메뉴 건너뛰기




Volumn 4, Issue 5, 2014, Pages 380-409

Big Data with Cloud Computing: An insight on the computing environment, MapReduce, and programming frameworks

Author keywords

[No Author keywords available]

Indexed keywords

BIG DATA; CLOUD COMPUTING; DATA MINING; MESSAGE PASSING; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; SCALABILITY;

EID: 84915782633     PISSN: 19424787     EISSN: 19424795     Source Type: Journal    
DOI: 10.1002/widm.1134     Document Type: Article
Times cited : (226)

References (162)
  • 1
    • 84871552513 scopus 로고    scopus 로고
    • Cloud computing and big data analytics: what is new from databases perspective?
    • 1st International Conference on Big Data Analytics (BDA), New Delhi, India
    • Gupta R, Gupta H, Mohania M. Cloud computing and big data analytics: what is new from databases perspective? In: 1st International Conference on Big Data Analytics (BDA), New Delhi, India, 2012, 42-61.
    • (2012) , pp. 42-61
    • Gupta, R.1    Gupta, H.2    Mohania, M.3
  • 2
    • 79953844445 scopus 로고    scopus 로고
    • Big data and cloud computing: current state and future opportunities
    • 14th International Conference on Extending Database Technology (EDBT), Uppsala, Sweden
    • Agrawal D, Das S, Abbadi AE. Big data and cloud computing: current state and future opportunities. In: 14th International Conference on Extending Database Technology (EDBT), Uppsala, Sweden, 2011, 530-533.
    • (2011) , pp. 530-533
    • Agrawal, D.1    Das, S.2    Abbadi, A.E.3
  • 3
    • 84860443491 scopus 로고    scopus 로고
    • From databases to big data
    • Madden S. From databases to big data. IEEE Internet Comput 2012, 16:4-6.
    • (2012) IEEE Internet Comput , vol.16 , pp. 4-6
    • Madden, S.1
  • 4
    • 84873816417 scopus 로고    scopus 로고
    • Finding the needle in the big data systems haystack
    • Kraska T. Finding the needle in the big data systems haystack. IEEE Internet Comput 2013, 17:84-86.
    • (2013) IEEE Internet Comput , vol.17 , pp. 84-86
    • Kraska, T.1
  • 7
    • 33947495775 scopus 로고    scopus 로고
    • Integrated decision support systems: a data warehousing perspective
    • March ST, Hevner AR. Integrated decision support systems: a data warehousing perspective. Decis Support Syst 2007, 43:1031-1043.
    • (2007) Decis Support Syst , vol.43 , pp. 1031-1043
    • March, S.T.1    Hevner, A.R.2
  • 8
    • 34748898358 scopus 로고    scopus 로고
    • The current state of business intelligence
    • Watson HJ, Wixom BH. The current state of business intelligence. Computer 2007, 40:96-99.
    • (2007) Computer , vol.40 , pp. 96-99
    • Watson, H.J.1    Wixom, B.H.2
  • 12
    • 84855888662 scopus 로고    scopus 로고
    • 6th International Conference on Pervasive Computing and Applications, ICPCA), Port Elizabeth, South Africa
    • Han J, Haihong E, Le G, Du J. Survey on nosql database. In: 6th International Conference on Pervasive Computing and Applications, (ICPCA), Port Elizabeth, South Africa, 2011, 363-366.
    • (2011) Survey on nosql database , pp. 363-366
    • Han, J.1    Haihong, E.2    Le, G.3    Du, J.4
  • 13
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM 2008, 51:107-113.
    • (2008) Commun ACM , vol.51 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 14
    • 78650843050 scopus 로고    scopus 로고
    • 1st ed. Greenwich, Connecticut (USA): Manning
    • Lam C. Hadoop in Action. 1st ed. Greenwich, Connecticut (USA): Manning; 2011.
    • (2011) Hadoop in Action
    • Lam, C.1
  • 16
    • 84861307113 scopus 로고    scopus 로고
    • The NIST definition of cloud computing (draft) recommendations of the national institute of standards and technology
    • Mell P, Grance T. The NIST definition of cloud computing (draft) recommendations of the national institute of standards and technology. NIST Spec Publ 2011, 145.
    • (2011) NIST Spec Publ , vol.145
    • Mell, P.1    Grance, T.2
  • 19
    • 34249080831 scopus 로고    scopus 로고
    • Service oriented architectures: approaches, technologies and research issues
    • Papazoglou M, Van Den Heuvel W-J. Service oriented architectures: approaches, technologies and research issues. VLDB J 2007, 16:389-415.
    • (2007) VLDB J , vol.16 , pp. 389-415
    • Papazoglou, M.1    Van Den Heuvel, W.-J.2
  • 22
    • 84878979335 scopus 로고    scopus 로고
    • The big challenges of big data
    • Marx V. The big challenges of big data. Nature 2013, 498:255-260.
    • (2013) Nature , vol.498 , pp. 255-260
    • Marx, V.1
  • 24
    • 84861188723 scopus 로고    scopus 로고
    • Entertainment in the age of big data
    • Schlieski T, Johnson BD. Entertainment in the age of big data. Proc IEEE 2012, 100:1404-1408.
