메뉴 건너뛰기




Volumn 12, Issue 3, 2015, Pages 251-257

Addendum: Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA (Nature Methods, (2019), 10.1038/nmeth.3259);Ribose-seq: Global mapping of ribonucleotides embedded in genomic DNA

Author keywords

[No Author keywords available]

Indexed keywords

CELL NUCLEUS DNA; CYTIDINE; FUNGAL DNA; GENOMIC DNA; GUANOSINE; MITOCHONDRIAL DNA; RIBONUCLEOTIDE; RIBOSE; RIBOSOME DNA; SINGLE STRANDED DNA; TRANSFER RNA; URACIL DNA GLYCOSIDASE;

EID: 84923844518     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/s41592-019-0505-9     Document Type: Erratum
Times cited : (96)

References (57)
  • 1
    • 84902074659 scopus 로고    scopus 로고
    • Ribonucleotides in DNA: Origins, repair and consequences
    • Williams, J.S. & Kunkel, T.A. Ribonucleotides in DNA: origins, repair and consequences. DNA Repair (Amst.) 19, 27-37 (2014
    • (2014) DNA Repair (Amst , vol.19 , pp. 27-37
    • Williams, J.S.1    Kunkel, T.A.2
  • 2
    • 0011467525 scopus 로고
    • The presence of ribonucleotides in mature closed-circular mitochondrial dna
    • Grossman, L.I., Watson, R. & Vinograd, J. The presence of ribonucleotides in mature closed-circular mitochondrial DNA. Proc. Natl. Acad. Sci. USA 70, 3339-3343 (1973
    • (1973) Proc. Natl. Acad. Sci. USA , vol.70 , pp. 3339-3343
    • Grossman, L.I.1    Watson, R.2    Vinograd, J.3
  • 3
    • 33646184968 scopus 로고    scopus 로고
    • The wild-Type Schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides
    • Vengrova, S. & Dalgaard, J.Z. The wild-Type Schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides. EMBO Rep. 7, 59-65 (2006
    • (2006) EMBO Rep , vol.7 , pp. 59-65
    • Vengrova, S.1    Dalgaard, J.Z.2
  • 4
    • 84921329939 scopus 로고    scopus 로고
    • How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells
    • Potenski, C.J. & Klein, H.L. How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells. Nucleic Acids Res. 42, 10226-10234 (2014
    • (2014) Nucleic Acids Res , vol.42 , pp. 10226-10234
    • Potenski, C.J.1    Klein, H.L.2
  • 5
    • 84872485372 scopus 로고    scopus 로고
    • Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase delta
    • Clausen, A.R., Zhang, S., Burgers, P.M., Lee, M.Y. & Kunkel, T.A. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase delta. DNA Repair (Amst.) 12, 121-127 (2013
    • (2013) DNA Repair (Amst , vol.12 , pp. 121-127
    • Clausen, A.R.1    Zhang, S.2    Burgers, P.M.3    Lee, M.Y.4    Kunkel, T.A.5
  • 6
    • 80052407884 scopus 로고    scopus 로고
    • Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase
    • Kasiviswanathan, R. & Copeland, W.C. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J. Biol. Chem. 286, 31490-31500 (2011
    • (2011) J. Biol. Chem , vol.286 , pp. 31490-31500
    • Kasiviswanathan, R.1    Copeland, W.C.2
  • 7
    • 77950406088 scopus 로고    scopus 로고
    • Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases
    • Nick McElhinny, S.A., et al. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. USA 107, 4949-4954 (2010
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 4949-4954
    • Nick McElhinny, S.A.1
  • 8
    • 84870714773 scopus 로고    scopus 로고
    • Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by pol v
    • McDonald, J.P., Vaisman, A., Kuban, W., Goodman, M.F. & Woodgate, R. Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by pol V. PLoS Genet. 8, e1003030 (2012
    • (2012) PLoS Genet , vol.8 , pp. e1003030
    • McDonald, J.P.1    Vaisman, A.2    Kuban, W.3    Goodman, M.F.4    Woodgate, R.5
  • 9
    • 43749100687 scopus 로고    scopus 로고
    • Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3-OH monoribonucleotide
    • Zhu, H. & Shuman, S. Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3'-OH monoribonucleotide. J. Biol. Chem. 283, 8331-8339 (2008
    • (2008) J. Biol. Chem , vol.283 , pp. 8331-8339
    • Zhu, H.1    Shuman, S.2
  • 10
    • 0030929525 scopus 로고    scopus 로고
    • Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing
    • Rumbaugh, J.A., Murante, R.S., Shi, S. & Bambara, R.A. Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing. J. Biol. Chem. 272, 22591-22599 (1997
    • (1997) J. Biol. Chem , vol.272 , pp. 22591-22599
    • Rumbaugh, J.A.1    Murante, R.S.2    Shi, S.3    Bambara, R.A.4
  • 11
    • 0026661029 scopus 로고
    • Formation of ribonucleotides in DNA modified by oxidative damage in vitro and in vivo Characterization by 32P-postlabeling
    • Randerath, K., et al. Formation of ribonucleotides in DNA modified by oxidative damage in vitro and in vivo. Characterization by 32P-postlabeling. Mutat. Res. 275, 355-366 (1992
    • (1992) Mutat. Res , vol.275 , pp. 355-366
    • Randerath, K.1
  • 12
    • 61349102407 scopus 로고    scopus 로고
    • Ribonuclease H: The enzymes in eukaryotes
    • Cerritelli, S.M. & Crouch, R.J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494-1505 (2009
    • (2009) FEBS J. , vol.276 , pp. 1494-1505
    • Cerritelli, S.M.1    Crouch, R.J.2
  • 13
    • 84866851215 scopus 로고    scopus 로고
    • RNase H2-initiated ribonucleotide excision repair
    • Sparks, J.L., et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47, 980-986 (2012
    • (2012) Mol. Cell , vol.47 , pp. 980-986
    • Sparks, J.L.1
  • 14
    • 84861578543 scopus 로고    scopus 로고
    • Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development
    • Reijns, M.A., et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008-1022 (2012
    • (2012) Cell , vol.149 , pp. 1008-1022
    • Reijns, M.A.1
  • 15
    • 84887156806 scopus 로고    scopus 로고
    • Ribonucleotides are signals for mismatch repair of leading-strand replication errors
    • Lujan, S.A., Williams, J.S., Clausen, A.R., Clark, A.B. & Kunkel, T.A. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50, 437-443 (2013
    • (2013) Mol. Cell , vol.50 , pp. 437-443
    • Lujan, S.A.1    Williams, J.S.2    Clausen, A.R.3    Clark, A.B.4    Kunkel, T.A.5
  • 16
    • 84876829295 scopus 로고    scopus 로고
    • Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA
    • Williams, J.S., et al. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 49, 1010-1015 (2013
    • (2013) Mol. Cell , vol.49 , pp. 1010-1015
    • Williams, J.S.1
  • 18
    • 84905843129 scopus 로고    scopus 로고
    • RNA intrusions change DNA elastic properties and structure
    • Chiu, H.C., et al. RNA intrusions change DNA elastic properties and structure. Nanoscale 6, 10009-10017 (2014
    • (2014) Nanoscale , vol.6 , pp. 10009-10017
    • Chiu, H.C.1
  • 19
    • 84892616837 scopus 로고    scopus 로고
    • Molecular biology Ribose-An internal threat to DNA
    • Caldecott, K.W. Molecular biology. Ribose-An internal threat to DNA. Science 343, 260-261 (2014
    • (2014) Science , vol.343 , pp. 260-261
    • Caldecott, K.W.1
  • 20
    • 79959504063 scopus 로고    scopus 로고
    • Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase i
    • Kim, N., et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332, 1561-1564 (2011
    • (2011) Science , vol.332 , pp. 1561-1564
    • Kim, N.1
  • 21
    • 84904248751 scopus 로고    scopus 로고
    • Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms
    • Potenski, C.J., Niu, H., Sung, P. & Klein, H.L. Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 511, 251-254 (2014
    • (2014) Nature , vol.511 , pp. 251-254
    • Potenski, C.J.1    Niu, H.2    Sung, P.3    Klein, H.L.4
  • 22
    • 84875370144 scopus 로고    scopus 로고
    • Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast
    • Cho, J.E., Kim, N., Li, Y.C. & Jinks-Robertson, S. Two distinct mechanisms of Topoisomerase 1-dependent mutagenesis in yeast. DNA Repair (Amst.) 12, 205-211 (2013
    • (2013) DNA Repair (Amst , vol.12 , pp. 205-211
    • Cho, J.E.1    Kim, N.2    Li, Y.C.3    Jinks-Robertson, S.4
  • 23
    • 33746522835 scopus 로고    scopus 로고
    • Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection
