-
1
-
-
0023492894
-
Regulation of DNA replication during Drosophila development
-
Spradling A., Orr-Weaver T. Regulation of DNA replication during Drosophila development. Annu. Rev. Genet. 1987, 21:373-403.
-
(1987)
Annu. Rev. Genet.
, vol.21
, pp. 373-403
-
-
Spradling, A.1
Orr-Weaver, T.2
-
2
-
-
77957740230
-
Evolving views of DNA replication (in)fidelity
-
Kunkel T.A. Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. 2009, 74:91-101.
-
(2009)
Cold Spring Harb. Symp.
, vol.74
, pp. 91-101
-
-
Kunkel, T.A.1
-
4
-
-
0031042722
-
Choosing the right sugar: how polymerases select a nucleotide substrate
-
Joyce C.M. Choosing the right sugar: how polymerases select a nucleotide substrate. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:1619-1622.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 1619-1622
-
-
Joyce, C.M.1
-
5
-
-
0032584219
-
A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides
-
Astatke M., et al. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:3402-3407.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 3402-3407
-
-
Astatke, M.1
-
6
-
-
77950406088
-
Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases
-
Nick McElhinny S.A., et al. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4949-4954.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 4949-4954
-
-
Nick McElhinny, S.A.1
-
7
-
-
42949119884
-
Division of labor at the eukaryotic replication fork
-
Nick McElhinny S.A., et al. Division of labor at the eukaryotic replication fork. Mol. Cell 2008, 30:137-144.
-
(2008)
Mol. Cell
, vol.30
, pp. 137-144
-
-
Nick McElhinny, S.A.1
-
8
-
-
77956921247
-
Genome instability due to ribonucleotide incorporation into DNA
-
Nick McElhinny S.A., et al. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 2010, 6:774-781.
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 774-781
-
-
Nick McElhinny, S.A.1
-
9
-
-
84902074659
-
Ribonucleotides in DNA: origins, repair and consequences
-
Williams J.S., Kunkel T.A. Ribonucleotides in DNA: origins, repair and consequences. DNA Rep. 2014, 19:27-37.
-
(2014)
DNA Rep.
, vol.19
, pp. 27-37
-
-
Williams, J.S.1
Kunkel, T.A.2
-
10
-
-
0034704124
-
Multiple amino acid substitutions allow DNA polymerases to synthesize RNA
-
Patel P.H., Loeb L.A. Multiple amino acid substitutions allow DNA polymerases to synthesize RNA. J. Biol. Chem. 2000, 275:40266-40272.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 40266-40272
-
-
Patel, P.H.1
Loeb, L.A.2
-
11
-
-
79951620951
-
Unlocking the sugar "steric gate" of DNA polymerases
-
Brown J.A., Suo Z. Unlocking the sugar "steric gate" of DNA polymerases. Biochemistry 2011, 50:1135-1142.
-
(2011)
Biochemistry
, vol.50
, pp. 1135-1142
-
-
Brown, J.A.1
Suo, Z.2
-
12
-
-
73149091205
-
A novel mechanism of sugar selection utilized by a human X-family DNA polymerase
-
Brown J.A., et al. A novel mechanism of sugar selection utilized by a human X-family DNA polymerase. J. Mol. Biol. 2010, 395:282-290.
-
(2010)
J. Mol. Biol.
, vol.395
, pp. 282-290
-
-
Brown, J.A.1
-
13
-
-
84899860411
-
Structure-function studies of DNA polymerase λ
-
Bebenek K., et al. Structure-function studies of DNA polymerase λ. Biochemistry 2014, 53:2781-2792.
-
(2014)
Biochemistry
, vol.53
, pp. 2781-2792
-
-
Bebenek, K.1
-
14
-
-
80052401675
-
Molecular insights into DNA polymerase deterrents for ribonucleotide insertion
-
Cavanaugh N.A., et al. Molecular insights into DNA polymerase deterrents for ribonucleotide insertion. J. Biol. Chem. 2011, 286:31650-31660.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 31650-31660
-
-
Cavanaugh, N.A.1
-
15
-
-
84865245346
-
Structural factors that determine selectivity of a high fidelity DNA polymerase for deoxy-, dideoxy-, and ribonucleotides
-
Wang W., et al. Structural factors that determine selectivity of a high fidelity DNA polymerase for deoxy-, dideoxy-, and ribonucleotides. J. Biol. Chem. 2012, 287:28215-28226.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 28215-28226
-
-
Wang, W.1
-
16
-
-
0034805293
-
In vivo consequences of putative active site mutations in yeast DNA polymerases α, ε, δ, and ζ
-
Pavlov Y.I., et al. In vivo consequences of putative active site mutations in yeast DNA polymerases α, ε, δ, and ζ. Genetics 2001, 159:47-64.