    • (2012) Proc IEEE , vol.100 , pp. 1404-1408
    • Schlieski, T.1    Johnson, B.D.2
  • 26
    • 84883165397 scopus 로고    scopus 로고
    • Achieving accountable mapreduce in cloud computing
    • Xiao Z, Xiao Y. Achieving accountable mapreduce in cloud computing. Future Gener Comput Syst 2014, 30:1-13.
    • (2014) Future Gener Comput Syst , vol.30 , pp. 1-13
    • Xiao, Z.1    Xiao, Y.2
  • 28
    • 84873131659 scopus 로고    scopus 로고
    • Challenges and opportunities with big data
    • Labrinidis A, Jagadish HV. Challenges and opportunities with big data. PVLDB 2012, 5:2032-2033.
    • (2012) PVLDB , vol.5 , pp. 2032-2033
    • Labrinidis, A.1    Jagadish, H.V.2
  • 31
    • 84900796645 scopus 로고    scopus 로고
    • Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management
    • Waller MA, Fawcett SE. Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J Bus Logistics 2013, 34:77-84.
    • (2013) J Bus Logistics , vol.34 , pp. 77-84
    • Waller, M.A.1    Fawcett, S.E.2
  • 32
    • 0036788156 scopus 로고    scopus 로고
    • The UK E-science core programme and the grid
    • Hey T, Trefethen AE. The UK E-science core programme and the grid. Future Gener Comput Syst 2002, 18:1017-1031.
    • (2002) Future Gener Comput Syst , vol.18 , pp. 1017-1031
    • Hey, T.1    Trefethen, A.E.2
  • 33
    • 33947622077 scopus 로고    scopus 로고
    • Social computing: from social informatics to social intelligence
    • Wang F-Y, Carley KM, Zeng D, Mao W. Social computing: from social informatics to social intelligence. IEEE Intell Syst 2007, 22:79-83.
    • (2007) IEEE Intell Syst , vol.22 , pp. 79-83
    • Wang, F.-Y.1    Carley, K.M.2    Zeng, D.3    Mao, W.4
  • 34
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations item-to-item collaborative filtering
    • Linden G, Smith B, York J. Amazon.com recommendations item-to-item collaborative filtering. IEEE Internet Comput 2003, 7:76-80.
    • (2003) IEEE Internet Comput , vol.7 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 35
    • 0036497778 scopus 로고    scopus 로고
    • Literature review and classification of electronic commerce research
    • Ngai EWT, Wat FKT. Literature review and classification of electronic commerce research. Inf Manage 2002, 39:415-429.
    • (2002) Inf Manage , vol.39 , pp. 415-429
    • Ngai, E.W.T.1    Wat, F.K.T.2
  • 36
    • 84872915861 scopus 로고    scopus 로고
    • Computing: a vision for data science
    • Mattmann CA. Computing: a vision for data science. Nature 2013, 493:473-475.
    • (2013) Nature , vol.493 , pp. 473-475
    • Mattmann, C.A.1
  • 37
    • 84991818987 scopus 로고    scopus 로고
    • Data science and its relationship to big data and data-driven decision making
    • Provost F, Fawcett T. Data science and its relationship to big data and data-driven decision making. Big Data 2013, 1:51-59.
    • (2013) Big Data , vol.1 , pp. 51-59
    • Provost, F.1    Fawcett, T.2
  • 38
    • 0003890671 scopus 로고    scopus 로고
    • Wiley Series in Adaptive and Learning Systems for Signal Processing, Communications and Control Series. New York, NY: John Wiley & Sons
    • Cherkassky V, Mulier F. Learning from Data: Concepts, Theory, and Methods. Wiley Series in Adaptive and Learning Systems for Signal Processing, Communications and Control Series. New York, NY: John Wiley & Sons; 1998.
    • (1998) Learning from Data: Concepts, Theory, and Methods
    • Cherkassky, V.1    Mulier, F.2
  • 40
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: a survey on big data
    • Chen CP, Zhang C-Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci 2014, 275:314-347.
    • (2014) Inf Sci , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.-Y.2
  • 41
    • 84866466048 scopus 로고    scopus 로고
    • Clustering high dimensional data
    • Assent I. Clustering high dimensional data. WIREs Data Mining Knowl Discov 2012, 2:340-350.
    • (2012) WIREs Data Mining Knowl Discov , vol.2 , pp. 340-350
    • Assent, I.1
  • 42
    • 84879526880 scopus 로고    scopus 로고
    • Large-scale data mining using genetics-based machine learning
    • Bacardit J, Llorà X. Large-scale data mining using genetics-based machine learning. WIREs Data Mining Knowl Discov 2013, 3:37-61.
    • (2013) WIREs Data Mining Knowl Discov , vol.3 , pp. 37-61
    • Bacardit, J.1    Llorà, X.2
  • 46
    • 0002139432 scopus 로고    scopus 로고
    • Sprint: a scalable parallel classifier for data mining
    • 22th International Conference on Very Large Data Bases (VLDB '96), Mumbai
    • Shafer J, Agrawal R, Mehta M. Sprint: a scalable parallel classifier for data mining. In: 22th International Conference on Very Large Data Bases (VLDB '96), Mumbai, 1996, 544-555.
