메뉴 건너뛰기




Volumn 31, Issue , 2016, Pages 26-42

Improved classification with allocation method and multiple classifiers

Author keywords

Allocation; Anomaly detection; Classification; Ensemble methods

Indexed keywords

ADAPTIVE BOOSTING; ALGORITHMS; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; SIGNAL DETECTION;

EID: 84954187617     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2015.12.006     Document Type: Article
Times cited : (21)

References (51)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D. Aha, D. Kibler Instance-based learning algorithms Mach. Learn. 6 1991 37 66
    • (1991) Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 1996 123 140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 5
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • R.T. Clemen Combining forecasts: a review and annotated bibliography Int. J. Forecast. 5 1989 559 583
    • (1989) Int. J. Forecast. , vol.5 , pp. 559-583
    • Clemen, R.T.1
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, V. Vapnik Support-vector networks Mach. Learn. 20 1995 273 297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 8
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer
    • T.G. Dietterich Ensemble methods in machine learning in: Mult. Classif. Syst. 2000 Springer 1 15
    • (2000) Mult. Classif. Syst. , pp. 1-15
    • Dietterich, T.G.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci. 55 1997 119 139
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman The use of ranks to avoid the assumption of normality implicit in the analysis of variance J. Am. Stat. Assoc. 32 1937 675 701
    • (1937) J. Am. Stat. Assoc. , vol.32 , pp. 675-701
    • Friedman, M.1
  • 13
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • M. Galar, A. Fernández, E. Barrenechea, F. Herrera EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling Pattern Recognit. 46 2013 3460 3471
    • (2013) Pattern Recognit. , vol.46 , pp. 3460-3471
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Herrera, F.4
  • 15
    • 0033207482 scopus 로고    scopus 로고
    • Combining predictors: Comparison of five meta machine learning methods
    • J.V. Hansen Combining predictors: comparison of five meta machine learning methods Inf. Sci. 119 1999 91 105
    • (1999) Inf. Sci. , vol.119 , pp. 91-105
    • Hansen, J.V.1
  • 17
    • 65049087517 scopus 로고    scopus 로고
    • A divide-and-conquer recursive approach for scaling up instance selection algorithms
    • A. de Haro-García, N. García-Pedrajas A divide-and-conquer recursive approach for scaling up instance selection algorithms Data Min. Knowl. Discov. 18 2008 392 418
    • (2008) Data Min. Knowl. Discov. , vol.18 , pp. 392-418
    • De Haro-García, A.1    García-Pedrajas, N.2
  • 18
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • S. Hashem optimal linear combinations of neural networks Neural Networks. 10 1997 599 614
    • (1997) Neural Networks. , vol.10 , pp. 599-614
    • Hashem, S.1
  • 19
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm A simple sequentially rejective multiple test procedure Scand. J. Stat. 1979 65 70
    • (1979) Scand. J. Stat. , pp. 65-70
    • Holm, S.1
  • 20
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • R.C. Holte Very simple classification rules perform well on most commonly used datasets Mach. Learn. 11 1993 63 91
    • (1993) Mach. Learn. , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 24
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • M.I. Jordan, R.A. Jacobs Hierarchical mixtures of experts and the EM algorithm Neural Comput. 6 1994 181 214
    • (1994) Neural Comput. , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 27
    • 84894427964 scopus 로고    scopus 로고
    • Clustering-based ensembles for one-class classification
    • B. Krawczyk, M. Woźniak, B. Cyganek Clustering-based ensembles for one-class classification Inf. Sci. 264 2014 182 195
    • (2014) Inf. Sci. , vol.264 , pp. 182-195
    • Krawczyk, B.1    Woźniak, M.2    Cyganek, B.3
  • 28
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • A. Krogh, J. Vedelsby Neural network ensembles, cross validation, and active learning Adv. Neural Inf. Process. Syst. 1995 231 238
