-
2
-
-
10444241978
-
Ensemble diversity measures and their application to thinning
-
R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Ensemble diversity measures and their application to thinning. Information Fusion, 6(1):49-62, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 49-62
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
3
-
-
70350700681
-
New ensemble methods for evolving data streams
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldá. New ensemble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pages 139-148, 2009.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavaldá, R.5
-
4
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
9
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40:2:139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
10
-
-
33750313729
-
Is random model better? On its accuracy and efficiency
-
W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? on its accuracy and efficiency. In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 51-58, 2003.
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining
, pp. 51-58
-
-
Fan, W.1
Wang, H.2
Yu, P.S.3
Ma, S.4
-
11
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
13
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
15
-
-
60349092310
-
An analysis of ensemble pruning techniques based on ordered aggregation
-
G. Martínez-Munoz, D. Hernández-Lobato, and A. Suárez. An analysis of ensemble pruning techniques based on ordered aggregation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):245-259, 2009.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, Issue.2
, pp. 245-259
-
-
Martínez-Munoz, G.1
Hernández-Lobato, D.2
Suárez, A.3
-
21
-
-
0026692226
-
Stacked generalization
-
D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241-259, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
22
-
-
37549018049
-
Top 10 algorithms in data mining
-
X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1-37, 2008.
-
(2008)
Knowledge and Information Systems
, vol.14
, Issue.1
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
25
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1-2):239-263, 2002.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|