    • (1996) , pp. 544-555
    • Shafer, J.1    Agrawal, R.2    Mehta, M.3
  • 48
    • 84915806650 scopus 로고    scopus 로고
    • Hadoop, an open source implementing of mapreduce and GFS
    • The Apache Software Foundation. Hadoop, an open source implementing of mapreduce and GFS, 2012
    • (2012)
  • 49
    • 77950153573 scopus 로고    scopus 로고
    • Cloud computing: an overview
    • Creeger M. Cloud computing: an overview. ACM Queue 2009, 7:2.
    • (2009) ACM Queue , vol.7 , pp. 2
    • Creeger, M.1
  • 54
    • 21644437974 scopus 로고    scopus 로고
    • 19th Symposium on Operating Systems Principles, Bolton Landing, NY
    • Ghemawat S, Gobioff H, Leung S-T. The google file system. In: 19th Symposium on Operating Systems Principles, 2003, Bolton Landing, NY, 29-43.
    • (2003) The google file system , pp. 29-43
    • Ghemawat, S.1    Gobioff, H.2    Leung, S.-T.3
  • 57
    • 63149115819 scopus 로고    scopus 로고
    • Data mining using high performance data clouds: experimental studies using sector and sphere
    • 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Las Vegas, NV
    • Grossman RL, Gu Y. Data mining using high performance data clouds: experimental studies using sector and sphere. In: 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2008, Las Vegas, NV, 920-927.
    • (2008) , pp. 920-927
    • Grossman, R.L.1    Gu, Y.2
  • 58
    • 52949087178 scopus 로고    scopus 로고
    • Compute and storage clouds using wide area high performance networks
    • Grossman RL, Gu Y, Sabala M, Zhang W. Compute and storage clouds using wide area high performance networks. Future Gener Comput Syst 2009, 25:179-183.
    • (2009) Future Gener Comput Syst , vol.25 , pp. 179-183
    • Grossman, R.L.1    Gu, Y.2    Sabala, M.3    Zhang, W.4
  • 59
    • 0020920186 scopus 로고
    • Principles of transaction-oriented database recovery
    • Härder T, Reuter A. Principles of transaction-oriented database recovery. ACM Comput Surv 1983, 15:287-317.
    • (1983) ACM Comput Surv , vol.15 , pp. 287-317
    • Härder, T.1    Reuter, A.2
  • 60
    • 84864248187 scopus 로고    scopus 로고
    • Parallel top-k similarity join algorithms using mapreduce
    • 28th International Conference on Data Engineering (ICDE), Arlington, VA
    • Kim Y, Shim K. Parallel top-k similarity join algorithms using mapreduce. In: 28th International Conference on Data Engineering (ICDE), Arlington, VA, 2012, 510-521.
    • (2012) , pp. 510-521
    • Kim, Y.1    Shim, K.2
  • 61
    • 79960020260 scopus 로고    scopus 로고
    • Processing theta-joins using mapreduce
    • Sellis TK, Miller RJ, Kementsietsidis A, Velegrakis Y, eds. New York, NY: ACM
    • Okcan A, Riedewald M. Processing theta-joins using mapreduce. In: Sellis TK, Miller RJ, Kementsietsidis A, Velegrakis Y, eds. SIGMOD Conference. New York, NY: ACM; 2011, 949-960.
    • (2011) SIGMOD Conference , pp. 949-960
    • Okcan, A.1    Riedewald, M.2
  • 63
    • 0030704545 scopus 로고    scopus 로고
    • Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web
    • 29th Annual ACM Symposium on Theory of Computing (STOC), New York, NY
    • Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D. Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: 29th Annual ACM Symposium on Theory of Computing (STOC), New York, NY, 1997, 654-663.
    • (1997) , pp. 654-663
    • Karger, D.1    Lehman, E.2    Leighton, T.3    Panigrahy, R.4    Levine, M.5    Lewin, D.6
  • 64
    • 84886564483 scopus 로고    scopus 로고
    • 1st ed. Greenwich, Connecticut (USA): Manning
    • Dimiduk N, Khurana A. HBase in Action. 1st ed. Greenwich, Connecticut (USA): Manning; 2012.
    • (2012) HBase in Action
    • Dimiduk, N.1    Khurana, A.2
  • 65
    • 77955933052 scopus 로고    scopus 로고
    • Cassandra: a decentralized structured storage system
    • Lakshman A, Malik P. Cassandra: a decentralized structured storage system. Oper Syst Rev 2010, 44:35-40.
    • (2010) Oper Syst Rev , vol.44 , pp. 35-40
    • Lakshman, A.1    Malik, P.2
  • 66
    • 84915806649 scopus 로고    scopus 로고
    • 1st ed. Key Biscayne, FL, USA): Bookvika publishing
    • Russell J, Cohn R. Hypertable. 1st ed. Key Biscayne, FL, (USA): Bookvika publishing; 2012.
    • (2012) Hypertable
    • Russell, J.1    Cohn, R.2
  • 68
    • 84859792965 scopus 로고    scopus 로고
    • Discovering javascript object notation
    • Severance C. Discovering javascript object notation. IEEE Comput 2012, 45:6-8.
