Couto, S.S.3
Hussein, H.4
Petrini, J.H.5
-
36
-
-
0037117410
-
A murine model of Nijmegen breakage syndrome
-
[36] Williams, B.R., Mirzoeva, O.K., Morgan, W.F., Lin, J., Dunnick, W., Petrini, J.H., A murine model of Nijmegen breakage syndrome. Curr Biol 12 (2002), 648–653.
-
(2002)
Curr Biol
, vol.12
, pp. 648-653
-
-
Williams, B.R.1
Mirzoeva, O.K.2
Morgan, W.F.3
Lin, J.4
Dunnick, W.5
Petrini, J.H.6
-
37
-
-
0035936554
-
Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice
-
[37] Zhu, J., Petersen, S., Tessarollo, L., Nussenzweig, A., Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11 (2001), 105–109.
-
(2001)
Curr Biol
, vol.11
, pp. 105-109
-
-
Zhu, J.1
Petersen, S.2
Tessarollo, L.3
Nussenzweig, A.4
-
38
-
-
0037038362
-
Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells
-
[38] Tauchi, H., Kobayashi, J., Morishima, K., van Gent, D.C., Shiraishi, T., Verkaik, N.S., et al. Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420 (2002), 93–98.
-
(2002)
Nature
, vol.420
, pp. 93-98
-
-
Tauchi, H.1
Kobayashi, J.2
Morishima, K.3
van Gent, D.C.4
Shiraishi, T.5
Verkaik, N.S.6
-
39
-
-
0033538496
-
The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage
-
[39] Dong, Z., Zhong, Q., Chen, P.L., The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. J Biol Chem 274 (1999), 19513–19516.
-
(1999)
J Biol Chem
, vol.274
, pp. 19513-19516
-
-
Dong, Z.1
Zhong, Q.2
Chen, P.L.3
-
40
-
-
0033563229
-
Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex
-
[40] Paull, T.T., Gellert, M., Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13 (1999), 1276–1288.
-
(1999)
Genes Dev
, vol.13
, pp. 1276-1288
-
-
Paull, T.T.1
Gellert, M.2
-
41
-
-
70349472553
-
Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair
-
[41] Williams, R.S., Dodson, G.E., Limbo, O., Yamada, Y., Williams, J.S., Guenther, G., et al. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139 (2009), 87–99.
-
(2009)
Cell
, vol.139
, pp. 87-99
-
-
Williams, R.S.1
Dodson, G.E.2
Limbo, O.3
Yamada, Y.4
Williams, J.S.5
Guenther, G.6
-
42
-
-
0032502782
-
Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif
-
[42] Schaeper, U., Subramanian, T., Lim, L., Boyd, J.M., Chinnadurai, G., Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. J Biol Chem 273 (1998), 8549–8552.
-
(1998)
J Biol Chem
, vol.273
, pp. 8549-8552
-
-
Schaeper, U.1
Subramanian, T.2
Lim, L.3
Boyd, J.M.4
Chinnadurai, G.5
-
43
-
-
7844246154
-
Characterization of a carboxy-terminal BRCA1 interacting protein
-
[43] Wong, A.K., Ormonde, P.A., Pero, R., Chen, Y., Lian, L., Salada, G., et al. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 17 (1998), 2279–2285.
-
(1998)
Oncogene
, vol.17
, pp. 2279-2285
-
-
Wong, A.K.1
Ormonde, P.A.2
Pero, R.3
Chen, Y.4
Lian, L.5
Salada, G.6
-
44
-
-
72149103012
-
CtIP links DNA double-strand break sensing to resection
-
[44] You, Z., Shi, L.Z., Zhu, Q., Wu, P., Zhang, Y.W., Basilio, A., et al. CtIP links DNA double-strand break sensing to resection. Mol Cell 36 (2009), 954–969.
