-
2
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
DOI 10.1109/TKDE.2006.17
-
Z.-H. Zhou, and X.-Y. Liu Training cost-sensitive neural networks with methods addressing the class imbalance problem IEEE Trans. Knowl. Data Eng. 18 2006 63 77 (Pubitemid 43145089)
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
-
3
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behavior of several methods for balancing machine learning training data ACM SIGKDD Explor. Newsl. 6 1 2004 20 29
-
(2004)
ACM SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
4
-
-
70350565063
-
On strategies for imbalanced text classification using SVM: A comparative study
-
A. Sun, E.-P. Lim, and Y. Liu On strategies for imbalanced text classification using SVM: a comparative study Decis. Support Syst. 48 1 2009 191 201
-
(2009)
Decis. Support Syst.
, vol.48
, Issue.1
, pp. 191-201
-
-
Sun, A.1
Lim, E.-P.2
Liu, Y.3
-
6
-
-
58349090428
-
Cluster-based under-sampling approaches for imbalanced data distributions
-
S.-J. Yen, and Y.-S. Lee Cluster-based under-sampling approaches for imbalanced data distributions Expert Syst. Appl. 36 2009 5718 5727
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 5718-5727
-
-
Yen, S.-J.1
Lee, Y.-S.2
-
10
-
-
84255176295
-
A normal distribution-based over-sampling approach to imbalanced data classification
-
H. Zhang, and Z. Wang A normal distribution-based over-sampling approach to imbalanced data classification Lect. Notes Artif. Intell. 7120 2011 83 96
-
(2011)
Lect. Notes Artif. Intell.
, vol.7120
, pp. 83-96
-
-
Zhang, H.1
Wang, Z.2
-
11
-
-
27144501672
-
Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
-
Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005. Proceedings
-
H. Han, W.-Y. Wang, and B.-H. Mao Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning Lect. Notes Comput. Sci. 3644 2005 878 887 (Pubitemid 41491129)
-
(2005)
Lecture Notes in Computer Science
, vol.3644
, Issue.PART I
, pp. 878-887
-
-
Han, H.1
Wang, W.-Y.2
Mao, B.-H.3
-
12
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
-
H. Guo, and H.L. Viktor Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach SIGKDD Explor. Newsl. 6 2004 30 39
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
13
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced data sets Comput. Intell. 20 1 2004 18 36
-
(2004)
Comput. Intell.
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
14
-
-
77952380674
-
AdaOUBoost: Adaptive over-sampling and under-sampling to boost the concept learning in large scale imbalanced data sets
-
Pennsylvania, USA, March
-
Y. Peng, J. Yao, AdaOUBoost: adaptive over-sampling and under-sampling to boost the concept learning in large scale imbalanced data sets, in: MIR'10, Philadelphia, Pennsylvania, USA, March, 2010, pp. 111-118.
-
(2010)
MIR'10, Philadelphia
, pp. 111-118
-
-
Peng, Y.1
Yao, J.2
-
16
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
-
Y. Sun, M.S. Kamel, A.K.C. Wong, and Y. Wang Cost-sensitive boosting for classification of imbalanced data Pattern Recogn. 40 2007 3358 3378 (Pubitemid 47223287)
-
(2007)
Pattern Recognition
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
17
-
-
84887090067
-
A survey of multiple classifier systems as hybrid systems
-
M. Woźniak, M. Grana, and E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion 16 2014 3 17
-
(2014)
Inf. Fusion
, vol.16
, pp. 3-17
-
-
Woźniak, M.1
Grana, M.2
Corchado, E.3
-
18
-
-
44649197212
-
AdaBoost with SVM-based component classifiers
-
X. Li, L. Wang, and E. Sung AdaBoost with SVM-based component classifiers Eng. Appl. Artif. Intell. 21 2008 785 795
-
(2008)
Eng. Appl. Artif. Intell.
, vol.21
, pp. 785-795
-
-
Li, X.1
Wang, L.2
Sung, E.3
-
19
-
-
35348821822
-
Intrusion detection in computer networks by a modular ensemble of one-class classifiers
-
DOI 10.1016/j.inffus.2006.10.002, PII S1566253506000765, Applications of Ensemble Methods
-
G. Giacinto, R. Perdisci, M.D. Rio, and F. Roli Intrusion detection in computer networks by a modular ensemble of one-class classifiers Inf. Fusion 9 2008 69 82 (Pubitemid 47589059)
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 69-82
-
-
Giacinto, G.1
Perdisci, R.2
Del Rio, M.3
Roli, F.4
-
21
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Z. Zheng, X. Wu, and R. Srihari Feature selection for text categorization on imbalanced data SIGKDD Explor. Newsl. 6 1 2004 80 89
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
-
22
-
-
45849098303
-
An information granulation based data mining approach for classifying imbalanced data
-
M.-C. Chen, L.-S. Chen, C.-C. Hsu, and W.-R. Zeng An information granulation based data mining approach for classifying imbalanced data Inf. Sci. 178 2008 3214 3227
-
(2008)
Inf. Sci.
, vol.178
, pp. 3214-3227
-
-
Chen, M.-C.1
Chen, L.-S.2
Hsu, C.-C.3
Zeng, W.-R.4
-
23
-
-
61549114384
-
SVMs modeling for highly imbalanced classification
-
Y. Tang, Y. Zhang, N. Chawla, and S. Krasser SVMs modeling for highly imbalanced classification IEEE Trans. Syst. Man Cybern. Part B 39 1 2009 281 288
-
(2009)
IEEE Trans. Syst. Man Cybern. Part B
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.2
Chawla, N.3
Krasser, S.4
-
24
-
-
40649126091
-
Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
-
M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lob, and J.A. Baker Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance Neural Networks 21 2008 427 436
-
(2008)
Neural Networks
, vol.21
, pp. 427-436
-
-
Mazurowski, M.A.1
Habas, P.A.2
Zurada, J.M.3
Lob, J.Y.4
Baker, J.A.5
-
27
-
-
20844441675
-
KBA: Kernel boundary alignment considering imbalanced data distribution
-
DOI 10.1109/TKDE.2005.95
-
G. Wu, and E.Y. Chang KBA: kernel boundary alignment considering imbalanced data distribution IEEE Trans. Knowl. Data Eng. 17 6 2005 786 795 (Pubitemid 40860458)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.6
, pp. 786-795
-
-
Wu, G.1
Chang, E.Y.2
|