메뉴 건너뛰기




Volumn 41, Issue 5, 2016, Pages 434-445

The Balancing Act of Ribonucleotides in DNA

Author keywords

Aicardi Gouti res syndrome; DNA polymerase; RER; RNase H2; Steric gate; Systemic lupus erythematosus

Indexed keywords

DNA; DNA POLYMERASE; RIBONUCLEASE; RIBONUCLEOTIDE; DNA DIRECTED DNA POLYMERASE; NUCLEOSOME; RIBONUCLEASE H; RIBONUCLEASE HII;

EID: 84961218847     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.02.005     Document Type: Review
Times cited : (64)

References (84)
  • 1
    • 0023492894 scopus 로고
    • Regulation of DNA replication during Drosophila development
    • Spradling A., Orr-Weaver T. Regulation of DNA replication during Drosophila development. Annu. Rev. Genet. 1987, 21:373-403.
    • (1987) Annu. Rev. Genet. , vol.21 , pp. 373-403
    • Spradling, A.1    Orr-Weaver, T.2
  • 2
    • 77957740230 scopus 로고    scopus 로고
    • Evolving views of DNA replication (in)fidelity
    • Kunkel T.A. Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. 2009, 74:91-101.
    • (2009) Cold Spring Harb. Symp. , vol.74 , pp. 91-101
    • Kunkel, T.A.1
  • 4
    • 0031042722 scopus 로고    scopus 로고
    • Choosing the right sugar: how polymerases select a nucleotide substrate
    • Joyce C.M. Choosing the right sugar: how polymerases select a nucleotide substrate. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:1619-1622.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 1619-1622
    • Joyce, C.M.1
  • 5
    • 0032584219 scopus 로고    scopus 로고
    • A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides
    • Astatke M., et al. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:3402-3407.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 3402-3407
    • Astatke, M.1
  • 6
    • 77950406088 scopus 로고    scopus 로고
    • Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases
    • Nick McElhinny S.A., et al. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4949-4954.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4949-4954
    • Nick McElhinny, S.A.1
  • 7
    • 42949119884 scopus 로고    scopus 로고
    • Division of labor at the eukaryotic replication fork
    • Nick McElhinny S.A., et al. Division of labor at the eukaryotic replication fork. Mol. Cell 2008, 30:137-144.
    • (2008) Mol. Cell , vol.30 , pp. 137-144
    • Nick McElhinny, S.A.1
  • 8
    • 77956921247 scopus 로고    scopus 로고
    • Genome instability due to ribonucleotide incorporation into DNA
    • Nick McElhinny S.A., et al. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 2010, 6:774-781.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 774-781
    • Nick McElhinny, S.A.1
  • 9
    • 84902074659 scopus 로고    scopus 로고
    • Ribonucleotides in DNA: origins, repair and consequences
    • Williams J.S., Kunkel T.A. Ribonucleotides in DNA: origins, repair and consequences. DNA Rep. 2014, 19:27-37.
    • (2014) DNA Rep. , vol.19 , pp. 27-37
    • Williams, J.S.1    Kunkel, T.A.2
  • 10
    • 0034704124 scopus 로고    scopus 로고
    • Multiple amino acid substitutions allow DNA polymerases to synthesize RNA
    • Patel P.H., Loeb L.A. Multiple amino acid substitutions allow DNA polymerases to synthesize RNA. J. Biol. Chem. 2000, 275:40266-40272.
    • (2000) J. Biol. Chem. , vol.275 , pp. 40266-40272
    • Patel, P.H.1    Loeb, L.A.2
  • 11
    • 79951620951 scopus 로고    scopus 로고
    • Unlocking the sugar "steric gate" of DNA polymerases
    • Brown J.A., Suo Z. Unlocking the sugar "steric gate" of DNA polymerases. Biochemistry 2011, 50:1135-1142.
    • (2011) Biochemistry , vol.50 , pp. 1135-1142
    • Brown, J.A.1    Suo, Z.2
  • 12
    • 73149091205 scopus 로고    scopus 로고
    • A novel mechanism of sugar selection utilized by a human X-family DNA polymerase
    • Brown J.A., et al. A novel mechanism of sugar selection utilized by a human X-family DNA polymerase. J. Mol. Biol. 2010, 395:282-290.
