메뉴 건너뛰기




Volumn 20, Issue 1, 2014, Pages 99-116

RWO-Sampling: A random walk over-sampling approach to imbalanced data classification

Author keywords

Data fusion; Imbalanced data classification; Over sampling; Probability distribution; Random walk

Indexed keywords

DATA FUSION; PROBABILITY DISTRIBUTIONS; RANDOM PROCESSES;

EID: 84901596053     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2013.12.003     Document Type: Article
Times cited : (132)

References (28)
  • 2
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • DOI 10.1109/TKDE.2006.17
    • Z.-H. Zhou, and X.-Y. Liu Training cost-sensitive neural networks with methods addressing the class imbalance problem IEEE Trans. Knowl. Data Eng. 18 2006 63 77 (Pubitemid 43145089)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behavior of several methods for balancing machine learning training data ACM SIGKDD Explor. Newsl. 6 1 2004 20 29
    • (2004) ACM SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 4
    • 70350565063 scopus 로고    scopus 로고
    • On strategies for imbalanced text classification using SVM: A comparative study
    • A. Sun, E.-P. Lim, and Y. Liu On strategies for imbalanced text classification using SVM: a comparative study Decis. Support Syst. 48 1 2009 191 201
    • (2009) Decis. Support Syst. , vol.48 , Issue.1 , pp. 191-201
    • Sun, A.1    Lim, E.-P.2    Liu, Y.3
  • 6
    • 58349090428 scopus 로고    scopus 로고
    • Cluster-based under-sampling approaches for imbalanced data distributions
    • S.-J. Yen, and Y.-S. Lee Cluster-based under-sampling approaches for imbalanced data distributions Expert Syst. Appl. 36 2009 5718 5727
    • (2009) Expert Syst. Appl. , vol.36 , pp. 5718-5727
    • Yen, S.-J.1    Lee, Y.-S.2
  • 10
    • 84255176295 scopus 로고    scopus 로고
    • A normal distribution-based over-sampling approach to imbalanced data classification
    • H. Zhang, and Z. Wang A normal distribution-based over-sampling approach to imbalanced data classification Lect. Notes Artif. Intell. 7120 2011 83 96
    • (2011) Lect. Notes Artif. Intell. , vol.7120 , pp. 83-96
    • Zhang, H.1    Wang, Z.2
  • 11
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
    • Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005. Proceedings
    • H. Han, W.-Y. Wang, and B.-H. Mao Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning Lect. Notes Comput. Sci. 3644 2005 878 887 (Pubitemid 41491129)
    • (2005) Lecture Notes in Computer Science , vol.3644 , Issue.PART I , pp. 878-887
    • Han, H.1    Wang, W.-Y.2    Mao, B.-H.3
  • 12
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
    • H. Guo, and H.L. Viktor Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach SIGKDD Explor. Newsl. 6 2004 30 39
    • (2004) SIGKDD Explor. Newsl. , vol.6 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 13
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced data sets Comput. Intell. 20 1 2004 18 36
    • (2004) Comput. Intell. , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 14
    • 77952380674 scopus 로고    scopus 로고
    • AdaOUBoost: Adaptive over-sampling and under-sampling to boost the concept learning in large scale imbalanced data sets
    • Pennsylvania, USA, March
    • Y. Peng, J. Yao, AdaOUBoost: adaptive over-sampling and under-sampling to boost the concept learning in large scale imbalanced data sets, in: MIR'10, Philadelphia, Pennsylvania, USA, March, 2010, pp. 111-118.
    • (2010) MIR'10, Philadelphia , pp. 111-118
    • Peng, Y.1    Yao, J.2
  • 16
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
    • Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recogn. 40 2007 3358 3378 (Pubitemid 47223287)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 17
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Woźniak, M. Grana, and E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion 16 2014 3 17
    • (2014) Inf. Fusion , vol.16 , pp. 3-17
    • Woźniak, M.1    Grana, M.2    Corchado, E.3
  • 18
    • 44649197212 scopus 로고    scopus 로고
    • AdaBoost with SVM-based component classifiers
    • X. Li, L. Wang, and E. Sung AdaBoost with SVM-based component classifiers Eng. Appl. Artif. Intell. 21 2008 785 795
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , pp. 785-795
    • Li, X.1    Wang, L.2    Sung, E.3
  • 19
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • DOI 10.1016/j.inffus.2006.10.002, PII S1566253506000765, Applications of Ensemble Methods
    • G. Giacinto, R. Perdisci, M.D. Rio, and F. Roli Intrusion detection in computer networks by a modular ensemble of one-class classifiers Inf. Fusion 9 2008 69 82 (Pubitemid 47589059)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 21
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Z. Zheng, X. Wu, and R. Srihari Feature selection for text categorization on imbalanced data SIGKDD Explor. Newsl. 6 1 2004 80 89
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 22
    • 45849098303 scopus 로고    scopus 로고
    • An information granulation based data mining approach for classifying imbalanced data
    • M.-C. Chen, L.-S. Chen, C.-C. Hsu, and W.-R. Zeng An information granulation based data mining approach for classifying imbalanced data Inf. Sci. 178 2008 3214 3227
    • (2008) Inf. Sci. , vol.178 , pp. 3214-3227
    • Chen, M.-C.1    Chen, L.-S.2    Hsu, C.-C.3    Zeng, W.-R.4
  • 24
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
    • M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lob, and J.A. Baker Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance Neural Networks 21 2008 427 436
    • (2008) Neural Networks , vol.21 , pp. 427-436
    • Mazurowski, M.A.1    Habas, P.A.2    Zurada, J.M.3    Lob, J.Y.4    Baker, J.A.5
  • 27
    • 20844441675 scopus 로고    scopus 로고
    • KBA: Kernel boundary alignment considering imbalanced data distribution
    • DOI 10.1109/TKDE.2005.95
    • G. Wu, and E.Y. Chang KBA: kernel boundary alignment considering imbalanced data distribution IEEE Trans. Knowl. Data Eng. 17 6 2005 786 795 (Pubitemid 40860458)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.