    • (2012) IEEE Comput , vol.45 , pp. 6-8
    • Severance, C.1
  • 71
    • 55349148888 scopus 로고    scopus 로고
    • Pig latin: a not-so-foreign language for data processing
    • 2008 ACM SIGMOD International Conference on Management of data (SIGMOD), Vancouver, Canada
    • Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig latin: a not-so-foreign language for data processing. In: 2008 ACM SIGMOD International Conference on Management of data (SIGMOD), Vancouver, Canada, 2008, 1099-1110.
    • (2008) , pp. 1099-1110
    • Olston, C.1    Reed, B.2    Srivastava, U.3    Kumar, R.4    Tomkins, A.5
  • 75
    • 84991773782 scopus 로고    scopus 로고
    • Apache drill: interactive ad-hoc analysis at scale
    • Hausenblas M, Nadeau J. Apache drill: interactive ad-hoc analysis at scale. Big Data 2013, 1:100-104.
    • (2013) Big Data , vol.1 , pp. 100-104
    • Hausenblas, M.1    Nadeau, J.2
  • 77
    • 84964816728 scopus 로고    scopus 로고
    • Synthesis Lectures on Human Language Technologies. California (USA): Morgan and Claypool Publishers
    • Lin J, Dyer C. Data-Intensive Text Processing with MapReduce. Synthesis Lectures on Human Language Technologies. California (USA): Morgan and Claypool Publishers; 2010.
    • (2010) Data-Intensive Text Processing with MapReduce
    • Lin, J.1    Dyer, C.2
  • 78
    • 84873198422 scopus 로고    scopus 로고
    • Mapreduce algorithms for big data analysis
    • Shim K. Mapreduce algorithms for big data analysis. PVLDB 2012, 5:2016-2017.
    • (2012) PVLDB , vol.5 , pp. 2016-2017
    • Shim, K.1
  • 80
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: existing solutions and latest technological trends
    • Patcha A, Park J-M. An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput Netw 2007, 51:3448-3470.
    • (2007) Comput Netw , vol.51 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 82
    • 84863856522 scopus 로고    scopus 로고
    • Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data
    • Glaab E, Bacardit J, Garibaldi JM, Krasnogor N. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS One 2012, 7:e39932.
    • (2012) PLoS One , vol.7 , pp. e39932
    • Glaab, E.1    Bacardit, J.2    Garibaldi, J.M.3    Krasnogor, N.4
  • 83
    • 84888212150 scopus 로고    scopus 로고
    • Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology
    • Swan AL, Mobasheri A, Allaway D, Liddell S, Bacardit J. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. Omics 2013, 17:595-610.
    • (2013) Omics , vol.17 , pp. 595-610
    • Swan, A.L.1    Mobasheri, A.2    Allaway, D.3    Liddell, S.4    Bacardit, J.5
  • 85
    • 78649621898 scopus 로고    scopus 로고
    • Optimizing hpc fault-tolerant environment: an analytical approach
    • 39th International Conference on Parallel Processing (ICPP), San Diego, CA
    • Jin H, Chen Y, Zhu H, Sun X-H. Optimizing hpc fault-tolerant environment: an analytical approach. In: 39th International Conference on Parallel Processing (ICPP), San Diego, CA, 2010, 525-534.
    • (2010) , pp. 525-534
    • Jin, H.1    Chen, Y.2    Zhu, H.3    Sun, X.-H.4
  • 86
    • 84893736553 scopus 로고    scopus 로고
    • Performance comparison under failures of mpi and mapreduce: an analytical approach
    • Jin H, Sun X-H. Performance comparison under failures of mpi and mapreduce: an analytical approach. Future Gener Comput Syst 2013, 29:1808-1815.
    • (2013) Future Gener Comput Syst , vol.29 , pp. 1808-1815
    • Jin, H.1    Sun, X.-H.2
  • 88
    • 80052031568 scopus 로고    scopus 로고
    • Mapreduce in mpi for large-scale graph algorithms
    • Plimpton SJ, Devine KD. Mapreduce in mpi for large-scale graph algorithms. Parallel Comput 2011, 37:610-632.
    • (2011) Parallel Comput , vol.37 , pp. 610-632
    • Plimpton, S.J.1    Devine, K.D.2
  • 89
    • 84855678613 scopus 로고    scopus 로고
    • Data and task parallelism in ilp using mapreduce
    • Srinivasan A, Faruquie TA, Joshi S. Data and task parallelism in ilp using mapreduce. Mach Learn 2012, 86:141-168.
    • (2012) Mach Learn , vol.86 , pp. 141-168
    • Srinivasan, A.1    Faruquie, T.A.2    Joshi, S.3
  • 90
    • 73649114265 scopus 로고    scopus 로고
    • MapReduce: a flexible data processing tool
    • Dean J, Ghemawat S. MapReduce: a flexible data processing tool. Commun ACM 2010, 53:72-77.
    • (2010) Commun ACM , vol.53 , pp. 72-77
    • Dean, J.1    Ghemawat, S.2
  • 94
    • 80051586560 scopus 로고    scopus 로고
    • A parallel incremental extreme SVM classifier
    • He Q, Du C, Wang Q, Zhuang F, Shi Z. A parallel incremental extreme SVM classifier. Neurocomputing 2011, 74:2532-2540.
