메뉴 건너뛰기




Volumn 27, Issue 2, 2016, Pages 172-180

AMP-activated protein kinase and its multifaceted regulation of hepatic metabolism

Author keywords

autophagy; Keywords AMP activated protein kinase; metabolism; metformin; obesity; type 2 diabetes

Indexed keywords

CARNITINE PALMITOYLTRANSFERASE I; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; METFORMIN; ANTIDIABETIC AGENT; GLUCOSE;

EID: 84960447388     PISSN: 09579672     EISSN: 14736535     Source Type: Journal    
DOI: 10.1097/MOL.0000000000000273     Document Type: Review
Times cited : (19)

References (90)
  • 1
    • 67650914230 scopus 로고    scopus 로고
    • AMPK in Health and Disease
    • Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev 2009; 89: 1025-1078
    • (2009) Physiol Rev , vol.89 , pp. 1025-1078
    • Steinberg, G.R.1    Kemp, B.E.2
  • 2
    • 73649128543 scopus 로고    scopus 로고
    • AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance
    • Dzamko N, van Denderen BJ, Hevener AL, et al. AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J Biol Chem 2010; 285: 115-122
    • (2010) J Biol Chem , vol.285 , pp. 115-122
    • Dzamko, N.1    Van Denderen, B.J.2    Hevener, A.L.3
  • 4
    • 82455209029 scopus 로고    scopus 로고
    • Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status
    • Stephenne X, Foretz M, Taleux N, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 2011; 54: 3101-3110
    • (2011) Diabetologia , vol.54 , pp. 3101-3110
    • Stephenne, X.1    Foretz, M.2    Taleux, N.3
  • 5
    • 84890382052 scopus 로고    scopus 로고
    • Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK)
    • Wu J, Puppala D, Feng X, et al. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem 2013; 288: 35904-35912
    • (2013) J Biol Chem , vol.288 , pp. 35904-35912
    • Wu, J.1    Puppala, D.2    Feng, X.3
  • 6
    • 84907545906 scopus 로고    scopus 로고
    • AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis
    • Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 2015; 33: 1-7
    • (2015) Curr Opin Cell Biol , vol.33 , pp. 1-7
    • Hardie, D.G.1
  • 7
    • 84904638939 scopus 로고    scopus 로고
    • AMP-activated protein kinase: Maintaining energy homeostasis at the cellular and whole-body levels
    • Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 2014; 34: 31-55
    • (2014) Annu Rev Nutr , vol.34 , pp. 31-55
    • Hardie, D.G.1
  • 8
    • 84872666094 scopus 로고    scopus 로고
    • Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver
    • Hasenour CM, Berglund ED, Wasserman DH. Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Mol cell Endocrinol 2013; 366: 152-162
    • (2013) Mol Cell Endocrinol , vol.366 , pp. 152-162
    • Hasenour, C.M.1    Berglund, E.D.2    Wasserman, D.H.3
  • 9
    • 33744514139 scopus 로고    scopus 로고
    • Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
    • Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006; 3: 403-416
    • (2006) Cell Metab , vol.3 , pp. 403-416
    • Cool, B.1    Zinker, B.2    Chiou, W.3
  • 10
    • 36348998521 scopus 로고    scopus 로고
    • Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase
    • Goransson O, McBride A, Hawley SA, et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 2007; 282: 32549-32560
    • (2007) J Biol Chem , vol.282 , pp. 32549-32560
    • Goransson, O.1    McBride, A.2    Hawley, S.A.3
  • 11
    • 84861222690 scopus 로고    scopus 로고
    • The ancient drug salicylate directly activates AMP-activated protein kinase
    • Hawley SA, Fullerton MD, Ross FA, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 2012; 336: 918-922
    • (2012) Science , vol.336 , pp. 918-922
    • Hawley, S.A.1    Fullerton, M.D.2    Ross, F.A.3
  • 12
    • 84904556335 scopus 로고    scopus 로고
    • Mechanism of action of compound-13: An alpha1-selective small molecule activator of AMPK
    • Hunter RW, Foretz M, Bultot L, et al. Mechanism of action of compound-13: an alpha1-selective small molecule activator of AMPK. Chem Biol 2014; 21: 866-879