-
(2009)
Mol Cell
, vol.36
, pp. 954-969
-
-
You, Z.1
Shi, L.Z.2
Zhu, Q.3
Wu, P.4
Zhang, Y.W.5
Basilio, A.6
-
45
-
-
36549060102
-
Human CtIP promotes DNA end resection
-
[45] Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., et al. Human CtIP promotes DNA end resection. Nature 450 (2007), 509–514.
-
(2007)
Nature
, vol.450
, pp. 509-514
-
-
Sartori, A.A.1
Lukas, C.2
Coates, J.3
Mistrik, M.4
Fu, S.5
Bartek, J.6
-
46
-
-
35648986560
-
Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination
-
[46] Takeda, S., Nakamura, K., Taniguchi, Y., Paull, T.T., Ctp1/CtIP and the MRN complex collaborate in the initial steps of homologous recombination. Mol Cell 28 (2007), 351–352.
-
(2007)
Mol Cell
, vol.28
, pp. 351-352
-
-
Takeda, S.1
Nakamura, K.2
Taniguchi, Y.3
Paull, T.T.4
-
47
-
-
43149118369
-
Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair
-
[47] Chen, L., Nievera, C.J., Lee, A.Y., Wu, X., Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 283 (2008), 7713–7720.
-
(2008)
J Biol Chem
, vol.283
, pp. 7713-7720
-
-
Chen, L.1
Nievera, C.J.2
Lee, A.Y.3
Wu, X.4
-
48
-
-
44349086462
-
Molecular characterization of the role of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double-strand break repair in association with the Mre11-Rad50-Nbs1 complex
-
[48] Akamatsu, Y., Murayama, Y., Yamada, T., Nakazaki, T., Tsutsui, Y., Ohta, K., et al. Molecular characterization of the role of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double-strand break repair in association with the Mre11-Rad50-Nbs1 complex. Mol Cell Biol 28 (2008), 3639–3651.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 3639-3651
-
-
Akamatsu, Y.1
Murayama, Y.2
Yamada, T.3
Nakazaki, T.4
Tsutsui, Y.5
Ohta, K.6
-
49
-
-
84903628980
-
Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection
-
[49] Makharashvili, N., Tubbs, A.T., Yang, S.H., Wang, H., Barton, O., Zhou, Y., et al. Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell 54 (2014), 1022–1033.
-
(2014)
Mol Cell
, vol.54
, pp. 1022-1033
-
-
Makharashvili, N.1
Tubbs, A.T.2
Yang, S.H.3
Wang, H.4
Barton, O.5
Zhou, Y.6
-
50
-
-
84903581320
-
CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity
-
[50] Wang, H., Li, Y., Truong, L.N., Shi, L.Z., Hwang, P.Y., He, J., et al. CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell 54 (2014), 1012–1021.
-
(2014)
Mol Cell
, vol.54
, pp. 1012-1021
-
-
Wang, H.1
Li, Y.2
Truong, L.N.3
Shi, L.Z.4
Hwang, P.Y.5
He, J.6
-
51
-
-
84938483489
-
CtIP: A DNA damage response protein at the intersection of DNA metabolism
-
[51] Makharashvili, N., Paull, T.T., CtIP: A DNA damage response protein at the intersection of DNA metabolism. DNA Repair (Amst) 32 (2015), 75–81.
-
(2015)
DNA Repair (Amst)
, vol.32
, pp. 75-81
-
-
Makharashvili, N.1
Paull, T.T.2
-
52
-
-
0026744690
-
A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe
-
[52] Szankasi, P., Smith, G.R., A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J Biol Chem 267 (1992), 3014–3023.
-
(1992)
J Biol Chem
, vol.267
, pp. 3014-3023
-
-
Szankasi, P.1
Smith, G.R.2
-
53
-
-
0028917096
-
A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction
-
[53] Szankasi, P., Smith, G.R., A role for exonuclease I from S. pombe in mutation avoidance and mismatch correction. Science 267 (1995), 1166–1169.
