메뉴 건너뛰기




Volumn 354, Issue , 2016, Pages 178-196

Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets

Author keywords

Bagging; Boosting; Imbalanced datasets; Ordering based pruning; Tree based ensembles

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84962359556     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.02.056     Document Type: Article
Times cited : (87)

References (83)
  • 4
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behaviour of several methods for balancing machine learning training data
    • G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behaviour of several methods for balancing machine learning training data SIGKDD Explor. 6 1 2004 20 29
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 5
    • 84942055558 scopus 로고    scopus 로고
    • Towards an optimally pruned classifier ensemble
    • M. Bhardwaj, and V. Bhatnagar Towards an optimally pruned classifier ensemble Int. J. Mach. Learn. Cybern. 6 5 2015 699 718
    • (2015) Int. J. Mach. Learn. Cybern. , vol.6 , Issue.5 , pp. 699-718
    • Bhardwaj, M.1    Bhatnagar, V.2
  • 6
    • 84922643075 scopus 로고    scopus 로고
    • Neighbourhood sampling in bagging for imbalanced data
    • J. Blaszczynski, and J. Stefanowski Neighbourhood sampling in bagging for imbalanced data Neurocomputing 150 2015 529 542
    • (2015) Neurocomputing , vol.150 , pp. 529-542
    • Blaszczynski, J.1    Stefanowski, J.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 84888787427 scopus 로고    scopus 로고
    • Learning from unbalanced data: A cascade-based approach for detecting clustered microcalcifications
    • A. Bria, N. Karssemeijer, and F. Tortorella Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications Med. Image Anal. 18 2 2014 241 252
    • (2014) Med. Image Anal. , vol.18 , Issue.2 , pp. 241-252
    • Bria, A.1    Karssemeijer, N.2    Tortorella, F.3
  • 10
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • I. Brown, and C. Mues An experimental comparison of classification algorithms for imbalanced credit scoring data sets Expert Syst. Appl. 39 3 2012 3446 3453
    • (2012) Expert Syst. Appl. , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 11
    • 84944354565 scopus 로고    scopus 로고
    • Mlsmote: Approaching imbalanced multilabel learning through synthetic instance generation
    • F. Charte, A.J. Rivera, M.J. del Jesus, and F. Herrera Mlsmote: approaching imbalanced multilabel learning through synthetic instance generation Knowl. Based Syst. 89 2015 385 397
    • (2015) Knowl. Based Syst. , vol.89 , pp. 385-397
    • Charte, F.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 13
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explor. 6 1 2004 1 6
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 15
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on big data
    • C.P. Chen, and C.-Y. Zhang Data-intensive applications, challenges, techniques and technologies: a survey on big data Inf. Sci. 275 2014 314 347
    • (2014) Inf. Sci. , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.-Y.2
  • 16
    • 84906873734 scopus 로고    scopus 로고
    • On the use of mapreduce for imbalanced big data using random forest
    • S. del Rio, V. Lopez, J.M. Benitez, and F. Herrera On the use of mapreduce for imbalanced big data using random forest Inf. Sci. 285 2014 112 137
    • (2014) Inf. Sci. , vol.285 , pp. 112-137
    • Del Rio, S.1    Lopez, V.2    Benitez, J.M.3    Herrera, F.4
  • 17
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 18
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach. Learn. 40 2000 139 157
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 21
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, and R. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 22
    • 84881072864 scopus 로고    scopus 로고
    • Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernandez, E. Barrenechea, and F. Herrera Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recognit. 46 12 2013 3460 3471