    • (2010) J. Mol. Biol. , vol.395 , pp. 282-290
    • Brown, J.A.1
  • 13
    • 84899860411 scopus 로고    scopus 로고
    • Structure-function studies of DNA polymerase λ
    • Bebenek K., et al. Structure-function studies of DNA polymerase λ. Biochemistry 2014, 53:2781-2792.
    • (2014) Biochemistry , vol.53 , pp. 2781-2792
    • Bebenek, K.1
  • 14
    • 80052401675 scopus 로고    scopus 로고
    • Molecular insights into DNA polymerase deterrents for ribonucleotide insertion
    • Cavanaugh N.A., et al. Molecular insights into DNA polymerase deterrents for ribonucleotide insertion. J. Biol. Chem. 2011, 286:31650-31660.
    • (2011) J. Biol. Chem. , vol.286 , pp. 31650-31660
    • Cavanaugh, N.A.1
  • 15
    • 84865245346 scopus 로고    scopus 로고
    • Structural factors that determine selectivity of a high fidelity DNA polymerase for deoxy-, dideoxy-, and ribonucleotides
    • Wang W., et al. Structural factors that determine selectivity of a high fidelity DNA polymerase for deoxy-, dideoxy-, and ribonucleotides. J. Biol. Chem. 2012, 287:28215-28226.
    • (2012) J. Biol. Chem. , vol.287 , pp. 28215-28226
    • Wang, W.1
  • 16
    • 0034805293 scopus 로고    scopus 로고
    • In vivo consequences of putative active site mutations in yeast DNA polymerases α, ε, δ, and ζ
    • Pavlov Y.I., et al. In vivo consequences of putative active site mutations in yeast DNA polymerases α, ε, δ, and ζ. Genetics 2001, 159:47-64.
    • (2001) Genetics , vol.159 , pp. 47-64
    • Pavlov, Y.I.1
  • 17
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase ε participates in leading-strand DNA replication
    • Pursell Z.F., et al. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 2007, 317:127-130.
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1
  • 18
    • 84940552711 scopus 로고    scopus 로고
    • Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae
    • Donigan K.A., et al. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. DNA Rep. 2015, 35:1-12.
    • (2015) DNA Rep. , vol.35 , pp. 1-12
    • Donigan, K.A.1
  • 19
    • 84897457858 scopus 로고    scopus 로고
    • The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity
    • Donigan K.A., et al. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity. J. Biol. Chem. 2014, 289:9136-9145.
    • (2014) J. Biol. Chem. , vol.289 , pp. 9136-9145
    • Donigan, K.A.1
  • 20
    • 0037379215 scopus 로고    scopus 로고
    • Polymerase Mu Is a DNA-directed DNA/RNA polymerase
    • Nick McElhinny S.A., Ramsden D.A. Polymerase Mu Is a DNA-directed DNA/RNA polymerase. Mol. Cell. Biol. 2003, 23:2309-2315.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 2309-2315
    • Nick McElhinny, S.A.1    Ramsden, D.A.2
  • 21
    • 0035903113 scopus 로고    scopus 로고
    • Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides
    • Boulé J-B., et al. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J. Biol. Chem. 2001, 276:31388-31393.
    • (2001) J. Biol. Chem. , vol.276 , pp. 31388-31393
    • Boulé, J.-B.1
  • 22
    • 84872485372 scopus 로고    scopus 로고
    • Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ
    • Clausen A.R., et al. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ. DNA Rep. 2013, 12:121-127.
    • (2013) DNA Rep. , vol.12 , pp. 121-127
    • Clausen, A.R.1
  • 23
    • 84864309091 scopus 로고    scopus 로고
    • Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ε
    • Williams J.S., et al. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ε. DNA Rep. 2012, 11:649-656.
    • (2012) DNA Rep. , vol.11 , pp. 649-656
    • Williams, J.S.1
  • 24
    • 0345188651 scopus 로고    scopus 로고
    • A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type φ29 DNA polymerase1
    • Bonnin A., et al. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type φ29 DNA polymerase1. J. Mol. Biol. 1999, 290:241-251.
    • (1999) J. Mol. Biol. , vol.290 , pp. 241-251
    • Bonnin, A.1
  • 25
    • 0035979380 scopus 로고    scopus 로고
    • 3'-5' Exonucleolytic activity of DNA polymerases: structural features that allow kinetic discrimination between ribo- and deoxyribonucleotide residues
    • Lin T.C., et al. 3'-5' Exonucleolytic activity of DNA polymerases: structural features that allow kinetic discrimination between ribo- and deoxyribonucleotide residues. Biochemistry 2001, 40:8749-8755.