-
(1995)
Science
, vol.267
, pp. 1166-1169
-
-
Szankasi, P.1
Smith, G.R.2
-
54
-
-
77957786786
-
Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks
-
[54] Shim, E.Y., Chung, W.H., Nicolette, M.L., Zhang, Y., Davis, M., Zhu, Z., et al. Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29 (2010), 3370–3380.
-
(2010)
EMBO J
, vol.29
, pp. 3370-3380
-
-
Shim, E.Y.1
Chung, W.H.2
Nicolette, M.L.3
Zhang, Y.4
Davis, M.5
Zhu, Z.6
-
55
-
-
84937805081
-
Interplay between Ku and replication protein A in the restriction of Exo1-mediated DNA break end resection
-
[55] Krasner, D.S., Daley, J.M., Sung, P., Niu, H., Interplay between Ku and replication protein A in the restriction of Exo1-mediated DNA break end resection. J Biol Chem 290 (2015), 18806–18816.
-
(2015)
J Biol Chem
, vol.290
, pp. 18806-18816
-
-
Krasner, D.S.1
Daley, J.M.2
Sung, P.3
Niu, H.4
-
56
-
-
84876896603
-
Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection
-
[56] Cannavo, E., Cejka, P., Kowalczykowski, S.C., Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proc Natl Acad Sci U S A 110 (2013), E1661–E1668.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. E1661-E1668
-
-
Cannavo, E.1
Cejka, P.2
Kowalczykowski, S.C.3
-
57
-
-
78649460650
-
DNA end resection by CtIP and exonuclease 1 prevents genomic instability
-
[57] Eid, W., Steger, M., El-Shemerly, M., Ferretti, L.P., Pena-Diaz, J., Konig, C., et al. DNA end resection by CtIP and exonuclease 1 prevents genomic instability. EMBO Rep 11 (2010), 962–968.
-
(2010)
EMBO Rep
, vol.11
, pp. 962-968
-
-
Eid, W.1
Steger, M.2
El-Shemerly, M.3
Ferretti, L.P.4
Pena-Diaz, J.5
Konig, C.6
-
58
-
-
55949105327
-
Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair
-
[58] Nimonkar, A.V., Ozsoy, A.Z., Genschel, J., Modrich, P., Kowalczykowski, S.C., Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A 105 (2008), 16906–16911.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 16906-16911
-
-
Nimonkar, A.V.1
Ozsoy, A.Z.2
Genschel, J.3
Modrich, P.4
Kowalczykowski, S.C.5
-
59
-
-
77956325620
-
DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2
-
[59] Cejka, P., Cannavo, E., Polaczek, P., Masuda-Sasa, T., Pokharel, S., Campbell, J.L., et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467 (2010), 112–116.
-
(2010)
Nature
, vol.467
, pp. 112-116
-
-
Cejka, P.1
Cannavo, E.2
Polaczek, P.3
Masuda-Sasa, T.4
Pokharel, S.5
Campbell, J.L.6
-
60
-
-
77956302112
-
Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
-
[60] Niu, H., Chung, W.H., Zhu, Z., Kwon, Y., Zhao, W., Chi, P., et al. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467 (2010), 108–111.
-
(2010)
Nature
, vol.467
, pp. 108-111
-
-
Niu, H.1
Chung, W.H.2
Zhu, Z.3
Kwon, Y.4
Zhao, W.5
Chi, P.6
-
61
-
-
79951688343
-
BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair
-
[61] Nimonkar, A.V., Genschel, J., Kinoshita, E., Polaczek, P., Campbell, J.L., Wyman, C., et al. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25 (2011), 350–362.
-
(2011)
Genes Dev
, vol.25
, pp. 350-362
-
-
Nimonkar, A.V.1
Genschel, J.2
Kinoshita, E.3
Polaczek, P.4
Campbell, J.L.5
Wyman, C.6
-
62
-
-
10944262393
-
DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
-
[62] Unal, E., Arbel-Eden, A., Sattler, U., Shroff, R., Lichten, M., Haber, J.E., et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16 (2004), 991–1002.
