-
1
-
-
55549103698
-
KEEL: A software tool to assess evolutionary algorithms for data mining problems
-
J. Alcala-Fdez, L. Sanchez, S. Garcia, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernandez, and F. Herrera KEEL: a software tool to assess evolutionary algorithms for data mining problems Soft Comput. 13 2009 307 318
-
(2009)
Soft Comput.
, vol.13
, pp. 307-318
-
-
Alcala-Fdez, J.1
Sanchez, L.2
Garcia, S.3
Del Jesus, M.J.4
Ventura, S.5
Garrell, J.M.6
Otero, J.7
Romero, C.8
Bacardit, J.9
Rivas, V.M.10
Fernandez, J.C.11
Herrera, F.12
-
2
-
-
0036522693
-
Strategies for learning in class imbalance problems
-
R. Barandela, J.S. Sanchez, V. García, and E. Rangel Strategies for learning in class imbalance problems Pattern Recognit. 36 3 2003 849 851
-
(2003)
Pattern Recognit.
, vol.36
, Issue.3
, pp. 849-851
-
-
Barandela, R.1
Sanchez, J.S.2
García, V.3
Rangel, E.4
-
4
-
-
27144531570
-
A study of the behaviour of several methods for balancing machine learning training data
-
G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behaviour of several methods for balancing machine learning training data SIGKDD Explor. 6 1 2004 20 29
-
(2004)
SIGKDD Explor.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
5
-
-
84942055558
-
Towards an optimally pruned classifier ensemble
-
M. Bhardwaj, and V. Bhatnagar Towards an optimally pruned classifier ensemble Int. J. Mach. Learn. Cybern. 6 5 2015 699 718
-
(2015)
Int. J. Mach. Learn. Cybern.
, vol.6
, Issue.5
, pp. 699-718
-
-
Bhardwaj, M.1
Bhatnagar, V.2
-
6
-
-
84922643075
-
Neighbourhood sampling in bagging for imbalanced data
-
J. Blaszczynski, and J. Stefanowski Neighbourhood sampling in bagging for imbalanced data Neurocomputing 150 2015 529 542
-
(2015)
Neurocomputing
, vol.150
, pp. 529-542
-
-
Blaszczynski, J.1
Stefanowski, J.2
-
7
-
-
84905179334
-
A review of microarray datasets and applied feature selection methods
-
V. Bolon-Canedo, N.S.-M. no, A. Alonso-Betanzos, J.M. Benitez, and F. Herrera A review of microarray datasets and applied feature selection methods Inf. Sci. 282 2014 111 135
-
(2014)
Inf. Sci.
, vol.282
, pp. 111-135
-
-
Bolon-Canedo, V.1
No, N.S.-M.2
Alonso-Betanzos, A.3
Benitez, J.M.4
Herrera, F.5
-
8
-
-
0030211964
-
Bagging predictors
-
L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
9
-
-
84888787427
-
Learning from unbalanced data: A cascade-based approach for detecting clustered microcalcifications
-
A. Bria, N. Karssemeijer, and F. Tortorella Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications Med. Image Anal. 18 2 2014 241 252
-
(2014)
Med. Image Anal.
, vol.18
, Issue.2
, pp. 241-252
-
-
Bria, A.1
Karssemeijer, N.2
Tortorella, F.3
-
10
-
-
80255133264
-
An experimental comparison of classification algorithms for imbalanced credit scoring data sets
-
I. Brown, and C. Mues An experimental comparison of classification algorithms for imbalanced credit scoring data sets Expert Syst. Appl. 39 3 2012 3446 3453
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.3
, pp. 3446-3453
-
-
Brown, I.1
Mues, C.2
-
11
-
-
84944354565
-
Mlsmote: Approaching imbalanced multilabel learning through synthetic instance generation
-
F. Charte, A.J. Rivera, M.J. del Jesus, and F. Herrera Mlsmote: approaching imbalanced multilabel learning through synthetic instance generation Knowl. Based Syst. 89 2015 385 397
-
(2015)
Knowl. Based Syst.