    • (2013) Pattern Recognit. , vol.46 , Issue.12 , pp. 3460-3471
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Herrera, F.4
  • 24
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernandez, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 10 2010 2044 2064
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 25
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • S. Garcia, and F. Herrera An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons J. Mach. Learn. Res. 9 2008 2607 2624
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2607-2624
    • Garcia, S.1    Herrera, F.2
  • 26
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
    • S. Garcia, and F. Herrera Evolutionary under-sampling for classification with imbalanced data sets: proposals and taxonomy Evol. Comput. 17 3 2009 275 306
    • (2009) Evol. Comput. , vol.17 , Issue.3 , pp. 275-306
    • Garcia, S.1    Herrera, F.2
  • 27
    • 84961289486 scopus 로고    scopus 로고
    • Online neural network model for non-stationary and imbalanced data stream classification
    • A. Ghazikhani, R. Monsefi, and H.S. Yazdi Online neural network model for non-stationary and imbalanced data stream classification Int. J. Mach. Learn. Cybern. 5 1 2014 51 62
    • (2014) Int. J. Mach. Learn. Cybern. , vol.5 , Issue.1 , pp. 51-62
    • Ghazikhani, A.1    Monsefi, R.2    Yazdi, H.S.3
  • 28
    • 84873737900 scopus 로고    scopus 로고
    • Margin-based ordered aggregation for ensemble pruning
    • L. Guo, and S. Boukir Margin-based ordered aggregation for ensemble pruning Pattern Recognit. Lett. 34 6 2013 603 609
    • (2013) Pattern Recognit. Lett. , vol.34 , Issue.6 , pp. 603-609
    • Guo, L.1    Boukir, S.2
  • 29
    • 84903828952 scopus 로고    scopus 로고
    • Imbalanced class learning in epigenetics
    • M.M. Haque, M.K. Skinner, and L.B. Holder Imbalanced class learning in epigenetics J. Comput. Biol. 21 7 2014 492 507
    • (2014) J. Comput. Biol. , vol.21 , Issue.7 , pp. 492-507
    • Haque, M.M.1    Skinner, M.K.2    Holder, L.B.3
  • 30
  • 33
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm A simple sequentially rejective multiple test procedure Scand. J. Stat. 6 1979 65 70
    • (1979) Scand. J. Stat. , vol.6 , pp. 65-70
    • Holm, S.1
  • 34
    • 4544223395 scopus 로고    scopus 로고
    • Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications
    • N. Cercone, T.Y. Lin, X. Wu, IEEE Computer Society
    • X. Hu Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications N. Cercone, T.Y. Lin, X. Wu, IEEE International Conference in Data Mining (ICDM) 2001 IEEE Computer Society 233 240
    • (2001) IEEE International Conference in Data Mining (ICDM) , pp. 233-240
    • Hu, X.1
  • 35
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • J. Huang, and C.X. Ling Using AUC and accuracy in evaluating learning algorithms IEEE Trans. Knowl. Data Eng. 17 3 2005 299 310
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 36
    • 84954187617 scopus 로고    scopus 로고
    • Improved classification with allocation method and multiple classifiers
    • S. Karakatic, and V. Podgorelec Improved classification with allocation method and multiple classifiers Inf. Fusion 31 2016 26 42
    • (2016) Inf. Fusion , vol.31 , pp. 26-42
    • Karakatic, S.1    Podgorelec, V.2
  • 37
    • 84908053289 scopus 로고    scopus 로고
    • Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
    • M.J. Kim, D.K. Kang, and H.B. Kim Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction Expert Syst. Appl. 42 3 2015 1074 1082
    • (2015) Expert Syst. Appl. , vol.42 , Issue.3 , pp. 1074-1082
    • Kim, M.J.1    Kang, D.K.2    Kim, H.B.3
  • 38
    • 84901587069 scopus 로고    scopus 로고
    • A hybrid classifier committee for analysing asymmetry features in breast thermograms