-
(2001)
Genetics
, vol.159
, pp. 47-64
-
-
Pavlov, Y.I.1
-
17
-
-
34447336941
-
Yeast DNA polymerase ε participates in leading-strand DNA replication
-
Pursell Z.F., et al. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 2007, 317:127-130.
-
(2007)
Science
, vol.317
, pp. 127-130
-
-
Pursell, Z.F.1
-
18
-
-
84940552711
-
Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae
-
Donigan K.A., et al. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. DNA Rep. 2015, 35:1-12.
-
(2015)
DNA Rep.
, vol.35
, pp. 1-12
-
-
Donigan, K.A.1
-
19
-
-
84897457858
-
The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity
-
Donigan K.A., et al. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity. J. Biol. Chem. 2014, 289:9136-9145.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 9136-9145
-
-
Donigan, K.A.1
-
20
-
-
0037379215
-
Polymerase Mu Is a DNA-directed DNA/RNA polymerase
-
Nick McElhinny S.A., Ramsden D.A. Polymerase Mu Is a DNA-directed DNA/RNA polymerase. Mol. Cell. Biol. 2003, 23:2309-2315.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 2309-2315
-
-
Nick McElhinny, S.A.1
Ramsden, D.A.2
-
21
-
-
0035903113
-
Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides
-
Boulé J-B., et al. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J. Biol. Chem. 2001, 276:31388-31393.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 31388-31393
-
-
Boulé, J.-B.1
-
22
-
-
84872485372
-
Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ
-
Clausen A.R., et al. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ. DNA Rep. 2013, 12:121-127.
-
(2013)
DNA Rep.
, vol.12
, pp. 121-127
-
-
Clausen, A.R.1
-
23
-
-
84864309091
-
Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ε
-
Williams J.S., et al. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ε. DNA Rep. 2012, 11:649-656.
-
(2012)
DNA Rep.
, vol.11
, pp. 649-656
-
-
Williams, J.S.1
-
24
-
-
0345188651
-
A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type φ29 DNA polymerase1
-
Bonnin A., et al. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type φ29 DNA polymerase1. J. Mol. Biol. 1999, 290:241-251.
-
(1999)
J. Mol. Biol.
, vol.290
, pp. 241-251
-
-
Bonnin, A.1
-
25
-
-
0035979380
-
3'-5' Exonucleolytic activity of DNA polymerases: structural features that allow kinetic discrimination between ribo- and deoxyribonucleotide residues
-
Lin T.C., et al. 3'-5' Exonucleolytic activity of DNA polymerases: structural features that allow kinetic discrimination between ribo- and deoxyribonucleotide residues. Biochemistry 2001, 40:8749-8755.
-
(2001)
Biochemistry
, vol.40
, pp. 8749-8755
-
-
Lin, T.C.1
-
26
-
-
80052407884
-
Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase
-
Kasiviswanathan R., Copeland W.C. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J. Biol. Chem. 2011, 286:31490-31500.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 31490-31500
-
-
Kasiviswanathan, R.1
Copeland, W.C.2
-
27
-
-
79960698210
-
Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases
-
Watt D.L., et al. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Rep. 2011, 10:897-902.
-
(2011)
DNA Rep.
, vol.10
, pp. 897-902
-
-
Watt, D.L.1
-
28
-
-
84885812982
-
Structure-function analysis of ribonucleotide bypass by B family DNA replicases
-
Clausen A.R., et al. Structure-function analysis of ribonucleotide bypass by B family DNA replicases. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:16802-16807.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 16802-16807
-
-
Clausen, A.R.1
-
29
-
-
84871125561
-
Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides
-
Göksenin A.Y., et al. Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides. J. Biol. Chem. 2012, 287:42675-42684.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42675-42684
-
-
Göksenin, A.Y.1
-
30
-
-
77955297664
-
DNA polymerase β ribonucleotide discrimination insertion, misinsertion, extension, and coding
-
Cavanaugh N.A., et al. DNA polymerase β ribonucleotide discrimination insertion, misinsertion, extension, and coding. J. Biol. Chem. 2010, 285:24457-24465.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 24457-24465
-
-
Cavanaugh, N.A.1
-
31
-
-
84867286627
-
The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ
-
Gosavi R.A., et al. The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ. Nucleic Acids Res. 2012, 40:7518-7527.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 7518-7527
-
-
Gosavi, R.A.1
-
32
-
-
84900340576
-
Ribonucleotide incorporation by yeast DNA polymerase ζ
-
Makarova A.V., et al. Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Rep. 2014, 18:63-67.