, vol.89
, pp. 385-397
-
-
Charte, F.1
Rivera, A.J.2
Del Jesus, M.J.3
Herrera, F.4
-
13
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explor. 6 1 2004 1 6
-
(2004)
SIGKDD Explor.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
15
-
-
84900800509
-
Data-intensive applications, challenges, techniques and technologies: A survey on big data
-
C.P. Chen, and C.-Y. Zhang Data-intensive applications, challenges, techniques and technologies: a survey on big data Inf. Sci. 275 2014 314 347
-
(2014)
Inf. Sci.
, vol.275
, pp. 314-347
-
-
Chen, C.P.1
Zhang, C.-Y.2
-
16
-
-
84906873734
-
On the use of mapreduce for imbalanced big data using random forest
-
S. del Rio, V. Lopez, J.M. Benitez, and F. Herrera On the use of mapreduce for imbalanced big data using random forest Inf. Sci. 285 2014 112 137
-
(2014)
Inf. Sci.
, vol.285
, pp. 112-137
-
-
Del Rio, S.1
Lopez, V.2
Benitez, J.M.3
Herrera, F.4
-
17
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
18
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach. Learn. 40 2000 139 157
-
(2000)
Mach. Learn.
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
20
-
-
84915782633
-
Big data with cloud computing: An insight on the computing environment, mapreduce and programming framework
-
A. Fernandez, S. Rio, V. Lopez, A. Bawakid, M. del Jesus, J. Benitez, and F. Herrera Big data with cloud computing: an insight on the computing environment, mapreduce and programming framework WIREs Data Min. Knowl. Discov. 4 5 2014 380 409
-
(2014)
WIREs Data Min. Knowl. Discov.
, vol.4
, Issue.5
, pp. 380-409
-
-
Fernandez, A.1
Rio, S.2
Lopez, V.3
Bawakid, A.4
Del Jesus, M.5
Benitez, J.6
Herrera, F.7
-
21
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund, and R. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1 1997 119 139
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
22
-
-
84881072864
-
Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
-
M. Galar, A. Fernandez, E. Barrenechea, and F. Herrera Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recognit. 46 12 2013 3460 3471
-
(2013)
Pattern Recognit.
, vol.46
, Issue.12
, pp. 3460-3471
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Herrera, F.4
-
23
-
-
84862515469
-
A review on ensembles for class imbalance problem: Bagging, boosting and hybrid based approaches
-
M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera A review on ensembles for class imbalance problem: bagging, boosting and hybrid based approaches IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 42 4 2012 463 484
-
(2012)
IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
24
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
-
S. García, A. Fernandez, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 10 2010 2044 2064
-
(2010)
Inf. Sci.
, vol.180
, Issue.10
, pp. 2044-2064
-
-
García, S.1
Fernandez, A.2
Luengo, J.3
Herrera, F.4
-
25
-
-
58149287952
-
An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
-
S. Garcia, and F. Herrera An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons J. Mach. Learn. Res. 9 2008 2607 2624
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2607-2624
-
-
Garcia, S.1
Herrera, F.2
-
26
-
-
70349617264
-
Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
-
S. Garcia, and F. Herrera Evolutionary under-sampling for classification with imbalanced data sets: proposals and taxonomy Evol. Comput. 17 3 2009 275 306
-
(2009)
Evol. Comput.
, vol.17
, Issue.3
, pp. 275-306
-
-
Garcia, S.1
Herrera, F.2
-
27
-
-
84961289486
-
Online neural network model for non-stationary and imbalanced data stream classification
-
A. Ghazikhani, R. Monsefi, and H.S. Yazdi Online neural network model for non-stationary and imbalanced data stream classification Int. J. Mach. Learn. Cybern. 5 1 2014 51 62
-
(2014)
Int. J. Mach. Learn. Cybern.
, vol.5
, Issue.1
, pp. 51-62
-
-
Ghazikhani, A.1
Monsefi, R.2
Yazdi, H.S.3
-
28
-
-
84873737900
-
Margin-based ordered aggregation for ensemble pruning
-
L. Guo, and S. Boukir Margin-based ordered aggregation for ensemble pruning Pattern Recognit. Lett. 34 6 2013 603 609
-
(2013)
Pattern Recognit. Lett.