    • B. Krawczyk, and G. Schaefer A hybrid classifier committee for analysing asymmetry features in breast thermograms Appl. Soft Comput. J. 20 2014 112 118
    • (2014) Appl. Soft Comput. J. , vol.20 , pp. 112-118
    • Krawczyk, B.1    Schaefer, G.2
  • 39
    • 84889092504 scopus 로고    scopus 로고
    • Cost-sensitive decision tree ensembles for effective imbalanced classification
    • B. Krawczyk, M. Wozniak, and G. Schaefer Cost-sensitive decision tree ensembles for effective imbalanced classification Appl. Soft Comput. 14 2014 554 562
    • (2014) Appl. Soft Comput. , vol.14 , pp. 554-562
    • Krawczyk, B.1    Wozniak, M.2    Schaefer, G.3
  • 40
    • 0038133019 scopus 로고    scopus 로고
    • Limits on the majority vote accuracy in classifier fusion
    • L. Kuncheva, C. Whitaker, C. Shipp, and R. Duin Limits on the majority vote accuracy in classifier fusion Pattern Anal. Appl. 6 1 2003 22 31
    • (2003) Pattern Anal. Appl. , vol.6 , Issue.1 , pp. 22-31
    • Kuncheva, L.1    Whitaker, C.2    Shipp, C.3    Duin, R.4
  • 41
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems
    • L.I. Kuncheva Diversity in multiple classifier systems Inf. Fusion 6 1 2005 3 4
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 3-4
    • Kuncheva, L.I.1
  • 42
    • 84892854554 scopus 로고    scopus 로고
    • A weighted voting framework for classifiers ensembles
    • L.I. Kuncheva, and J.J. Rodriguez A weighted voting framework for classifiers ensembles Knowl. Inf. Syst. 38 2 2014 259 275
    • (2014) Knowl. Inf. Syst. , vol.38 , Issue.2 , pp. 259-275
    • Kuncheva, L.I.1    Rodriguez, J.J.2
  • 43
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • L.I. Kuncheva, and C.J. Whitaker Measures of diversity in classifier ensembles Mach. Learn. 51 2003 181 207
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 44
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling for class-imbalance learning
    • X.-Y. Liu, J. Wu, and Z.-H. Zhou Exploratory undersampling for class-imbalance learning IEEE 39 2 2009 539 550
    • (2009) IEEE , vol.39 , Issue.2 , pp. 539-550
    • Liu, X.-Y.1    Wu, J.2    Zhou, Z.-H.3
  • 45
    • 84871621085 scopus 로고    scopus 로고
    • A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
    • V. Lopez, A. Fernandez, M.D. Jesus, and F. Herrera A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets Knowl. Based Syst. 38 2013 85 104
    • (2013) Knowl. Based Syst. , vol.38 , pp. 85-104
    • Lopez, V.1    Fernandez, A.2    Jesus, M.D.3    Herrera, F.4
  • 46
    • 84883447718 scopus 로고    scopus 로고
    • An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
    • V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 20 2013 113 141
    • (2013) Inf. Sci. , vol.250 , Issue.20 , pp. 113-141
    • Lopez, V.1    Fernandez, A.2    Garcia, S.3    Palade, V.4    Herrera, F.5
  • 47
    • 84888645340 scopus 로고    scopus 로고
    • On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed
    • V. Lopez, A. Fernandez, and F. Herrera On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed Inf. Sci. 257 2014 1 13
    • (2014) Inf. Sci. , vol.257 , pp. 1-13
    • Lopez, V.1    Fernandez, A.2    Herrera, F.3
  • 48
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. Cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
    • V. Lopez, A. Fernandez, J.G. Moreno-Torres, and F. Herrera Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics Expert Syst. Appl. 39 7 2012 6585 6608
    • (2012) Expert Syst. Appl. , vol.39 , Issue.7 , pp. 6585-6608
    • Lopez, V.1    Fernandez, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 49
    • 77956210291 scopus 로고    scopus 로고
    • Ensemble pruning via individual contribution ordering
    • B. Rao, B. Krishnapuram, A. Tomkins, Y. Qiang, ACM
    • Z. Lu, X. Wu, X. Zhu, and J. Bongard Ensemble pruning via individual contribution ordering B. Rao, B. Krishnapuram, A. Tomkins, Y. Qiang, KDD 2010 ACM 871 880
    • (2010) KDD , pp. 871-880
    • Lu, Z.1    Wu, X.2    Zhu, X.3    Bongard, J.4