-
(2014)
DNA Rep.
, vol.18
, pp. 63-67
-
-
Makarova, A.V.1
-
33
-
-
84855881475
-
RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA
-
Lazzaro F., et al. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 2012, 45:99-110.
-
(2012)
Mol. Cell
, vol.45
, pp. 99-110
-
-
Lazzaro, F.1
-
34
-
-
0037423223
-
Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
-
Chabes A., et al. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 2003, 112:391-401.
-
(2003)
Cell
, vol.112
, pp. 391-401
-
-
Chabes, A.1
-
35
-
-
84921524749
-
Pre-steady state kinetic analysis of HIV-1 reverse transcriptase for non-canonical ribonucleoside triphosphate incorporation and DNA synthesis from ribonucleoside-containing DNA template
-
Nguyen L.A., et al. Pre-steady state kinetic analysis of HIV-1 reverse transcriptase for non-canonical ribonucleoside triphosphate incorporation and DNA synthesis from ribonucleoside-containing DNA template. Antivir. Res. 2015, 115:75-82.
-
(2015)
Antivir. Res.
, vol.115
, pp. 75-82
-
-
Nguyen, L.A.1
-
36
-
-
78649858731
-
Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages
-
Kennedy E.M., et al. Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J. Biol. Chem. 2010, 285:39380-39391.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 39380-39391
-
-
Kennedy, E.M.1
-
37
-
-
84862777555
-
SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates
-
Lahouassa H., et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012, 13:223-228.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 223-228
-
-
Lahouassa, H.1
-
38
-
-
0027213005
-
Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA
-
Eder P.S., et al. Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. Biochimie 1993, 75:123-126.
-
(1993)
Biochimie
, vol.75
, pp. 123-126
-
-
Eder, P.S.1
-
39
-
-
0037168516
-
Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts
-
Rydberg B., Game J. Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:16654-16659.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 16654-16659
-
-
Rydberg, B.1
Game, J.2
-
40
-
-
84866851215
-
RNase H2-initiated ribonucleotide excision repair
-
Sparks J.L., et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 2012, 47:980-986.
-
(2012)
Mol. Cell
, vol.47
, pp. 980-986
-
-
Sparks, J.L.1
-
42
-
-
84938118060
-
Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication
-
Holmes J.B., et al. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:9334-9339.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 9334-9339
-
-
Holmes, J.B.1
-
43
-
-
84887141327
-
Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair
-
Ghodgaonkar M.M., et al. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol. Cell 2013, 50:323-332.
-
(2013)
Mol. Cell
, vol.50
, pp. 323-332
-
-
Ghodgaonkar, M.M.1
-
44
-
-
84887156806
-
Ribonucleotides are signals for mismatch repair of leading-strand replication errors
-
Lujan S.A., et al. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 2013, 50:437-443.
-
(2013)
Mol. Cell
, vol.50
, pp. 437-443
-
-
Lujan, S.A.1
-
45
-
-
58549086990
-
Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex
-
Chon H., et al. Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex. Nucleic Acids Res. 2009, 37:96-110.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 96-110
-
-
Chon, H.1
-
46
-
-
79955993911
-
PCNA directs type 2 RNase H activity on DNA replication and repair substrates
-
Bubeck D., et al. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res. 2011, 39:3652-3666.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 3652-3666
-
-
Bubeck, D.1
-
47
-
-
77950466824
-
The structure of the mammalian RNase H2 complex provides insight into RNA DNA hybrid processing to prevent immune dysfunction
-
Shaban N.M., et al. The structure of the mammalian RNase H2 complex provides insight into RNA DNA hybrid processing to prevent immune dysfunction. J. Biol. Chem. 2010, 285:3617-3624.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3617-3624
-
-
Shaban, N.M.1
-
48
-
-
79953170528
-
The structural and biochemical characterization of human RNase H2 complex reveals the molecular basis for substrate recognition and Aicardi-Goutières syndrome defects
-
Figiel M., et al. The structural and biochemical characterization of human RNase H2 complex reveals the molecular basis for substrate recognition and Aicardi-Goutières syndrome defects. J. Biol. Chem. 2011, 286:10540-10550.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10540-10550
-
-
Figiel, M.1
-
49
-
-
79953223802
-
The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease
-
Reijns M.A.M., et al. The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. J. Biol. Chem. 2011, 286:10530-10539.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10530-10539
-
-
Reijns, M.A.M.1
-
50
-
-
0033756041
-
The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair
-
Arudchandran A., et al. The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 2000, 5:789-802.