    • (2011) Neurocomputing , vol.74 , pp. 2532-2540
    • He, Q.1    Du, C.2    Wang, Q.3    Zhuang, F.4    Shi, Z.5
  • 95
    • 84911445875 scopus 로고    scopus 로고
    • Cost-sensitive linguistic fuzzy rule based classification systems under the mapreduce framework for imbalanced big data
    • press
    • López V, del Río S, Benítez JM, Herrera F. Cost-sensitive linguistic fuzzy rule based classification systems under the mapreduce framework for imbalanced big data. Fuzzy Set Syst in press. doi: 10.1016/j.fss.2014.01.015.
    • Fuzzy Set Syst
    • López, V.1    del Río, S.2    Benítez, J.M.3    Herrera, F.4
  • 96
    • 84911448717 scopus 로고    scopus 로고
    • Parallel sampling from big data with uncertainty distribution
    • press
    • He Q, Wang H, Zhuang F, Shang T, Shi Z. Parallel sampling from big data with uncertainty distribution. Fuzzy Set Syst in press. doi: 10.1016/j.fss.2014.01.016:1-14.
    • Fuzzy Set Syst
    • He, Q.1    Wang, H.2    Zhuang, F.3    Shang, T.4    Shi, Z.5
  • 97
    • 84862807152 scopus 로고    scopus 로고
    • A parallel method for computing rough set approximations
    • Zhang J, Rui Li T, Ruan D, Gao Z, Zhao C. A parallel method for computing rough set approximations. Inf Sci 2012, 194:209-223.
    • (2012) Inf Sci , vol.194 , pp. 209-223
    • Zhang, J.1    Rui Li, T.2    Ruan, D.3    Gao, Z.4    Zhao, C.5
  • 98
    • 84865330735 scopus 로고    scopus 로고
    • Scalable and parallel boosting with mapreduce
    • Palit I, Reddy CK. Scalable and parallel boosting with mapreduce. IEEE Trans Knowl Data Eng 2012, 24:1904-1916.
    • (2012) IEEE Trans Knowl Data Eng , vol.24 , pp. 1904-1916
    • Palit, I.1    Reddy, C.K.2
  • 99
    • 84906873734 scopus 로고    scopus 로고
    • On the use of mapreduce for imbalanced big data using random forest
    • press
    • Río S, López V, Benítez J, Herrera F. On the use of mapreduce for imbalanced big data using random forest. Inf Sci in press. doi: 10.1016/j.ins.2014.03.043.
    • Inf Sci
    • Río, S.1    López, V.2    Benítez, J.3    Herrera, F.4
  • 100
    • 84865680637 scopus 로고    scopus 로고
    • Analyzing massive machine maintenance data in a computing cloud
    • Bahga A, Madisetti VK. Analyzing massive machine maintenance data in a computing cloud. IEEE Trans Parallel Distrib Syst 2012, 23:1831-1843.
    • (2012) IEEE Trans Parallel Distrib Syst , vol.23 , pp. 1831-1843
    • Bahga, A.1    Madisetti, V.K.2
  • 101
    • 84875818053 scopus 로고    scopus 로고
    • Development of an rdp neural network for building energy consumption fault detection and diagnosis
    • Magoulès F, Zhao H-X, Elizondo D. Development of an rdp neural network for building energy consumption fault detection and diagnosis. Energy Build 2013, 62:133-138.
    • (2013) Energy Build , vol.62 , pp. 133-138
    • Magoulès, F.1    Zhao, H.-X.2    Elizondo, D.3
  • 102
    • 84879196736 scopus 로고    scopus 로고
    • Rapid processing of remote sensing images based on cloud computing
    • Wang P, Wang J, Chen Y, Ni G. Rapid processing of remote sensing images based on cloud computing. Future Gener Comput Syst 2013, 29:1963-1968.
    • (2013) Future Gener Comput Syst , vol.29 , pp. 1963-1968
    • Wang, P.1    Wang, J.2    Chen, Y.3    Ni, G.4
  • 103
    • 65649120715 scopus 로고    scopus 로고
    • Cloudburst: highly sensitive read mapping with mapreduce
    • Schatz MC. Cloudburst: highly sensitive read mapping with mapreduce. Bioinformatics 2009, 25:1363-1369.
    • (2009) Bioinformatics , vol.25 , pp. 1363-1369
    • Schatz, M.C.1
  • 105
    • 78650811522 scopus 로고    scopus 로고
    • An overview of the hadoop/mapreduce/hbase framework and its current applications in bioinformatics
    • Taylor RC. An overview of the hadoop/mapreduce/hbase framework and its current applications in bioinformatics. BMC Bioinformatics 2010, 11:S1.
    • (2010) BMC Bioinformatics , vol.11 , pp. S1
    • Taylor, R.C.1
  • 106
    • 84886771360 scopus 로고    scopus 로고
    • Random forests on hadoop for genome-wide association studies of multivariate neuroimaging phenotypes
    • Wang Y, Goh W, Wong L, Montana G. Random forests on hadoop for genome-wide association studies of multivariate neuroimaging phenotypes. BMC Bioinformatics 2013, 14:S6.
    • (2013) BMC Bioinformatics , vol.14 , pp. S6
    • Wang, Y.1    Goh, W.2    Wong, L.3    Montana, G.4
  • 107
    • 34547335088 scopus 로고    scopus 로고
    • Frequent pattern mining: current status and future directions
    • Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and future directions. Data Mining Knowl Discov 2007, 15:55-86.