    • Crow, Y.J., et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910-916 (2006
    • (2006) Nat. Genet , vol.38 , pp. 910-916
    • Crow, Y.J.1
  • 24
    • 77149132138 scopus 로고    scopus 로고
    • Capture and sequence analysis of RNAs with terminal 2', 3'-cyclic phosphates
    • Schutz, K., Hesselberth, J.R. & Fields, S. Capture and sequence analysis of RNAs with terminal 2', 3'-cyclic phosphates. RNA 16, 621-631 (2010
    • (2010) RNA , vol.16 , pp. 621-631
    • Schutz, K.1    Hesselberth, J.R.2    Fields, S.3
  • 25
    • 84896497369 scopus 로고    scopus 로고
    • Distinctive kinetics and substrate specificities of plant and fungal tRNA ligases
    • Remus, B.S. & Shuman, S. Distinctive kinetics and substrate specificities of plant and fungal tRNA ligases. RNA 20, 462-473 (2014
    • (2014) RNA , vol.20 , pp. 462-473
    • Remus, B.S.1    Shuman, S.2
  • 26
    • 84899862908 scopus 로고    scopus 로고
    • Ribonuclease L117 and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs
    • Cooper, D.A., Jha, B.K., Silverman, R.H., Hesselberth, J.R. & Barton, D.J. Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res. 42, 5202-5216 (2014
    • (2014) Nucleic Acids Res , vol.42 , pp. 5202-5216
    • Cooper, D.A.1    Jha, B.K.2    Silverman, R.H.3    Hesselberth, J.R.4    Barton, D.J.5
  • 27
    • 0037115911 scopus 로고    scopus 로고
    • Uracil in DNA-occurrence, consequences and repair
    • Krokan, H.E., Drablos, F. & Slupphaug, G. Uracil in DNA-occurrence, consequences and repair. Oncogene 21, 8935-8948 (2002
    • (2002) Oncogene , vol.21 , pp. 8935-8948
    • Krokan, H.E.1    Drablos, F.2    Slupphaug, G.3
  • 28
    • 0017392934 scopus 로고
    • DNA N-glycosidases: Properties of uracil-DNA glycosidase from Escherichia coli
    • Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. & Sperens, B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J. Biol. Chem. 252, 3286-3294 (1977
    • (1977) J. Biol. Chem , vol.252 , pp. 3286-3294
    • Lindahl, T.1    Ljungquist, S.2    Siegert, W.3    Nyberg, B.4    Sperens, B.5
  • 29
    • 77950351123 scopus 로고    scopus 로고
    • Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants
    • Fasullo, M., Tsaponina, O., Sun, M. & Chabes, A. Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants. Nucleic Acids Res. 38, 1195-1203 (2010
    • (2010) Nucleic Acids Res , vol.38 , pp. 1195-1203
    • Fasullo, M.1    Tsaponina, O.2    Sun, M.3    Chabes, A.4
  • 30
    • 84864309091 scopus 로고    scopus 로고
    • Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase varepsilon
    • Williams, J.S., et al. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase varepsilon. DNA Repair (Amst.) 11, 649-656 (2012
    • (2012) DNA Repair (Amst , vol.11 , pp. 649-656
    • Williams, J.S.1
  • 31
    • 0032426882 scopus 로고    scopus 로고
    • The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae
    • Foury, F., Roganti, T., Lecrenier, N. & Purnelle, B. The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett. 440, 325-331 (1998
    • (1998) FEBS Lett , vol.440 , pp. 325-331
    • Foury, F.1    Roganti, T.2    Lecrenier, N.3    Purnelle, B.4
  • 32
    • 77956925991 scopus 로고    scopus 로고
    • Strand invasion structures in the inverted repeat of Candida albicans mitochondrial DNA reveal a role for homologous recombination in replication
    • Gerhold, J.M., Aun, A., Sedman, T., Joers, P. & Sedman, J. Strand invasion structures in the inverted repeat of Candida albicans mitochondrial DNA reveal a role for homologous recombination in replication. Mol. Cell 39, 851-861 (2010
    • (2010) Mol. Cell , vol.39 , pp. 851-861
    • Gerhold, J.M.1    Aun, A.2    Sedman, T.3    Joers, P.4    Sedman, J.5
  • 33
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781-789 (2002
    • (2002) Genes Cells , vol.7 , pp. 781-789
    • Yabuki, N.1    Terashima, H.2    Kitada, K.3
  • 34
    • 0035313402 scopus 로고    scopus 로고
    • What regulates mitochondrial DNA copy number in animal cells?