, vol.34
, Issue.6
, pp. 603-609
-
-
Guo, L.1
Boukir, S.2
-
33
-
-
0002294347
-
A simple sequentially rejective multiple test procedure
-
S. Holm A simple sequentially rejective multiple test procedure Scand. J. Stat. 6 1979 65 70
-
(1979)
Scand. J. Stat.
, vol.6
, pp. 65-70
-
-
Holm, S.1
-
34
-
-
4544223395
-
Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications
-
N. Cercone, T.Y. Lin, X. Wu, IEEE Computer Society
-
X. Hu Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications N. Cercone, T.Y. Lin, X. Wu, IEEE International Conference in Data Mining (ICDM) 2001 IEEE Computer Society 233 240
-
(2001)
IEEE International Conference in Data Mining (ICDM)
, pp. 233-240
-
-
Hu, X.1
-
35
-
-
14644390912
-
Using AUC and accuracy in evaluating learning algorithms
-
J. Huang, and C.X. Ling Using AUC and accuracy in evaluating learning algorithms IEEE Trans. Knowl. Data Eng. 17 3 2005 299 310
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.3
, pp. 299-310
-
-
Huang, J.1
Ling, C.X.2
-
36
-
-
84954187617
-
Improved classification with allocation method and multiple classifiers
-
S. Karakatic, and V. Podgorelec Improved classification with allocation method and multiple classifiers Inf. Fusion 31 2016 26 42
-
(2016)
Inf. Fusion
, vol.31
, pp. 26-42
-
-
Karakatic, S.1
Podgorelec, V.2
-
37
-
-
84908053289
-
Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
-
M.J. Kim, D.K. Kang, and H.B. Kim Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction Expert Syst. Appl. 42 3 2015 1074 1082
-
(2015)
Expert Syst. Appl.
, vol.42
, Issue.3
, pp. 1074-1082
-
-
Kim, M.J.1
Kang, D.K.2
Kim, H.B.3
-
38
-
-
84901587069
-
A hybrid classifier committee for analysing asymmetry features in breast thermograms
-
B. Krawczyk, and G. Schaefer A hybrid classifier committee for analysing asymmetry features in breast thermograms Appl. Soft Comput. J. 20 2014 112 118
-
(2014)
Appl. Soft Comput. J.
, vol.20
, pp. 112-118
-
-
Krawczyk, B.1
Schaefer, G.2
-
39
-
-
84889092504
-
Cost-sensitive decision tree ensembles for effective imbalanced classification
-
B. Krawczyk, M. Wozniak, and G. Schaefer Cost-sensitive decision tree ensembles for effective imbalanced classification Appl. Soft Comput. 14 2014 554 562
-
(2014)
Appl. Soft Comput.
, vol.14
, pp. 554-562
-
-
Krawczyk, B.1
Wozniak, M.2
Schaefer, G.3
-
40
-
-
0038133019
-
Limits on the majority vote accuracy in classifier fusion
-
L. Kuncheva, C. Whitaker, C. Shipp, and R. Duin Limits on the majority vote accuracy in classifier fusion Pattern Anal. Appl. 6 1 2003 22 31
-
(2003)
Pattern Anal. Appl.
, vol.6
, Issue.1
, pp. 22-31
-
-
Kuncheva, L.1
Whitaker, C.2
Shipp, C.3
Duin, R.4
-
41
-
-
24144490154
-
Diversity in multiple classifier systems
-
L.I. Kuncheva Diversity in multiple classifier systems Inf. Fusion 6 1 2005 3 4
-
(2005)
Inf. Fusion
, vol.6
, Issue.1
, pp. 3-4
-
-
Kuncheva, L.I.1
-
42
-
-
84892854554
-
A weighted voting framework for classifiers ensembles
-
L.I. Kuncheva, and J.J. Rodriguez A weighted voting framework for classifiers ensembles Knowl. Inf. Syst. 38 2 2014 259 275
-
(2014)
Knowl. Inf. Syst.