    • (2007) Data Mining Knowl Discov , vol.15 , pp. 55-86
    • Han, J.1    Cheng, H.2    Xin, D.3    Yan, X.4
  • 109
    • 84886741668 scopus 로고    scopus 로고
    • Market basket analysis algorithms with mapreduce
    • Woo J. Market basket analysis algorithms with mapreduce. WIREs Data Min Knowl Discov 2013, 3:445-452.
    • (2013) WIREs Data Min Knowl Discov , vol.3 , pp. 445-452
    • Woo, J.1
  • 110
    • 78650687540 scopus 로고    scopus 로고
    • Parallel sequential pattern mining of massive trajectory data
    • Qiao S, Li T, Peng J, Qiu J. Parallel sequential pattern mining of massive trajectory data. Int J Comput Intell Syst 2010, 3:343-356.
    • (2010) Int J Comput Intell Syst , vol.3 , pp. 343-356
    • Qiao, S.1    Li, T.2    Peng, J.3    Qiu, J.4
  • 111
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain AK. Data clustering: 50 years beyond k-means. Pattern Recognit Lett 2010, 31:651-666.
    • (2010) Pattern Recognit Lett , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 112
    • 70349335150 scopus 로고    scopus 로고
    • 1st ed. Hoboken, New Jersey (USA): Wiley-IEEE Press
    • Xu R, Wunsch D. Clustering. 1st ed. Hoboken, New Jersey (USA): Wiley-IEEE Press; 2009.
    • (2009) Clustering
    • Xu, R.1    Wunsch, D.2
  • 113
    • 84873132411 scopus 로고    scopus 로고
    • Parallel particle swarm optimization clustering algorithm based on mapreduce methodology
    • 4th World Congress Nature and Biologically Inspired Computing (NaBIC), Mexico City, Mexico
    • Aljarah I, Ludwig SA. Parallel particle swarm optimization clustering algorithm based on mapreduce methodology. In: 4th World Congress Nature and Biologically Inspired Computing (NaBIC), Mexico City, Mexico, 2012, 104-111.
    • (2012) , pp. 104-111
    • Aljarah, I.1    Ludwig, S.A.2
  • 114
    • 84896527723 scopus 로고    scopus 로고
    • Dbcure-mr: an efficient density-based clustering algorithm for large data using mapreduce
    • Kim Y, Shim K, Kim M-S, Sup Lee J. Dbcure-mr: an efficient density-based clustering algorithm for large data using mapreduce. Inf Syst 2014, 42:15-35.
    • (2014) Inf Syst , vol.42 , pp. 15-35
    • Kim, Y.1    Shim, K.2    Kim, M.-S.3    Sup Lee, J.4
  • 115
    • 84887879508 scopus 로고    scopus 로고
    • An improved cop-kmeans clustering for solving constraint violation based on mapreduce framework
    • Yang Y, Rutayisire T, Lin C, Li T, Teng F. An improved cop-kmeans clustering for solving constraint violation based on mapreduce framework. Fundam Inf 2013, 126:301-318.
    • (2013) Fundam Inf , vol.126 , pp. 301-318
    • Yang, Y.1    Rutayisire, T.2    Lin, C.3    Li, T.4    Teng, F.5
  • 117
    • 34249990939 scopus 로고    scopus 로고
    • Collaborative filtering recommender systems
    • Brusilovsky P, Kobsa A, Nejdl W, eds. Berlin/Heidelberg: Springer-Verlag
    • Schafer JB, Frankowski D, Herlocker J, Sen S. Collaborative filtering recommender systems. In: Brusilovsky P, Kobsa A, Nejdl W, eds. The Adaptive Web. Berlin/Heidelberg: Springer-Verlag; 2007, 291-324.
    • (2007) The Adaptive Web , pp. 291-324
    • Schafer, J.B.1    Frankowski, D.2    Herlocker, J.3    Sen, S.4
  • 118
    • 84891780837 scopus 로고    scopus 로고
    • Twilite: a recommendation system for twitter using a probabilistic model based on latent dirichlocation
    • Kim Y, Shim K. Twilite: a recommendation system for twitter using a probabilistic model based on latent dirichlet allocation. Inf Syst 2013, 42:59-77.
    • (2013) Inf Syst , vol.42 , pp. 59-77
    • Kim, Y.1    Shim, K.2
  • 122
    • 84915806645 scopus 로고    scopus 로고
    • Spark: cluster computing with working sets. In: HotCloud, Boston, MA
    • Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. In: HotCloud, Boston, MA 2010, 1-7.
    • (2010) , pp. 1-7
    • Zaharia, M.1    Chowdhury, M.2    Franklin, M.J.3    Shenker, S.4    Stoica, I.5
  • 123
    • 84863770788 scopus 로고    scopus 로고
    • On the performance of high dimensional data clustering and classification algorithms
    • Ericson K, Pallickara S. On the performance of high dimensional data clustering and classification algorithms. Future Gener Comput Syst 2013, 29:1024-1034.
    • (2013) Future Gener Comput Syst , vol.29 , pp. 1024-1034
    • Ericson, K.1    Pallickara, S.2
  • 124
    • 80052651384 scopus 로고    scopus 로고
    • Nimble: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce
    • 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA
    • Ghoting A, Kambadur P, Pednault EPD, Kannan R. Nimble: a toolkit for the implementation of parallel data mining and machine learning algorithms on mapreduce. In 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, San Diego, CA, 334-342.