    • Moraes, C.T. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 17, 199-205 (2001
    • (2001) Trends Genet , vol.17 , pp. 199-205
    • Moraes, C.T.1
  • 35
    • 0018869075 scopus 로고
    • Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae
    • Szostak, J.W. & Wu, R. Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284, 426-430 (1980
    • (1980) Nature , vol.284 , pp. 426-430
    • Szostak, J.W.1    Wu, R.2
  • 36
    • 0032004369 scopus 로고    scopus 로고
    • Trna genes and retroelements in the yeast genome
    • Hani, J. & Feldmann, H. tRNA genes and retroelements in the yeast genome. Nucleic Acids Res. 26, 689-696 (1998
    • (1998) Nucleic Acids Res , vol.26 , pp. 689-696
    • Hani, J.1    Feldmann, H.2
  • 37
    • 33747882660 scopus 로고    scopus 로고
    • Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae
    • Mieczkowski, P.A., Lemoine, F.J. & Petes, T.D. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst.) 5, 1010-1020 (2006
    • (2006) DNA Repair (Amst , vol.5 , pp. 1010-1020
    • Mieczkowski, P.A.1    Lemoine, F.J.2    Petes, T.D.3
  • 38
    • 84908343019 scopus 로고    scopus 로고
    • Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria
    • El Hage, A., Webb, S., Kerr, A. & Tollervey, D. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet. 10, e1004716 (2014
    • (2014) PLoS Genet , vol.10 , pp. e1004716
    • El Hage, A.1    Webb, S.2    Kerr, A.3    Tollervey, D.4
  • 39
    • 84874271270 scopus 로고    scopus 로고
    • NCBI GEO: Archive for functional genomics data sets-update
    • Barrett, T., et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991-D995 (2013
    • (2013) Nucleic Acids Res , vol.41 , pp. D991-D995
    • Barrett, T.1
  • 40
    • 84924180985 scopus 로고    scopus 로고
    • Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation
    • January 2015
    • Clausen, A.R., et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Molec. Biol. doi: 10.1038/nsmb.2957 (26 January 2015
    • Nat. Struct. Molec. Biol , vol.26
    • Clausen, A.R.1
  • 41
    • 84924072858 scopus 로고    scopus 로고
    • Lagging strand replication shapes the mutational landscape of the genome
    • 26 January 2015
    • Reijns, M.A.M., et al. Lagging strand replication shapes the mutational landscape of the genome. Nature doi: 10.1038/nature14183 (26 January 2015
    • Nature
    • Reijns, M.A.M.1
  • 42
    • 84923851091 scopus 로고    scopus 로고
    • A global profile of replicative polymerase usage
    • in the press
    • Daigaku, Y., et al. A global profile of replicative polymerase usage. Nat. Struct. Mol. Biol. (in the press
    • Nat. Struct. Mol. Biol
    • Daigaku, Y.1
  • 43
    • 0033080795 scopus 로고    scopus 로고
    • Functional analysis of human MutSa and MutSβ complexes in yeast
    • Clark, A.B., et al. Functional analysis of human MutSa and MutSβ complexes in yeast. Nucleic Acids Res. 27, 736-742 (1999
    • (1999) Nucleic Acids Res , vol.27 , pp. 736-742
    • Clark, A.B.1
  • 44
    • 0026004621 scopus 로고
    • Eukaryotic DNA polymerase amino acid sequence required for 3' 5' exonuclease activity
    • Morrison, A., Bell, J.B., Kunkel, T.A. & Sugino, A. Eukaryotic DNA polymerase amino acid sequence required for 3' 5' exonuclease activity. Proc. Natl. Acad. Sci. USA 88, 9473-9477 (1991
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 9473-9477