, vol.38
, Issue.2
, pp. 259-275
-
-
Kuncheva, L.I.1
Rodriguez, J.J.2
-
43
-
-
0037403516
-
Measures of diversity in classifier ensembles
-
L.I. Kuncheva, and C.J. Whitaker Measures of diversity in classifier ensembles Mach. Learn. 51 2003 181 207
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
44
-
-
64049108468
-
Exploratory undersampling for class-imbalance learning
-
X.-Y. Liu, J. Wu, and Z.-H. Zhou Exploratory undersampling for class-imbalance learning IEEE 39 2 2009 539 550
-
(2009)
IEEE
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
45
-
-
84871621085
-
A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets
-
V. Lopez, A. Fernandez, M.D. Jesus, and F. Herrera A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets Knowl. Based Syst. 38 2013 85 104
-
(2013)
Knowl. Based Syst.
, vol.38
, pp. 85-104
-
-
Lopez, V.1
Fernandez, A.2
Jesus, M.D.3
Herrera, F.4
-
46
-
-
84883447718
-
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics
-
V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics Inf. Sci. 250 20 2013 113 141
-
(2013)
Inf. Sci.
, vol.250
, Issue.20
, pp. 113-141
-
-
Lopez, V.1
Fernandez, A.2
Garcia, S.3
Palade, V.4
Herrera, F.5
-
47
-
-
84888645340
-
On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed
-
V. Lopez, A. Fernandez, and F. Herrera On the importance of the validation technique for classification with imbalanced datasets: addressing covariate shift when data is skewed Inf. Sci. 257 2014 1 13
-
(2014)
Inf. Sci.
, vol.257
, pp. 1-13
-
-
Lopez, V.1
Fernandez, A.2
Herrera, F.3
-
48
-
-
84856964446
-
Analysis of preprocessing vs. Cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
-
V. Lopez, A. Fernandez, J.G. Moreno-Torres, and F. Herrera Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics Expert Syst. Appl. 39 7 2012 6585 6608
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.7
, pp. 6585-6608
-
-
Lopez, V.1
Fernandez, A.2
Moreno-Torres, J.G.3
Herrera, F.4
-
49
-
-
77956210291
-
Ensemble pruning via individual contribution ordering
-
B. Rao, B. Krishnapuram, A. Tomkins, Y. Qiang, ACM
-
Z. Lu, X. Wu, X. Zhu, and J. Bongard Ensemble pruning via individual contribution ordering B. Rao, B. Krishnapuram, A. Tomkins, Y. Qiang, KDD 2010 ACM 871 880
-
(2010)
KDD
, pp. 871-880
-
-
Lu, Z.1
Wu, X.2
Zhu, X.3
Bongard, J.4
-
52
-
-
33750460241
-
Using boosting to prune bagging ensembles
-
G.M.-M. noz, and A. Suarez Using boosting to prune bagging ensembles Pattern Recognit. Lett. 28 1 2007 156 165
-
(2007)
Pattern Recognit. Lett.
, vol.28
, Issue.1
, pp. 156-165
-
-
Noz, G.M.-M.1
Suarez, A.2
-
53
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
L.L. Minku, A.P. White, and X. Yao The impact of diversity on online ensemble learning in the presence of concept drift IEEE Trans. Knowl. Data Eng. 22 5 2010 730 742
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.5
, pp. 730-742
-
-
Minku, L.L.1
White, A.P.2
Yao, X.3
-
54
-
-
84857738059
-
Ddd: A new ensemble approach for dealing with concept drift
-
L.L. Minku, and X. Yao Ddd: a new ensemble approach for dealing with concept drift IEEE Trans. Knowl. Data Eng. 24 4 2012 619 633
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.4
, pp. 619-633
-
-
Minku, L.L.1
Yao, X.2
-
55
-
-
80052714543
-
A unifying view on dataset shift in classification
-
J.G. Moreno-Torres, T. Raeder, R. Alaiz-Rodriguez, N.V. Chawla, and F. Herrera A unifying view on dataset shift in classification Pattern Recognit. 45 1 2012 521 530
-
(2012)
Pattern Recognit.