  • 52
    • 33750460241 scopus 로고    scopus 로고
    • Using boosting to prune bagging ensembles
    • G.M.-M. noz, and A. Suarez Using boosting to prune bagging ensembles Pattern Recognit. Lett. 28 1 2007 156 165
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.1 , pp. 156-165
    • Noz, G.M.-M.1    Suarez, A.2
  • 53
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • L.L. Minku, A.P. White, and X. Yao The impact of diversity on online ensemble learning in the presence of concept drift IEEE Trans. Knowl. Data Eng. 22 5 2010 730 742
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.5 , pp. 730-742
    • Minku, L.L.1    White, A.P.2    Yao, X.3
  • 54
    • 84857738059 scopus 로고    scopus 로고
    • Ddd: A new ensemble approach for dealing with concept drift
    • L.L. Minku, and X. Yao Ddd: a new ensemble approach for dealing with concept drift IEEE Trans. Knowl. Data Eng. 24 4 2012 619 633
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.4 , pp. 619-633
    • Minku, L.L.1    Yao, X.2
  • 56
    • 84876917722 scopus 로고    scopus 로고
    • Study on the impact of partition-induced dataset shift on k-fold cross-validation
    • J.G. Moreno-Torres, J.A. Saez, and F. Herrera Study on the impact of partition-induced dataset shift on k-fold cross-validation IEEE Trans. Neural Netw. Learn. Syst. 23 8 2012 1304 1313
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.8 , pp. 1304-1313
    • Moreno-Torres, J.G.1    Saez, J.A.2    Herrera, F.3
  • 58
    • 84890363076 scopus 로고    scopus 로고
    • Ensembles of α-trees for imbalanced classification problems
    • Y. Park, and J. Ghosh Ensembles of α-trees for imbalanced classification problems IEEE Trans. Knowl. Data Eng. 26 1 2014 131 143
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.1 , pp. 131-143
    • Park, Y.1    Ghosh, J.2
  • 59
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar Ensemble based systems in decision making IEEE Circuits Syst. Mag. 6 3 2006 21 45
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 60
    • 84942249246 scopus 로고    scopus 로고
    • Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
    • R.C. Prati, G.E.A.P.A. Batista, and D.F. Silva Class imbalance revisited: a new experimental setup to assess the performance of treatment methods Knowl. Inf. Syst. 45 1 2015 247 270
    • (2015) Knowl. Inf. Syst. , vol.45 , Issue.1 , pp. 247-270
    • Prati, R.C.1    Batista, G.E.A.P.A.2    Silva, D.F.3
  • 62
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • L. Rokach Ensemble-based classifiers Artif. Intell. Rev. 33 1 2010 1 39
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1 , pp. 1-39
    • Rokach, L.1
  • 63
    • 72949118881 scopus 로고    scopus 로고
    • RUSBoost: A hybrid approach to alleviating class imbalance
    • C. Seiffert, T. Khoshgoftaar, J.V. Hulse, and A. Napolitano RUSBoost: a hybrid approach to alleviating class imbalance IEEE 40 1 2010 185 197
    • (2010) IEEE , vol.40 , Issue.1 , pp. 185-197
    • Seiffert, C.1    Khoshgoftaar, T.2    Hulse, J.V.3    Napolitano, A.4
  • 64
    • 84936791875 scopus 로고    scopus 로고
    • Dealing with data difficulty factors while learning from imbalanced data
    • S. Matwin, J. Mielniczuk, Studies in Computational Intelligence Springer
    • J. Stefanowski Dealing with data difficulty factors while learning from imbalanced data S. Matwin, J. Mielniczuk, Challenges in Computational Statistics and Data Mining Studies in Computational Intelligence vol. 605 2016 Springer 333 363
    • (2016) Challenges in Computational Statistics and Data Mining , vol.605 , pp. 333-363
    • Stefanowski, J.1
  • 65
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognit. 40 12 2007 3358 3378
    • (2007) Pattern Recognit. , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 67
    • 84974678430 scopus 로고    scopus 로고
    • On the boosting pruning problem
    • R.L. de Mantaras, E. Plaza, Lecture Notes in Computer Science Springer