    • (2001) Biochemistry , vol.40 , pp. 8749-8755
    • Lin, T.C.1
  • 26
    • 80052407884 scopus 로고    scopus 로고
    • Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase
    • Kasiviswanathan R., Copeland W.C. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J. Biol. Chem. 2011, 286:31490-31500.
    • (2011) J. Biol. Chem. , vol.286 , pp. 31490-31500
    • Kasiviswanathan, R.1    Copeland, W.C.2
  • 27
    • 79960698210 scopus 로고    scopus 로고
    • Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases
    • Watt D.L., et al. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Rep. 2011, 10:897-902.
    • (2011) DNA Rep. , vol.10 , pp. 897-902
    • Watt, D.L.1
  • 28
    • 84885812982 scopus 로고    scopus 로고
    • Structure-function analysis of ribonucleotide bypass by B family DNA replicases
    • Clausen A.R., et al. Structure-function analysis of ribonucleotide bypass by B family DNA replicases. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:16802-16807.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 16802-16807
    • Clausen, A.R.1
  • 29
    • 84871125561 scopus 로고    scopus 로고
    • Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides
    • Göksenin A.Y., et al. Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides. J. Biol. Chem. 2012, 287:42675-42684.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42675-42684
    • Göksenin, A.Y.1
  • 30
    • 77955297664 scopus 로고    scopus 로고
    • DNA polymerase β ribonucleotide discrimination insertion, misinsertion, extension, and coding
    • Cavanaugh N.A., et al. DNA polymerase β ribonucleotide discrimination insertion, misinsertion, extension, and coding. J. Biol. Chem. 2010, 285:24457-24465.
    • (2010) J. Biol. Chem. , vol.285 , pp. 24457-24465
    • Cavanaugh, N.A.1
  • 31
    • 84867286627 scopus 로고    scopus 로고
    • The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ
    • Gosavi R.A., et al. The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ. Nucleic Acids Res. 2012, 40:7518-7527.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 7518-7527
    • Gosavi, R.A.1
  • 32
    • 84900340576 scopus 로고    scopus 로고
    • Ribonucleotide incorporation by yeast DNA polymerase ζ
    • Makarova A.V., et al. Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Rep. 2014, 18:63-67.
    • (2014) DNA Rep. , vol.18 , pp. 63-67
    • Makarova, A.V.1
  • 33
    • 84855881475 scopus 로고    scopus 로고
    • RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA
    • Lazzaro F., et al. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 2012, 45:99-110.
    • (2012) Mol. Cell , vol.45 , pp. 99-110
    • Lazzaro, F.1
  • 34
    • 0037423223 scopus 로고    scopus 로고
    • Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
    • Chabes A., et al. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 2003, 112:391-401.
    • (2003) Cell , vol.112 , pp. 391-401
    • Chabes, A.1
  • 35
    • 84921524749 scopus 로고    scopus 로고
    • Pre-steady state kinetic analysis of HIV-1 reverse transcriptase for non-canonical ribonucleoside triphosphate incorporation and DNA synthesis from ribonucleoside-containing DNA template
    • Nguyen L.A., et al. Pre-steady state kinetic analysis of HIV-1 reverse transcriptase for non-canonical ribonucleoside triphosphate incorporation and DNA synthesis from ribonucleoside-containing DNA template. Antivir. Res. 2015, 115:75-82.
    • (2015) Antivir. Res. , vol.115 , pp. 75-82
    • Nguyen, L.A.1
  • 36
    • 78649858731 scopus 로고    scopus 로고
    • Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages
    • Kennedy E.M., et al. Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. J. Biol. Chem. 2010, 285:39380-39391.
    • (2010) J. Biol. Chem. , vol.285 , pp. 39380-39391
    • Kennedy, E.M.1
  • 37
    • 84862777555 scopus 로고    scopus 로고
    • SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates
    • Lahouassa H., et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 2012, 13:223-228.
    • (2012) Nat. Immunol. , vol.13 , pp. 223-228
    • Lahouassa, H.1
  • 38
    • 0027213005 scopus 로고
    • Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA
    • Eder P.S., et al. Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. Biochimie 1993, 75:123-126.
    • (1993) Biochimie , vol.75 , pp. 123-126
    • Eder, P.S.1
  • 39
    • 0037168516 scopus 로고    scopus 로고
    • Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts
    • Rydberg B., Game J. Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:16654-16659.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 16654-16659
    • Rydberg, B.1    Game, J.2
  • 40
    • 84866851215 scopus 로고    scopus 로고
    • RNase H2-initiated ribonucleotide excision repair
    • Sparks J.L., et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 2012, 47:980-986.