    • (2011) , pp. 334-342
    • Ghoting, A.1    Kambadur, P.2    Pednault, E.P.D.3    Kannan, R.4
  • 128
    • 84862303329 scopus 로고    scopus 로고
    • Visualization databases for the analysis of large complex datasets
    • Guha S, Hafen RP, Kidwell P, Cleveland W. Visualization databases for the analysis of large complex datasets. J Mach Learn Res 2009, 5:193-200.
    • (2009) J Mach Learn Res , vol.5 , pp. 193-200
    • Guha, S.1    Hafen, R.P.2    Kidwell, P.3    Cleveland, W.4
  • 133
    • 84991756964 scopus 로고    scopus 로고
    • Mapreduce is good enough?
    • Lin J. Mapreduce is good enough? Big Data 2013, 1:BD28-BD37.
    • (2013) Big Data , vol.1 , pp. BD28-BD37
    • Lin, J.1
  • 135
    • 80052795836 scopus 로고    scopus 로고
    • Adapting scientific computing problems to clouds using mapreduce
    • Srirama SN, Jakovits P, Vainikko E. Adapting scientific computing problems to clouds using mapreduce. Future Gener Comput Syst 2012, 28:184-192.
    • (2012) Future Gener Comput Syst , vol.28 , pp. 184-192
    • Srirama, S.N.1    Jakovits, P.2    Vainikko, E.3
  • 137
    • 84894475653 scopus 로고    scopus 로고
    • A comparison of parallel large-scale knowledge acquisition using rough set theory on different mapreduce runtime systems
    • Zhang J, Wong J-S, Li T, Pan Y. A comparison of parallel large-scale knowledge acquisition using rough set theory on different mapreduce runtime systems. Int J Approx Reason 2014, 55:896-907.
    • (2014) Int J Approx Reason , vol.55 , pp. 896-907
    • Zhang, J.1    Wong, J.-S.2    Li, T.3    Pan, Y.4
  • 138
    • 34548041192 scopus 로고    scopus 로고
    • Dryad: distributed data-parallel programs from sequential building blocks
    • 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys), New York, NY
    • Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: distributed data-parallel programs from sequential building blocks. In: 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys), New York, NY, 2007, 59-72.
    • (2007) , pp. 59-72
    • Isard, M.1    Budiu, M.2    Yu, Y.3    Birrell, A.4    Fetterly, D.5
  • 139
    • 85076882757 scopus 로고    scopus 로고
    • Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language
    • Operating Systems Design and Implementation, San Diego, CA
    • Yu Y, Isard M, Fetterly D, Budiu M, Erlingsson L, Gunda PK, Currey J. Dryadlinq: a system for general-purpose distributed data-parallel computing using a high-level language. In: Operating Systems Design and Implementation, San Diego, CA, 2008, 1-14.
    • (2008) , pp. 1-14
    • Yu, Y.1    Isard, M.2    Fetterly, D.3    Budiu, M.4    Erlingsson, L.5    Gunda, P.K.6    Currey, J.7
  • 140
    • 84858615083 scopus 로고    scopus 로고
    • The haloop approach to large-scale iterative data analysis
    • Bu Y, Howe B, Balazinska M, Ernst MD. The haloop approach to large-scale iterative data analysis. PVLDB 2012, 21:169-190.
    • (2012) PVLDB , vol.21 , pp. 169-190
    • Bu, Y.1    Howe, B.2    Balazinska, M.3    Ernst, M.D.4
  • 141
    • 78650003594 scopus 로고    scopus 로고
    • Twister: a runtime for iterative mapreduce
    • ACM International Symposium on High Performance Distributed Computing (HPDC), New York, NY
    • Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J, Fox G. Twister: a runtime for iterative mapreduce. In: ACM International Symposium on High Performance Distributed Computing (HPDC), 2010, New York, NY, 810-818.
    • (2010) , pp. 810-818
    • Ekanayake, J.1    Li, H.2    Zhang, B.3    Gunarathne, T.4    Bae, S.-H.5    Qiu, J.6    Fox, G.7
  • 142
    • 85040175609 scopus 로고    scopus 로고
    • Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing
    • 9th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA
    • Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: 9th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA, 2012, 1-14.
    • (2012) , pp. 1-14
    • Zaharia, M.1    Chowdhury, M.2    Das, T.3    Dave, A.4    Ma, J.5    McCauley, M.6    Franklin, M.J.7    Shenker, S.8    Stoica, I.9
  • 143
    • 85084017339 scopus 로고    scopus 로고
    • Mlbase: a distributed machine learning system
    • Conference on Innovative Data Systems Research, Asilomar, CA
    • Kraska T, Talwalkar A, Duchi J, Griffith R, Franklin M, Jordan M. Mlbase: a distributed machine learning system. In: Conference on Innovative Data Systems Research, Asilomar, CA, 2013, 1-7.
    • (2013) , pp. 1-7
    • Kraska, T.1    Talwalkar, A.2    Duchi, J.3    Griffith, R.4    Franklin, M.5    Jordan, M.6
  • 144
    • 0025467711 scopus 로고
    • A bridging model for parallel computation
    • Valiant LG. A bridging model for parallel computation. Commun ACM 1990, 33:103-111.