    • C. Tamon, and J. Xiang On the boosting pruning problem R.L. de Mantaras, E. Plaza, 11th European Conference on Machine Learning (ECML) Lecture Notes in Computer Science vol. 1810 2000 Springer 404 412
    • (2000) 11th European Conference on Machine Learning (ECML) , vol.1810 , pp. 404-412
    • Tamon, C.1    Xiang, J.2
  • 68
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Tumer, and J. Ghosh Error correlation and error reduction in ensemble classifiers Connect. Sci. 8 3-4 1996 385 403
    • (1996) Connect. Sci. , vol.8 , Issue.3-4 , pp. 385-403
    • Tumer, K.1    Ghosh, J.2
  • 69
    • 84939175565 scopus 로고    scopus 로고
    • Diversity-aware classifier ensemble selection via f-score
    • I. Visentini, L. Snidaro, and G.L. Foresti Diversity-aware classifier ensemble selection via f-score Inf. Fusion 28 2016 24 43
    • (2016) Inf. Fusion , vol.28 , pp. 24-43
    • Visentini, I.1    Snidaro, L.2    Foresti, G.L.3
  • 71
    • 84926617955 scopus 로고    scopus 로고
    • Resampling-based ensemble methods for online class imbalance learning
    • S. Wang, L.L. Minku, and X. Yao Resampling-based ensemble methods for online class imbalance learning IEEE Trans. Knowl. Data Eng. 27 5 2015 1356 1368
    • (2015) IEEE Trans. Knowl. Data Eng. , vol.27 , Issue.5 , pp. 1356-1368
    • Wang, S.1    Minku, L.L.2    Yao, X.3
  • 73
    • 84864119523 scopus 로고    scopus 로고
    • Relationships between diversity of classification ensembles and single-class performance measures
    • S. Wang, and X. Yao Relationships between diversity of classification ensembles and single-class performance measures IEEE Trans. Knowl. Data Eng. 25 1 2013 206 219
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.1 , pp. 206-219
    • Wang, S.1    Yao, X.2
  • 74
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biom. Bull. 1 6 1945 80 83
    • (1945) Biom. Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 75
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Wozniak, M.G. na, and E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion 16 2014 3 17
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Wozniak, M.1    Na, M.G.2    Corchado, E.3
  • 77
    • 0001218846 scopus 로고
    • On the association of attributes in statistics
    • G. Yule On the association of attributes in statistics Philos. Trans. A 194 1900 257 319
    • (1900) Philos. Trans. A , vol.194 , pp. 257-319
    • Yule, G.1
  • 79
    • 0004232308 scopus 로고    scopus 로고
    • Prentice Hall Upper Saddle River, New Jersey
    • J.H. Zar Biostatistical Analysis 1999 Prentice Hall Upper Saddle River, New Jersey
    • (1999) Biostatistical Analysis
    • Zar, J.H.1
  • 80
    • 85019192433 scopus 로고    scopus 로고
    • The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers
    • in press
    • J. Zhai, S. Zhang, and C. Wang The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers International Journal of Machine Learning and Cybernetics 2016 1 9 10.1007/s13042-015-0478-7 in press.
    • (2016) International Journal of Machine Learning and Cybernetics , pp. 1-9
    • Zhai, J.1    Zhang, S.2    Wang, C.3
  • 81
    • 84901596053 scopus 로고    scopus 로고
    • Rwo-sampling: A random walk over-sampling approach to imbalanced data classification
    • H. Zhang, and M. Li Rwo-sampling: A random walk over-sampling approach to imbalanced data classification Inf. Fusion 20 2014 99 116
    • (2014) Inf. Fusion , vol.20 , pp. 99-116
    • Zhang, H.1    Li, M.2
  • 82
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Y. Zhang, S. Burer, and W.N. Street Ensemble pruning via semi-definite programming J. Mach. Learn. Res. 7 2006 1315 1338
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 83
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.H. Zhou, J. Wu, and W. Tang Ensembling neural networks: Many could be better than all Artif. Intell. 137 2002 239 263
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.