-
(2004)
Mol Cell
, vol.16
, pp. 991-1002
-
-
Unal, E.1
Arbel-Eden, A.2
Sattler, U.3
Shroff, R.4
Lichten, M.5
Haber, J.E.6
-
63
-
-
28444456705
-
The histone code at DNA breaks: a guide to repair?
-
[63] van Attikum, H., Gasser, S.M., The histone code at DNA breaks: a guide to repair?. Nat Rev Mol Cell Biol 6 (2005), 757–765.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 757-765
-
-
van Attikum, H.1
Gasser, S.M.2
-
64
-
-
84959483426
-
Histone modifications in DNA damage response
-
[64] Cao, L.L., Shen, C., Zhu, W.G., Histone modifications in DNA damage response. Sci China Life Sci 59 (2016), 257–270.
-
(2016)
Sci China Life Sci
, vol.59
, pp. 257-270
-
-
Cao, L.L.1
Shen, C.2
Zhu, W.G.3
-
65
-
-
0032489520
-
DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139
-
[65] Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., Bonner, W.M., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273 (1998), 5858–5868.
-
(1998)
J Biol Chem
, vol.273
, pp. 5858-5868
-
-
Rogakou, E.P.1
Pilch, D.R.2
Orr, A.H.3
Ivanova, V.S.4
Bonner, W.M.5
-
66
-
-
10944233962
-
Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair
-
[66] van Attikum, H., Fritsch, O., Hohn, B., Gasser, S.M., Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119 (2004), 777–788.
-
(2004)
Cell
, vol.119
, pp. 777-788
-
-
van Attikum, H.1
Fritsch, O.2
Hohn, B.3
Gasser, S.M.4
-
67
-
-
10944224673
-
INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair
-
[67] Morrison, A.J., Highland, J., Krogan, N.J., Arbel-Eden, A., Greenblatt, J.F., Haber, J.E., et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119 (2004), 767–775.
-
(2004)
Cell
, vol.119
, pp. 767-775
-
-
Morrison, A.J.1
Highland, J.2
Krogan, N.J.3
Arbel-Eden, A.4
Greenblatt, J.F.5
Haber, J.E.6
-
68
-
-
18144423533
-
The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks
-
[68] Shim, E.Y., Ma, J.L., Oum, J.H., Yanez, Y., Lee, S.E., The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 25 (2005), 3934–3944.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 3934-3944
-
-
Shim, E.Y.1
Ma, J.L.2
Oum, J.H.3
Yanez, Y.4
Lee, S.E.5
-
69
-
-
33847176208
-
RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin
-
[69] Shim, E.Y., Hong, S.J., Oum, J.H., Yanez, Y., Zhang, Y., Lee, S.E., RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol Cell Biol 27 (2007), 1602–1613.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 1602-1613
-
-
Shim, E.Y.1
Hong, S.J.2
Oum, J.H.3
Yanez, Y.4
Zhang, Y.5
Lee, S.E.6
-
70
-
-
84862995618
-
The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair
-
[70] Chambers, A.L., Downs, J.A., The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair. Prog Mol Biol Transl Sci 110 (2012), 229–261.
-
(2012)
Prog Mol Biol Transl Sci
, vol.110
, pp. 229-261
-
-
Chambers, A.L.1
Downs, J.A.2
-
71
-
-
84866898711
-
The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection
-
[71] Costelloe, T., Louge, R., Tomimatsu, N., Mukherjee, B., Martini, E., Khadaroo, B., et al. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489 (2012), 581–584.