    • Morrison, A.1    Bell, J.B.2    Kunkel, T.A.3    Sugino, A.4
  • 45
    • 0035942104 scopus 로고    scopus 로고
    • The 3'5' exonuclease of DNA polymerase d can substitute for the 5' flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability
    • Jin, Y.H., et al. The 3'5' exonuclease of DNA polymerase d can substitute for the 5' flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA 98, 5122-5127 (2001
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 5122-5127
    • Jin, Y.H.1
  • 47
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase e participates in leading-strand DNA replication
    • Pursell, Z.F., Isoz, I., Lundstrom, E.B., Johansson, E. & Kunkel, T.A. Yeast DNA polymerase e participates in leading-strand DNA replication. Science 317, 127-130 (2007
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 48
    • 0347379857 scopus 로고    scopus 로고
    • The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase and Sulfolobus solfataricus Dpo4
    • Kokoska, R.J., McCulloch, d. & Kunkel, T.A. The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase and Sulfolobus solfataricus Dpo4. J. Biol. Chem. 278, 50537-50545 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 50537-50545
    • Kokoska, R.J.1    McCulloch, D.2    Kunkel, T.A.3
  • 49
    • 77949570959 scopus 로고    scopus 로고
    • Mechanism and evolution of DNA primases
    • Kuchta, R.D. & Stengel, G. Mechanism and evolution of DNA primases. Biochim. Biophys. Acta 1804, 1180-1189 (2010
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1180-1189
    • Kuchta, R.D.1    Stengel, G.2
  • 51
    • 0002125735 scopus 로고    scopus 로고
    • Abasic DNA structure, reactivity, and recognition
    • Lhomme, J., Constant, J.F. & Demeunynck, M. Abasic DNA structure, reactivity, and recognition. Biopolymers 52, 65-83 (1999
    • (1999) Biopolymers , vol.52 , pp. 65-83
    • Lhomme, J.1    Constant, J.F.2    Demeunynck, M.3
  • 52
    • 0023753648 scopus 로고
    • Possible roles of β-elimination and d-elimination reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites in mammalian cells
    • Bailly, V. & Verly, W.G. Possible roles of β-elimination and d-elimination reactions in the repair of DNA containing AP (apurinic/apyrimidinic) sites in mammalian cells. Biochem. J. 253, 553-559 (1988
    • (1988) Biochem. J. , vol.253 , pp. 553-559
    • Bailly, V.1    Verly, W.G.2
  • 53
    • 77951770756 scopus 로고    scopus 로고
    • BEDTools: A flexible suite of utilities for comparing genomic features
    • Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010
    • (2010) Bioinformatics , vol.26 , pp. 841-842
    • Quinlan, A.R.1    Hall, I.M.2
  • 54
    • 83355177243 scopus 로고    scopus 로고
    • Pybedtools: A flexible python library for manipulating genomic data sets and annotations
    • Dale, R.K., Pedersen, B.S. & Quinlan, A.R. Pybedtools: a flexible Python library for manipulating genomic data sets and annotations. Bioinformatics 27, 3423-3424 (2011
    • (2011) Bioinformatics , vol.27 , pp. 3423-3424
    • Dale, R.K.1    Pedersen, B.S.2    Quinlan, A.R.3
  • 56
    • 53849146020 scopus 로고    scopus 로고
    • Model-based analysis of ChIP-Seq (MACS
    • Zhang, Y., et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008
    • (2008) Genome Biol , vol.9 , pp. R137
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.