-
(2000)
Genes Cells
, vol.5
, pp. 789-802
-
-
Arudchandran, A.1
-
51
-
-
84861578543
-
Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development
-
Reijns M.A.M., et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 2012, 149:1008-1022.
-
(2012)
Cell
, vol.149
, pp. 1008-1022
-
-
Reijns, M.A.M.1
-
52
-
-
84924180985
-
Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
-
Clausen A.R., et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Mol. Biol. 2015, 22:185-191.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 185-191
-
-
Clausen, A.R.1
-
53
-
-
84924072858
-
Lagging-strand replication shapes the mutational landscape of the genome
-
Reijns M.A.M., et al. Lagging-strand replication shapes the mutational landscape of the genome. Nature 2015, 518:502-506.
-
(2015)
Nature
, vol.518
, pp. 502-506
-
-
Reijns, M.A.M.1
-
54
-
-
84923844518
-
Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA
-
Koh K.D., et al. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat. Methods 2015, 12:251-257.
-
(2015)
Nat. Methods
, vol.12
, pp. 251-257
-
-
Koh, K.D.1
-
55
-
-
84924198688
-
A global profile of replicative polymerase usage
-
Daigaku Y., et al. A global profile of replicative polymerase usage. Nat. Struct. Mol. Biol. 2015, 22:192-198.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 192-198
-
-
Daigaku, Y.1
-
56
-
-
79959504063
-
Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I
-
Kim N., et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 2011, 332:1561-1564.
-
(2011)
Science
, vol.332
, pp. 1561-1564
-
-
Kim, N.1
-
57
-
-
84929660851
-
Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides
-
Sparks J.L., Burgers P.M. Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides. EMBO J. 2015, 34:1259-1269.
-
(2015)
EMBO J.
, vol.34
, pp. 1259-1269
-
-
Sparks, J.L.1
Burgers, P.M.2
-
58
-
-
84875370144
-
Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast
-
Cho J.E., et al. Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast. DNA Rep. 2013, 12:205-211.
-
(2013)
DNA Rep.
, vol.12
, pp. 205-211
-
-
Cho, J.E.1
-
59
-
-
84946963032
-
Elevated genome-wide instability in yeast mutants lacking RNase H activity
-
O'Connell K., et al. Elevated genome-wide instability in yeast mutants lacking RNase H activity. Genetics 2015, 201:963-975.
-
(2015)
Genetics
, vol.201
, pp. 963-975
-
-
O'Connell, K.1
-
60
-
-
84899974459
-
Replication-induced supercoiling: a neglected DNA transaction regulator?
-
Yu H., Dröge P. Replication-induced supercoiling: a neglected DNA transaction regulator?. Trends Biochem. Sci. 2014, 39:219-220.
-
(2014)
Trends Biochem. Sci.
, vol.39
, pp. 219-220
-
-
Yu, H.1
Dröge, P.2
-
61
-
-
84926408181
-
Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific
-
Williams J.S., et al. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat. Struct. Mol. Biol. 2015, 22:291-297.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 291-297
-
-
Williams, J.S.1
-
62
-
-
84876829295
-
Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA
-
Williams J.S., et al. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 2013, 49:1010-1015.
-
(2013)
Mol. Cell
, vol.49
, pp. 1010-1015
-
-
Williams, J.S.1
-
63
-
-
84930226445
-
Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites
-
Huang S.Y.N., et al. Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites. J. Biol. Chem. 2015, 290:14068-14076.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 14068-14076
-
-
Huang, S.Y.N.1
-
64
-
-
84904248751
-
Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms
-
Potenski C.J., et al. Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 2014, 511:251-254.
-
(2014)
Nature
, vol.511
, pp. 251-254
-
-
Potenski, C.J.1
-
65
-
-
61349102407
-
Ribonuclease H: the enzymes in eukaryotes
-
Cerritelli S.M., Crouch R.J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 2009, 276:1494-1505.
-
(2009)
FEBS J.
, vol.276
, pp. 1494-1505
-
-
Cerritelli, S.M.1
Crouch, R.J.2
-
66
-
-
0023433855
-
Supercoiling of the DNA template during transcription
-
Liu L.F., Wang J.C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U.S.A. 1987, 84:7024-7027.
-
(1987)
Proc. Natl. Acad. Sci. U.S.A.
, vol.84
, pp. 7024-7027
-
-
Liu, L.F.1
Wang, J.C.2
-
67
-
-
77954841539
-
Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis
-
El Hage A., et al. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 2010, 24:1546-1558.