, vol.45
, Issue.1
, pp. 521-530
-
-
Moreno-Torres, J.G.1
Raeder, T.2
Alaiz-Rodriguez, R.3
Chawla, N.V.4
Herrera, F.5
-
56
-
-
84876917722
-
Study on the impact of partition-induced dataset shift on k-fold cross-validation
-
J.G. Moreno-Torres, J.A. Saez, and F. Herrera Study on the impact of partition-induced dataset shift on k-fold cross-validation IEEE Trans. Neural Netw. Learn. Syst. 23 8 2012 1304 1313
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.8
, pp. 1304-1313
-
-
Moreno-Torres, J.G.1
Saez, J.A.2
Herrera, F.3
-
58
-
-
84890363076
-
Ensembles of α-trees for imbalanced classification problems
-
Y. Park, and J. Ghosh Ensembles of α-trees for imbalanced classification problems IEEE Trans. Knowl. Data Eng. 26 1 2014 131 143
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.1
, pp. 131-143
-
-
Park, Y.1
Ghosh, J.2
-
59
-
-
33748611921
-
Ensemble based systems in decision making
-
R. Polikar Ensemble based systems in decision making IEEE Circuits Syst. Mag. 6 3 2006 21 45
-
(2006)
IEEE Circuits Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
60
-
-
84942249246
-
Class imbalance revisited: A new experimental setup to assess the performance of treatment methods
-
R.C. Prati, G.E.A.P.A. Batista, and D.F. Silva Class imbalance revisited: a new experimental setup to assess the performance of treatment methods Knowl. Inf. Syst. 45 1 2015 247 270
-
(2015)
Knowl. Inf. Syst.
, vol.45
, Issue.1
, pp. 247-270
-
-
Prati, R.C.1
Batista, G.E.A.P.A.2
Silva, D.F.3
-
62
-
-
75149176174
-
Ensemble-based classifiers
-
L. Rokach Ensemble-based classifiers Artif. Intell. Rev. 33 1 2010 1 39
-
(2010)
Artif. Intell. Rev.
, vol.33
, Issue.1
, pp. 1-39
-
-
Rokach, L.1
-
63
-
-
72949118881
-
RUSBoost: A hybrid approach to alleviating class imbalance
-
C. Seiffert, T. Khoshgoftaar, J.V. Hulse, and A. Napolitano RUSBoost: a hybrid approach to alleviating class imbalance IEEE 40 1 2010 185 197
-
(2010)
IEEE
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.2
Hulse, J.V.3
Napolitano, A.4
-
64
-
-
84936791875
-
Dealing with data difficulty factors while learning from imbalanced data
-
S. Matwin, J. Mielniczuk, Studies in Computational Intelligence Springer
-
J. Stefanowski Dealing with data difficulty factors while learning from imbalanced data S. Matwin, J. Mielniczuk, Challenges in Computational Statistics and Data Mining Studies in Computational Intelligence vol. 605 2016 Springer 333 363
-
(2016)
Challenges in Computational Statistics and Data Mining
, vol.605
, pp. 333-363
-
-
Stefanowski, J.1
-
65
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recognit. 40 12 2007 3358 3378
-
(2007)
Pattern Recognit.
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
67
-
-
84974678430
-
On the boosting pruning problem
-
R.L. de Mantaras, E. Plaza, Lecture Notes in Computer Science Springer
-
C. Tamon, and J. Xiang On the boosting pruning problem R.L. de Mantaras, E. Plaza, 11th European Conference on Machine Learning (ECML) Lecture Notes in Computer Science vol. 1810 2000 Springer 404 412
-
(2000)
11th European Conference on Machine Learning (ECML)
, vol.1810
, pp. 404-412
-
-
Tamon, C.1
Xiang, J.2
-
68
-
-
0030365938
-
Error correlation and error reduction in ensemble classifiers
-
K. Tumer, and J. Ghosh Error correlation and error reduction in ensemble classifiers Connect. Sci. 8 3-4 1996 385 403
-
(1996)
Connect. Sci.