    • (2014) Chem Biol , vol.21 , pp. 866-879
    • Hunter, R.W.1    Foretz, M.2    Bultot, L.3
  • 13
    • 84890963021 scopus 로고    scopus 로고
    • Structural basis of AMPK regulation by small molecule activators
    • Xiao B, Sanders MJ, Carmena D, et al. Structural basis of AMPK regulation by small molecule activators. Nat Commun 2013; 4: 3017
    • (2013) Nat Commun , vol.4 , pp. 3017
    • Xiao, B.1    Sanders, M.J.2    Carmena, D.3
  • 14
    • 0023789884 scopus 로고
    • Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase
    • MundayMR, Campbell DG, Carling D, Hardie DG. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem 1988; 175: 331-338
    • (1988) Eur J Biochem , vol.175 , pp. 331-338
    • Munday, M.R.1    Campbell, D.G.2    Carling, D.3    Hardie, D.G.4
  • 15
    • 0015918822 scopus 로고
    • Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem
    • Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 1973; 248: 378-380
    • (1973) , vol.248 , pp. 378-380
  • 16
    • 0025310576 scopus 로고
    • Regulation of HMG-CoA reductase: Identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver
    • Clarke PR, Hardie DG. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 1990; 9: 2439-2446
    • (1990) EMBO J , vol.9 , pp. 2439-2446
    • Clarke, P.R.1    Hardie, D.G.2
  • 17
    • 0015864346 scopus 로고
    • Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol
    • Beg ZH, Allmann DW, Gibson DM. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol. Biochem Biophys Res Commun 1973; 54: 1362-1369
    • (1973) Biochem Biophys Res Commun , vol.54 , pp. 1362-1369
    • Zh, B.1    Allmann, D.W.2    Gibson, D.M.3
  • 18
    • 84889887123 scopus 로고    scopus 로고
    • Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
    • Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 2013; 19: 1649-1654
    • (2013) Nat Med , vol.19 , pp. 1649-1654
    • Fullerton, M.D.1    Galic, S.2    Marcinko, K.3
  • 19
    • 84924219832 scopus 로고    scopus 로고
    • Protein phosphatase 4 promotes hepatic lipogenesis through dephosphorylating acetylCoA carboxylase 1 on serine 79
    • Meng X, Li M, Guo J, et al. Protein phosphatase 4 promotes hepatic lipogenesis through dephosphorylating acetylCoA carboxylase 1 on serine 79. Mol Med Rep 2014; 10: 1959-1963
    • (2014) Mol Med Rep , vol.10 , pp. 1959-1963
    • Meng, X.1    Li, M.2    Guo, J.3
  • 20
    • 84902306653 scopus 로고    scopus 로고
    • Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation
    • Chow JD, Lawrence RT, Healy ME, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol Metab 2014; 3: 419-431
    • (2014) Mol Metab , vol.3 , pp. 419-431
    • Chow, J.D.1    Lawrence, R.T.2    Healy, M.E.3
  • 21
    • 84863613036 scopus 로고    scopus 로고
    • Acetyl-CoA carboxylase regulates global histone acetylation
    • Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 2012; 287: 23865-23876
    • (2012) J Biol Chem , vol.287 , pp. 23865-23876
    • Galdieri, L.1    Vancura, A.2
  • 22
    • 84891711763 scopus 로고    scopus 로고
    • The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation
    • Zhang M, Galdieri L, Vancura A. The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. Mol Cell Biol 2013; 33: 4701-4717
    • (2013) Mol Cell Biol , vol.33 , pp. 4701-4717
    • Zhang, M.1    Galdieri, L.2    Vancura, A.3
  • 23
  • 24
    • 33847232207 scopus 로고    scopus 로고
    • Hepatic de novo lipogenesis is present in liverspecific ACC1-deficient mice
    • Harada N, Oda Z, Hara Y, et al. Hepatic De novo lipogenesis is present in liverspecific ACC1-deficient mice. Mol Cell Biol 2007; 27: 1881-1888
    • (2007) Mol Cell Biol , vol.27 , pp. 1881-1888
    • Harada, N.1    Oda, Z.2    Hara, Y.3
  • 25
    • 33744781581 scopus 로고    scopus 로고
    • Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis
    • Mao J, DeMayo FJ, Li H, et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 2006; 103: 8552-8557