-
(2010)
Genes Dev.
, vol.24
, pp. 1546-1558
-
-
El Hage, A.1
-
68
-
-
78751519300
-
Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes
-
French S.L., et al. Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol. Cell. Biol. 2011, 31:482-494.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 482-494
-
-
French, S.L.1
-
69
-
-
84949641164
-
Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter
-
Cho J-E., et al. Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter. Nucleic Acids Res. 2015, 43:9306-9313.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 9306-9313
-
-
Cho, J.-E.1
-
71
-
-
84862776917
-
Intrinsic coupling of lagging-strand synthesis to chromatin assembly
-
Smith D.J., Whitehouse I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 2012, 483:434-438.
-
(2012)
Nature
, vol.483
, pp. 434-438
-
-
Smith, D.J.1
Whitehouse, I.2
-
72
-
-
84941591742
-
The DNA-binding domain of Mrc1 (Claspin) acts to enhance stalling at replication barriers
-
Zech J., et al. The DNA-binding domain of Mrc1 (Claspin) acts to enhance stalling at replication barriers. PLoS ONE 2015, 10:e0132595.
-
(2015)
PLoS ONE
, vol.10
, pp. e0132595
-
-
Zech, J.1
-
73
-
-
84871809104
-
Defining the epigenetic mechanism of asymmetric cell division of Schizosaccharomyces japonicus yeast
-
Yu C., et al. Defining the epigenetic mechanism of asymmetric cell division of Schizosaccharomyces japonicus yeast. Genetics 2013, 193:85-94.
-
(2013)
Genetics
, vol.193
, pp. 85-94
-
-
Yu, C.1
-
74
-
-
0011467525
-
The presence of ribonucleotides in mature closed-circular mitochondrial DNA
-
Grossman L.I., et al. The presence of ribonucleotides in mature closed-circular mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 1973, 70:3339-3343.
-
(1973)
Proc. Natl. Acad. Sci. U.S.A.
, vol.70
, pp. 3339-3343
-
-
Grossman, L.I.1
-
75
-
-
0015421991
-
Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin
-
Keller W., Crouch R. Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin. Proc. Natl. Acad. Sci. U.S.A. 1972, 69:3360-3364.
-
(1972)
Proc. Natl. Acad. Sci. U.S.A.
, vol.69
, pp. 3360-3364
-
-
Keller, W.1
Crouch, R.2
-
76
-
-
0345354684
-
Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice
-
Cerritelli S.M., et al. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol. Cell 2003, 11:807-815.
-
(2003)
Mol. Cell
, vol.11
, pp. 807-815
-
-
Cerritelli, S.M.1
-
77
-
-
84908343019
-
Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria
-
El Hage A., et al. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet. 2014, 10:e1004716.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004716
-
-
El Hage, A.1
-
78
-
-
77956908672
-
The end of the circle for yeast mitochondrial DNA
-
Bendich A.J. The end of the circle for yeast mitochondrial DNA. Mol. Cell 2010, 39:831-832.
-
(2010)
Mol. Cell
, vol.39
, pp. 831-832
-
-
Bendich, A.J.1
-
79
-
-
84866462296
-
Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity
-
Hiller B., et al. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 2012, 209:1419-1426.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1419-1426
-
-
Hiller, B.1
-
80
-
-
33746522835
-
Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection
-
Crow Y.J., et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 2006, 38:910-916.
-
(2006)
Nat. Genet.
, vol.38
, pp. 910-916
-
-
Crow, Y.J.1
-
81
-
-
84920413492
-
Defective removal of ribonucleotides from DNA promotes systemic autoimmunity
-
Günther C., et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 2015, 125:413-424.
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 413-424
-
-
Günther, C.1
-
82
-
-
84938907605
-
Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome
-
Lim Y.W., et al. Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome. Elife 2015, 4:08007.
-
(2015)
Elife
, vol.4
, pp. 08007
-
-
Lim, Y.W.1
-
83
-
-
84946926616
-
Stimulation of chromosomal rearrangements by ribonucleotides
-
Conover H.N., et al. Stimulation of chromosomal rearrangements by ribonucleotides. Genetics 2015, 201:951-961.
-
(2015)
Genetics
, vol.201
, pp. 951-961
-
-
Conover, H.N.1
-
84
-
-
84876363526
-
RNase H2 roles in genome integrity revealed by unlinking its activities
-
Chon H., et al. RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res. 2013, 41:3130-3143.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 3130-3143
-
-
Chon, H.1
|