, vol.8
, Issue.3-4
, pp. 385-403
-
-
Tumer, K.1
Ghosh, J.2
-
69
-
-
84939175565
-
Diversity-aware classifier ensemble selection via f-score
-
I. Visentini, L. Snidaro, and G.L. Foresti Diversity-aware classifier ensemble selection via f-score Inf. Fusion 28 2016 24 43
-
(2016)
Inf. Fusion
, vol.28
, pp. 24-43
-
-
Visentini, I.1
Snidaro, L.2
Foresti, G.L.3
-
70
-
-
84958680563
-
Fuzzy rough classifiers for class imbalanced multi-instance data
-
S. Vluymans, D.S. Tarrago, Y. Saeys, C. Cornelis, F. Herrera Fuzzy rough classifiers for class imbalanced multi-instance data Pattern Recognit. 53 2016 36 45
-
(2016)
Pattern Recognit.
, vol.53
, pp. 36-45
-
-
Vluymans, S.1
Tarrago, D.S.2
Saeys, Y.3
Cornelis, C.4
Herrera, F.5
-
71
-
-
84926617955
-
Resampling-based ensemble methods for online class imbalance learning
-
S. Wang, L.L. Minku, and X. Yao Resampling-based ensemble methods for online class imbalance learning IEEE Trans. Knowl. Data Eng. 27 5 2015 1356 1368
-
(2015)
IEEE Trans. Knowl. Data Eng.
, vol.27
, Issue.5
, pp. 1356-1368
-
-
Wang, S.1
Minku, L.L.2
Yao, X.3
-
73
-
-
84864119523
-
Relationships between diversity of classification ensembles and single-class performance measures
-
S. Wang, and X. Yao Relationships between diversity of classification ensembles and single-class performance measures IEEE Trans. Knowl. Data Eng. 25 1 2013 206 219
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.1
, pp. 206-219
-
-
Wang, S.1
Yao, X.2
-
74
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon Individual comparisons by ranking methods Biom. Bull. 1 6 1945 80 83
-
(1945)
Biom. Bull.
, vol.1
, Issue.6
, pp. 80-83
-
-
Wilcoxon, F.1
-
75
-
-
84887090067
-
A survey of multiple classifier systems as hybrid systems
-
M. Wozniak, M.G. na, and E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion 16 2014 3 17
-
(2014)
Inf. Fusion
, vol.16
, pp. 3-17
-
-
Wozniak, M.1
Na, M.G.2
Corchado, E.3
-
76
-
-
37549018049
-
Top 10 algorithms in data mining
-
X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg Top 10 algorithms in data mining Knowl. Inf. Syst. 14 1 2007 1 37
-
(2007)
Knowl. Inf. Syst.
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
77
-
-
0001218846
-
On the association of attributes in statistics
-
G. Yule On the association of attributes in statistics Philos. Trans. A 194 1900 257 319
-
(1900)
Philos. Trans. A
, vol.194
, pp. 257-319
-
-
Yule, G.1
-
79
-
-
0004232308
-
-
Prentice Hall Upper Saddle River, New Jersey
-
J.H. Zar Biostatistical Analysis 1999 Prentice Hall Upper Saddle River, New Jersey
-
(1999)
Biostatistical Analysis
-
-
Zar, J.H.1
-
80
-
-
85019192433
-
The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers
-
in press
-
J. Zhai, S. Zhang, and C. Wang The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers International Journal of Machine Learning and Cybernetics 2016 1 9 10.1007/s13042-015-0478-7 in press.
-
(2016)
International Journal of Machine Learning and Cybernetics
, pp. 1-9
-
-
Zhai, J.1
Zhang, S.2
Wang, C.3
-
81
-
-
84901596053
-
Rwo-sampling: A random walk over-sampling approach to imbalanced data classification
-
H. Zhang, and M. Li Rwo-sampling: A random walk over-sampling approach to imbalanced data classification Inf. Fusion 20 2014 99 116
-
(2014)
Inf. Fusion
, vol.20
, pp. 99-116
-
-
Zhang, H.1
Li, M.2
-
82
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
Y. Zhang, S. Burer, and W.N. Street Ensemble pruning via semi-definite programming J. Mach. Learn. Res. 7 2006 1315 1338
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
-
83
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.H. Zhou, J. Wu, and W. Tang Ensembling neural networks: Many could be better than all Artif. Intell. 137 2002 239 263
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.2
Tang, W.3
|