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 8552-8557
    • Mao, J.1    DeMayo, F.J.2    Li, H.3
  • 26
    • 0029958652 scopus 로고    scopus 로고
    • Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2
    • Sato R, Inoue J, Kawabe Y, et al. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 1996; 271: 26461-26464
    • (1996) J Biol Chem , vol.271 , pp. 26461-26464
    • Sato, R.1    Inoue, J.2    Kawabe, Y.3
  • 27
    • 0030941803 scopus 로고    scopus 로고
    • The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
    • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89: 331-340
    • (1997) Cell , vol.89 , pp. 331-340
    • Brown, M.S.1    Goldstein, J.L.2
  • 28
    • 79953755370 scopus 로고    scopus 로고
    • AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
    • Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13: 376-388
    • (2011) Cell Metab , vol.13 , pp. 376-388
    • Li, Y.1    Xu, S.2    Mihaylova, M.M.3
  • 29
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408-420
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1    Sengupta, S.S.2    Harris, T.E.3
  • 30
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577-590
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 31
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-226
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 32
    • 84856379516 scopus 로고    scopus 로고
    • Regulation of hepatic lipin-1 by ethanol: Role of AMPactivated protein kinase/sterol regulatory element-binding protein 1 signaling in mice
    • Hu M, Wang F, Li X, et al. Regulation of hepatic lipin-1 by ethanol: role of AMPactivated protein kinase/sterol regulatory element-binding protein 1 signaling in mice. Hepatology 2012; 55: 437-446
    • (2012) Hepatology , vol.55 , pp. 437-446
    • Hu, M.1    Wang, F.2    Li, X.3
  • 33
    • 84871226706 scopus 로고    scopus 로고
    • AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism
    • Pinkosky SL, Filippov S, Srivastava RA, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res 2013; 54: 134-151
    • (2013) J Lipid Res , vol.54 , pp. 134-151
    • Pinkosky, S.L.1    Filippov, S.2    Srivastava, R.A.3
  • 34
    • 84951138850 scopus 로고    scopus 로고
    • High intensity interval training improves liver and adipose tissue insulin sensitivity
    • Marcinko K, Sikkema SR, Samaan MC, et al. High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol Metab 2015; 4: 903-915
    • (2015) Mol Metab , vol.4 , pp. 903-915
    • Marcinko, K.1    Sikkema, S.R.2    Samaan, M.C.3
  • 35
    • 0037040185 scopus 로고    scopus 로고
    • Mechanism for fatty acid sparing effect on glucose-induced transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase
    • Kawaguchi T, Osatomi K, Yamashita H, et al. Mechanism for fatty acid sparing effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 2002; 277: 3829-3835
    • (2002) J Biol Chem , vol.277 , pp. 3829-3835
    • Kawaguchi, T.1    Osatomi, K.2    Yamashita, H.3
  • 36
    • 84896769099 scopus 로고    scopus 로고
    • Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
    • Lien F, Berthier A, Bouchaert E, et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Invest 2014; 124: 1037-1051
    • (2014) J Clin Invest , vol.124 , pp. 1037-1051
    • Lien, F.1    Berthier, A.2    Bouchaert, E.3
  • 37
    • 84923285482 scopus 로고    scopus 로고
    • Lysosome: Regulator of lipid degradation pathways
    • Settembre C, Ballabio A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol 2014; 24: 743-750
    • (2014) Trends Cell Biol , vol.24 , pp. 743-750
    • Settembre, C.1    Ballabio, A.2
  • 38
    • 84895930872 scopus 로고    scopus 로고
    • Liver autophagy: Much more than just taking out the trash
    • Schneider JL, Cuervo AM. Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol 2014; 11: 187-200
    • (2014) Nat Rev Gastroenterol Hepatol , vol.11 , pp. 187-200
    • Schneider, J.L.1    Cuervo, A.M.2
  • 39