    • (2012) Mol. Cell , vol.47 , pp. 980-986
    • Sparks, J.L.1
  • 42
    • 84938118060 scopus 로고    scopus 로고
    • Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication
    • Holmes J.B., et al. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:9334-9339.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 9334-9339
    • Holmes, J.B.1
  • 43
    • 84887141327 scopus 로고    scopus 로고
    • Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair
    • Ghodgaonkar M.M., et al. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol. Cell 2013, 50:323-332.
    • (2013) Mol. Cell , vol.50 , pp. 323-332
    • Ghodgaonkar, M.M.1
  • 44
    • 84887156806 scopus 로고    scopus 로고
    • Ribonucleotides are signals for mismatch repair of leading-strand replication errors
    • Lujan S.A., et al. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 2013, 50:437-443.
    • (2013) Mol. Cell , vol.50 , pp. 437-443
    • Lujan, S.A.1
  • 45
    • 58549086990 scopus 로고    scopus 로고
    • Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex
    • Chon H., et al. Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex. Nucleic Acids Res. 2009, 37:96-110.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 96-110
    • Chon, H.1
  • 46
    • 79955993911 scopus 로고    scopus 로고
    • PCNA directs type 2 RNase H activity on DNA replication and repair substrates
    • Bubeck D., et al. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res. 2011, 39:3652-3666.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 3652-3666
    • Bubeck, D.1
  • 47
    • 77950466824 scopus 로고    scopus 로고
    • The structure of the mammalian RNase H2 complex provides insight into RNA DNA hybrid processing to prevent immune dysfunction
    • Shaban N.M., et al. The structure of the mammalian RNase H2 complex provides insight into RNA DNA hybrid processing to prevent immune dysfunction. J. Biol. Chem. 2010, 285:3617-3624.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3617-3624
    • Shaban, N.M.1
  • 48
    • 79953170528 scopus 로고    scopus 로고
    • The structural and biochemical characterization of human RNase H2 complex reveals the molecular basis for substrate recognition and Aicardi-Goutières syndrome defects
    • Figiel M., et al. The structural and biochemical characterization of human RNase H2 complex reveals the molecular basis for substrate recognition and Aicardi-Goutières syndrome defects. J. Biol. Chem. 2011, 286:10540-10550.
    • (2011) J. Biol. Chem. , vol.286 , pp. 10540-10550
    • Figiel, M.1
  • 49
    • 79953223802 scopus 로고    scopus 로고
    • The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease
    • Reijns M.A.M., et al. The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. J. Biol. Chem. 2011, 286:10530-10539.
    • (2011) J. Biol. Chem. , vol.286 , pp. 10530-10539
    • Reijns, M.A.M.1
  • 50
    • 0033756041 scopus 로고    scopus 로고
    • The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair
    • Arudchandran A., et al. The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 2000, 5:789-802.
    • (2000) Genes Cells , vol.5 , pp. 789-802
    • Arudchandran, A.1
  • 51
    • 84861578543 scopus 로고    scopus 로고
    • Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development
    • Reijns M.A.M., et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 2012, 149:1008-1022.
    • (2012) Cell , vol.149 , pp. 1008-1022
    • Reijns, M.A.M.1
  • 52
    • 84924180985 scopus 로고    scopus 로고
    • Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
    • Clausen A.R., et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Mol. Biol. 2015, 22:185-191.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 185-191
    • Clausen, A.R.1
  • 53
    • 84924072858 scopus 로고    scopus 로고
    • Lagging-strand replication shapes the mutational landscape of the genome
    • Reijns M.A.M., et al. Lagging-strand replication shapes the mutational landscape of the genome. Nature 2015, 518:502-506.
    • (2015) Nature , vol.518 , pp. 502-506
    • Reijns, M.A.M.1
  • 54
    • 84923844518 scopus 로고    scopus 로고
    • Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA
    • Koh K.D., et al. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat. Methods 2015, 12:251-257.
    • (2015) Nat. Methods , vol.12 , pp. 251-257
    • Koh, K.D.1
  • 55
    • 84924198688 scopus 로고    scopus 로고
    • A global profile of replicative polymerase usage
    • Daigaku Y., et al. A global profile of replicative polymerase usage. Nat. Struct. Mol. Biol. 2015, 22:192-198.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 192-198
    • Daigaku, Y.1
  • 56
    • 79959504063 scopus 로고    scopus 로고
    • Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I
    • Kim N., et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 2011, 332:1561-1564.