    • (1995) Adv. Neural Inf. Process. Syst. , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 31
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • H.B. Mann, D.R. Whitney On a test of whether one of two random variables is stochastically larger than the other Ann. Math. Stat. 18 1947 50 60
    • (1947) Ann. Math. Stat. , vol.18 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 33
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • D.W. Opitz, J.W. Shavlik Generating accurate and diverse members of a neural-network ensemble Adv. Neural Inf. Process. Syst. 8 1996 535 541
    • (1996) Adv. Neural Inf. Process. Syst. , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 34
    • 0012476755 scopus 로고    scopus 로고
    • Arbitrating among competing classifiers using learned referees
    • J. Ortega, M. Koppel, S. Argamon Arbitrating among competing classifiers using learned referees Knowl. Inf. Syst. 3 2001 470 490
    • (2001) Knowl. Inf. Syst. , vol.3 , pp. 470-490
    • Ortega, J.1    Koppel, M.2    Argamon, S.3
  • 38
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • L. Rokach Ensemble-based classifiers Artif. Intell. Rev. 33 2010 1 39
    • (2010) Artif. Intell. Rev. , vol.33 , pp. 1-39
    • Rokach, L.1
  • 42
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • J. Shawe-Taylor, S. Sun A review of optimization methodologies in support vector machines Neurocomputing. 74 2011 3609 3618
    • (2011) Neurocomputing. , vol.74 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 44
    • 33745913300 scopus 로고    scopus 로고
    • Data reduction for instance-based learning using entropy-based partitioning
    • Springer
    • S.-H. Son, J.-Y. Kim Data reduction for instance-based learning using entropy-based partitioning Computer Science and its Applications 2006 Springer 590 599
    • (2006) Computer Science and Its Applications , pp. 590-599
    • Son, S.-H.1    Kim, J.-Y.2
  • 45
    • 84874114774 scopus 로고    scopus 로고
    • Toward a more practical unsupervised anomaly detection system
    • J. Song, H. Takakura, Y. Okabe, K. Nakao Toward a more practical unsupervised anomaly detection system Inf. Sci. 231 2013 4 14
    • (2013) Inf. Sci. , vol.231 , pp. 4-14
    • Song, J.1    Takakura, H.2    Okabe, Y.3    Nakao, K.4
  • 46
    • 71549152834 scopus 로고    scopus 로고
    • Local within-class accuracies for weighting individual outputs in multiple classifier systems
    • S. Sun Local within-class accuracies for weighting individual outputs in multiple classifier systems Pattern Recognit. Lett. 31 2010 119 124
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 119-124
    • Sun, S.1
  • 47
    • 34548481316 scopus 로고    scopus 로고
    • Subspace ensembles for classification
    • S. Sun, C. Zhang Subspace ensembles for classification Phys. Stat. Mech. Appl. 385 2007 199 207
    • (2007) Phys. Stat. Mech. Appl. , vol.385 , pp. 199-207
    • Sun, S.1    Zhang, C.2
  • 48
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • G.I. Webb Multiboosting: a technique for combining boosting and wagging Mach. Learn. 40 2000 159 196
    • (2000) Mach. Learn. , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 49
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert Stacked generalization Neural Netw. 5 1992 241 259
    • (1992) Neural Netw. , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 50
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Woźniak, M. Graña, E. Corchado A survey of multiple classifier systems as hybrid systems Inf. Fusion. 16 2014 3 17
    • (2014) Inf. Fusion. , vol.16 , pp. 3-17
    • Woźniak, M.1    Graña, M.2    Corchado, E.3
  • 51
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering
    • Zhuowen Tu Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering in: Proceedings of the Tenth IEEE International Conference on Computer Vision Vol. 1, IEEE 2 2005 1589 1596
    • (2005) Proceedings of the Tenth IEEE International Conference on Computer Vision Vol. 1, IEEE , vol.2 , pp. 1589-1596
    • Tu, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.