-
(2012)
Nature
, vol.489
, pp. 581-584
-
-
Costelloe, T.1
Louge, R.2
Tomimatsu, N.3
Mukherjee, B.4
Martini, E.5
Khadaroo, B.6
-
72
-
-
44349180168
-
Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres
-
[72] Lazzaro, F., Sapountzi, V., Granata, M., Pellicioli, A., Vaze, M., Haber, J.E., et al. Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO J 27 (2008), 1502–1512.
-
(2008)
EMBO J
, vol.27
, pp. 1502-1512
-
-
Lazzaro, F.1
Sapountzi, V.2
Granata, M.3
Pellicioli, A.4
Vaze, M.5
Haber, J.E.6
-
73
-
-
84866954195
-
The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends
-
[73] Chen, X., Cui, D., Papusha, A., Zhang, X., Chu, C.D., Tang, J., et al. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489 (2012), 576–580.
-
(2012)
Nature
, vol.489
, pp. 576-580
-
-
Chen, X.1
Cui, D.2
Papusha, A.3
Zhang, X.4
Chu, C.D.5
Tang, J.6
-
74
-
-
84866933806
-
SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae
-
[74] Durand-Dubief, M., Will, W.R., Petrini, E., Theodorou, D., Harris, R.R., Crawford, M.R., et al. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae. PLoS Genet, 8, 2012, e1002974.
-
(2012)
PLoS Genet
, vol.8
, pp. e1002974
-
-
Durand-Dubief, M.1
Will, W.R.2
Petrini, E.3
Theodorou, D.4
Harris, R.R.5
Crawford, M.R.6
-
75
-
-
84868694661
-
The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation
-
[75] Eapen, V.V., Sugawara, N., Tsabar, M., Wu, W.H., Haber, J.E., The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end resection and checkpoint deactivation. Mol Cell Biol 32 (2012), 4727–4740.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 4727-4740
-
-
Eapen, V.V.1
Sugawara, N.2
Tsabar, M.3
Wu, W.H.4
Haber, J.E.5
-
76
-
-
0033522910
-
Identification of a novel SNF2/SWI2 protein family member, SRCAP, which interacts with CREB-binding protein
-
[76] Johnston, H., Kneer, J., Chackalaparampil, I., Yaciuk, P., Chrivia, J., Identification of a novel SNF2/SWI2 protein family member, SRCAP, which interacts with CREB-binding protein. J Biol Chem 274 (1999), 16370–16376.
-
(1999)
J Biol Chem
, vol.274
, pp. 16370-16376
-
-
Johnston, H.1
Kneer, J.2
Chackalaparampil, I.3
Yaciuk, P.4
Chrivia, J.5
-
77
-
-
84862776870
-
Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome
-
[77] Hood, R.L., Lines, M.A., Nikkel, S.M., Schwartzentruber, J., Beaulieu, C., Nowaczyk, M.J., et al. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am J Hum Genet 90 (2012), 308–313.
-
(2012)
Am J Hum Genet
, vol.90
, pp. 308-313
-
-
Hood, R.L.1
Lines, M.A.2
Nikkel, S.M.3
Schwartzentruber, J.4
Beaulieu, C.5
Nowaczyk, M.J.6
-
78
-
-
84908213771
-
The human SRCAP chromatin remodeling complex promotes DNA-end resection
-
[78] Dong, S., Han, J., Chen, H., Liu, T., Huen, M.S., Yang, Y., et al. The human SRCAP chromatin remodeling complex promotes DNA-end resection. Curr Biol 24 (2014), 2097–2110.
-
(2014)
Curr Biol
, vol.24
, pp. 2097-2110
-
-
Dong, S.1
Han, J.2
Chen, H.3
Liu, T.4
Huen, M.S.5
Yang, Y.6
-
79
-
-
65849336044
-
At loose ends: resecting a double-strand break
-
[79] Bernstein, K.A., Rothstein, R., At loose ends: resecting a double-strand break. Cell 137 (2009), 807–810.
-
(2009)
Cell
, vol.137
, pp. 807-810
-
-
Bernstein, K.A.1
Rothstein, R.2
|