    • (2011) Science , vol.332 , pp. 1561-1564
    • Kim, N.1
  • 57
    • 84929660851 scopus 로고    scopus 로고
    • Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides
    • Sparks J.L., Burgers P.M. Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides. EMBO J. 2015, 34:1259-1269.
    • (2015) EMBO J. , vol.34 , pp. 1259-1269
    • Sparks, J.L.1    Burgers, P.M.2
  • 58
    • 84875370144 scopus 로고    scopus 로고
    • Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast
    • Cho J.E., et al. Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast. DNA Rep. 2013, 12:205-211.
    • (2013) DNA Rep. , vol.12 , pp. 205-211
    • Cho, J.E.1
  • 59
    • 84946963032 scopus 로고    scopus 로고
    • Elevated genome-wide instability in yeast mutants lacking RNase H activity
    • O'Connell K., et al. Elevated genome-wide instability in yeast mutants lacking RNase H activity. Genetics 2015, 201:963-975.
    • (2015) Genetics , vol.201 , pp. 963-975
    • O'Connell, K.1
  • 60
    • 84899974459 scopus 로고    scopus 로고
    • Replication-induced supercoiling: a neglected DNA transaction regulator?
    • Yu H., Dröge P. Replication-induced supercoiling: a neglected DNA transaction regulator?. Trends Biochem. Sci. 2014, 39:219-220.
    • (2014) Trends Biochem. Sci. , vol.39 , pp. 219-220
    • Yu, H.1    Dröge, P.2
  • 61
    • 84926408181 scopus 로고    scopus 로고
    • Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific
    • Williams J.S., et al. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat. Struct. Mol. Biol. 2015, 22:291-297.
    • (2015) Nat. Struct. Mol. Biol. , vol.22 , pp. 291-297
    • Williams, J.S.1
  • 62
    • 84876829295 scopus 로고    scopus 로고
    • Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA
    • Williams J.S., et al. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 2013, 49:1010-1015.
    • (2013) Mol. Cell , vol.49 , pp. 1010-1015
    • Williams, J.S.1
  • 63
    • 84930226445 scopus 로고    scopus 로고
    • Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites
    • Huang S.Y.N., et al. Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites. J. Biol. Chem. 2015, 290:14068-14076.
    • (2015) J. Biol. Chem. , vol.290 , pp. 14068-14076
    • Huang, S.Y.N.1
  • 64
    • 84904248751 scopus 로고    scopus 로고
    • Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms
    • Potenski C.J., et al. Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 2014, 511:251-254.
    • (2014) Nature , vol.511 , pp. 251-254
    • Potenski, C.J.1
  • 65
    • 61349102407 scopus 로고    scopus 로고
    • Ribonuclease H: the enzymes in eukaryotes
    • Cerritelli S.M., Crouch R.J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 2009, 276:1494-1505.
    • (2009) FEBS J. , vol.276 , pp. 1494-1505
    • Cerritelli, S.M.1    Crouch, R.J.2
  • 66
    • 0023433855 scopus 로고
    • Supercoiling of the DNA template during transcription
    • Liu L.F., Wang J.C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U.S.A. 1987, 84:7024-7027.
    • (1987) Proc. Natl. Acad. Sci. U.S.A. , vol.84 , pp. 7024-7027
    • Liu, L.F.1    Wang, J.C.2
  • 67
    • 77954841539 scopus 로고    scopus 로고
    • Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis
    • El Hage A., et al. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 2010, 24:1546-1558.
    • (2010) Genes Dev. , vol.24 , pp. 1546-1558
    • El Hage, A.1
  • 68
    • 78751519300 scopus 로고    scopus 로고
    • Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes
    • French S.L., et al. Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol. Cell. Biol. 2011, 31:482-494.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 482-494
    • French, S.L.1
  • 69
    • 84949641164 scopus 로고    scopus 로고
    • Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter
    • Cho J-E., et al. Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter. Nucleic Acids Res. 2015, 43:9306-9313.
    • (2015) Nucleic Acids Res. , vol.43 , pp. 9306-9313
    • Cho, J.-E.1
  • 71
    • 84862776917 scopus 로고    scopus 로고
    • Intrinsic coupling of lagging-strand synthesis to chromatin assembly
    • Smith D.J., Whitehouse I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 2012, 483:434-438.