    • (1990) Commun ACM , vol.33 , pp. 103-111
    • Valiant, L.G.1
  • 147
    • 84880566945 scopus 로고    scopus 로고
    • Graphx: a resilient distributed graph system on spark
    • GRADES'13, New York, NY
    • Xin RS, Gonzalez JE, Franklin MJ, Stoica I. Graphx: a resilient distributed graph system on spark. In: GRADES'13, New York, NY, 2013, 1-6.
    • (2013) , pp. 1-6
    • Xin, R.S.1    Gonzalez, J.E.2    Franklin, M.J.3    Stoica, I.4
  • 150
    • 79951736167 scopus 로고    scopus 로고
    • S4: distributed stream computing platform. In: 2010 IEEE Data Mining Workshops (ICDMW), Sydney, Australia
    • Neumeyer L, Robbins B, Nair A, Kesari A. S4: distributed stream computing platform. In: 2010 IEEE Data Mining Workshops (ICDMW), Sydney, Australia, 2010, 170-177.
    • (2010) , pp. 170-177
    • Neumeyer, L.1    Robbins, B.2    Nair, A.3    Kesari, A.4
  • 151
    • 84889637396 scopus 로고    scopus 로고
    • Discretized streams: fault-tolerant streaming computation at scale
    • 24th ACM Symposium on Operating Systems Principles (SOSP), Farmington, PA
    • Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I. Discretized streams: fault-tolerant streaming computation at scale. In: 24th ACM Symposium on Operating Systems Principles (SOSP), Farmington, PA, 2013, 423-438.
    • (2013) , pp. 423-438
    • Zaharia, M.1    Das, T.2    Li, H.3    Hunter, T.4    Shenker, S.5    Stoica, I.6
  • 152
    • 34547679939 scopus 로고    scopus 로고
    • Evaluating mapreduce for multi-core and multiprocessor systems
    • IEEE 13th International Symposium on High Performance Computer Architecture (HPCA), Phoenix, AZ
    • Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C. Evaluating mapreduce for multi-core and multiprocessor systems. In: IEEE 13th International Symposium on High Performance Computer Architecture (HPCA), Phoenix, AZ, 2007, 1-6.
    • (2007) , pp. 1-6
    • Ranger, C.1    Raghuraman, R.2    Penmetsa, A.3    Bradski, G.4    Kozyrakis, C.5
  • 154
    • 56049109090 scopus 로고    scopus 로고
    • Map-reduce for machine learning on multicore
    • Advances in Neural Information Processing Systems 19, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada
    • Chu C-T, Kim SK, Lin Y-A, Yu Y, Bradski GR, Ng AY, Olukotun K. Map-reduce for machine learning on multicore. In: Advances in Neural Information Processing Systems 19, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2006, 281-288.
    • (2006) , pp. 281-288
    • Chu, C.-T.1    Kim, S.K.2    Lin, Y.-A.3    Yu, Y.4    Bradski, G.R.5    Ng, A.Y.6    Olukotun, K.7
  • 155
    • 38048999467 scopus 로고    scopus 로고
    • Query co-processing on commodity processors
    • 32nd International Conference on Very Large Data Bases (VLDB), Seoul, Korea
    • Ailamaki A, Govindaraju NK, Harizopoulos S, Manocha D. Query co-processing on commodity processors. In: 32nd International Conference on Very Large Data Bases (VLDB), Seoul, Korea, 2006, 1267-1267.
    • (2006) , pp. 1267-1267
    • Ailamaki, A.1    Govindaraju, N.K.2    Harizopoulos, S.3    Manocha, D.4
  • 156
    • 80053262523 scopus 로고    scopus 로고
    • Multi-gpu mapreduce on gpu clusters
    • 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Anchorage, AK
    • Stuart JA, Owens JD. Multi-gpu mapreduce on gpu clusters. In: 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Anchorage, AK, 2011, 1068-1079.
    • (2011) , pp. 1068-1079
    • Stuart, J.A.1    Owens, J.D.2
  • 157
    • 84893688166 scopus 로고    scopus 로고
    • Grex: an efficient mapreduce framework for graphics processing units
    • Basaran C, Kang K-D. Grex: an efficient mapreduce framework for graphics processing units. J Parallel Distrib Comput 2013, 73:522-533.
    • (2013) J Parallel Distrib Comput , vol.73 , pp. 522-533
    • Basaran, C.1    Kang, K.-D.2
  • 158
    • 84876260272 scopus 로고    scopus 로고
    • Parallel programming on cloud computing platforms-challenges and solutions
    • Pan Y, Zhang J. Parallel programming on cloud computing platforms-challenges and solutions. J Convergence 2012, 3:23-28.
    • (2012) J Convergence , vol.3 , pp. 23-28
    • Pan, Y.1    Zhang, J.2
  • 160
  • 161
    • 81055143288 scopus 로고    scopus 로고
    • The performance of mapreduce: an in-depth study
    • Jiang D, Ooi B, Shi L, Wu S. The performance of mapreduce: an in-depth study. PVLDB 2010, 3:472-483.
    • (2010) PVLDB , vol.3 , pp. 472-483
    • Jiang, D.1    Ooi, B.2    Shi, L.3    Wu, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.