    • (2012) Nature , vol.483 , pp. 434-438
    • Smith, D.J.1    Whitehouse, I.2
  • 72
    • 84941591742 scopus 로고    scopus 로고
    • The DNA-binding domain of Mrc1 (Claspin) acts to enhance stalling at replication barriers
    • Zech J., et al. The DNA-binding domain of Mrc1 (Claspin) acts to enhance stalling at replication barriers. PLoS ONE 2015, 10:e0132595.
    • (2015) PLoS ONE , vol.10 , pp. e0132595
    • Zech, J.1
  • 73
    • 84871809104 scopus 로고    scopus 로고
    • Defining the epigenetic mechanism of asymmetric cell division of Schizosaccharomyces japonicus yeast
    • Yu C., et al. Defining the epigenetic mechanism of asymmetric cell division of Schizosaccharomyces japonicus yeast. Genetics 2013, 193:85-94.
    • (2013) Genetics , vol.193 , pp. 85-94
    • Yu, C.1
  • 74
    • 0011467525 scopus 로고
    • The presence of ribonucleotides in mature closed-circular mitochondrial DNA
    • Grossman L.I., et al. The presence of ribonucleotides in mature closed-circular mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 1973, 70:3339-3343.
    • (1973) Proc. Natl. Acad. Sci. U.S.A. , vol.70 , pp. 3339-3343
    • Grossman, L.I.1
  • 75
    • 0015421991 scopus 로고
    • Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin
    • Keller W., Crouch R. Degradation of DNA RNA hybrids by ribonuclease H and DNA polymerases of cellular and viral origin. Proc. Natl. Acad. Sci. U.S.A. 1972, 69:3360-3364.
    • (1972) Proc. Natl. Acad. Sci. U.S.A. , vol.69 , pp. 3360-3364
    • Keller, W.1    Crouch, R.2
  • 76
    • 0345354684 scopus 로고    scopus 로고
    • Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice
    • Cerritelli S.M., et al. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol. Cell 2003, 11:807-815.
    • (2003) Mol. Cell , vol.11 , pp. 807-815
    • Cerritelli, S.M.1
  • 77
    • 84908343019 scopus 로고    scopus 로고
    • Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria
    • El Hage A., et al. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet. 2014, 10:e1004716.
    • (2014) PLoS Genet. , vol.10 , pp. e1004716
    • El Hage, A.1
  • 78
    • 77956908672 scopus 로고    scopus 로고
    • The end of the circle for yeast mitochondrial DNA
    • Bendich A.J. The end of the circle for yeast mitochondrial DNA. Mol. Cell 2010, 39:831-832.
    • (2010) Mol. Cell , vol.39 , pp. 831-832
    • Bendich, A.J.1
  • 79
    • 84866462296 scopus 로고    scopus 로고
    • Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity
    • Hiller B., et al. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 2012, 209:1419-1426.
    • (2012) J. Exp. Med. , vol.209 , pp. 1419-1426
    • Hiller, B.1
  • 80
    • 33746522835 scopus 로고    scopus 로고
    • Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection
    • Crow Y.J., et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 2006, 38:910-916.
    • (2006) Nat. Genet. , vol.38 , pp. 910-916
    • Crow, Y.J.1
  • 81
    • 84920413492 scopus 로고    scopus 로고
    • Defective removal of ribonucleotides from DNA promotes systemic autoimmunity
    • Günther C., et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 2015, 125:413-424.
    • (2015) J. Clin. Invest. , vol.125 , pp. 413-424
    • Günther, C.1
  • 82
    • 84938907605 scopus 로고    scopus 로고
    • Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome
    • Lim Y.W., et al. Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome. Elife 2015, 4:08007.
    • (2015) Elife , vol.4 , pp. 08007
    • Lim, Y.W.1
  • 83
    • 84946926616 scopus 로고    scopus 로고
    • Stimulation of chromosomal rearrangements by ribonucleotides
    • Conover H.N., et al. Stimulation of chromosomal rearrangements by ribonucleotides. Genetics 2015, 201:951-961.
    • (2015) Genetics , vol.201 , pp. 951-961
    • Conover, H.N.1
  • 84
    • 84876363526 scopus 로고    scopus 로고
    • RNase H2 roles in genome integrity revealed by unlinking its activities
    • Chon H., et al. RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res. 2013, 41:3130-3143.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 3130-3143
    • Chon, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.