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009; 458: 1131-1135
    • (2009) Nature , vol.458 , pp. 1131-1135
    • Singh, R.1    Kaushik, S.2    Wang, Y.3
  • 40
    • 80054788704 scopus 로고    scopus 로고
    • Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes
    • Mei S, Ni HM, Manley S, et al. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther 2011; 339: 487-498
    • (2011) J Pharmacol Exp Ther , vol.339 , pp. 487-498
    • Mei, S.1    Ni, H.M.2    Manley, S.3
  • 41
    • 78049467743 scopus 로고    scopus 로고
    • Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice
    • Ding WX, Li M, Chen X, et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice.Gastroenterology 2010; 139: 1740-1752
    • (2010) Gastroenterology , vol.139 , pp. 1740-1752
    • Ding, W.X.1    Li, M.2    Chen, X.3
  • 42
    • 80053312481 scopus 로고    scopus 로고
    • Autophagy and lipid metabolism coordinately modulate life span in germline-less C. Elegans
    • Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 2011; 21: 1507-1514
    • (2011) Curr Biol , vol.21 , pp. 1507-1514
    • Lapierre, L.R.1    Gelino, S.2    Melendez, A.3    Hansen, M.4
  • 43
    • 84878533962 scopus 로고    scopus 로고
    • MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
    • O Rourke EJ, Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 2013; 15: 668-676
    • (2013) Nat Cell Biol , vol.15 , pp. 668-676
    • Orourke, E.J.1    Ruvkun, G.2
  • 44
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016-1023
    • (2011) Nat Cell Biol , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1    Shaw, R.J.2
  • 45
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011; 331: 456-461
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1    Shackelford, D.B.2    Mihaylova, M.M.3
  • 46
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet Bs, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132-141
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Bs, V.3    Guan, K.L.4
  • 47
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim J, Kim YC, Fang C, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013; 152: 290-303
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1    Kim, Y.C.2    Fang, C.3
  • 48
    • 79959963047 scopus 로고    scopus 로고
    • Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop
    • Loffler AS, Alers S, Dieterle AM, et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 2011; 7: 696-706
    • (2011) Autophagy , vol.7 , pp. 696-706
    • Loffler, A.S.1    Alers, S.2    Dieterle, A.M.3
  • 49
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res 2014; 24: 42-57
    • (2014) Cell Res , vol.24 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 50
    • 84953638824 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation
    • Chang C, Su H, Zhang D, et al. AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 2015; 60: 930-940
    • (2015) Mol Cell , vol.60 , pp. 930-940
    • Chang, C.1    Su, H.2    Zhang, D.3
  • 51
    • 84905472344 scopus 로고    scopus 로고
    • TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
    • Inokuchi-Shimizu S, Park EJ, Roh YS, et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest 2014; 124: 3566-3578
    • (2014) J Clin Invest , vol.124 , pp. 3566-3578
    • Inokuchi-Shimizu, S.1    Park, E.J.2    Roh, Y.S.3
  • 52
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15: 647-658
    • (2013) Nat Cell Biol , vol.15 , pp. 647-658
    • Settembre, C.1    De Cegli, R.2    Mansueto, G.3
  • 53
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • Zhang CS, Jiang B, Li M, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20: 526-540
    • (2014) Cell Metab , vol.20 , pp. 526-540
    • Zhang, C.S.1    Jiang, B.2    Li, M.3
  • 54
    • 84885142437 scopus 로고    scopus 로고
    • AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
    • Zhang YL, Guo H, Zhang CS, et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell metabolism 2013; 18: 546-555
    • (2013) Cell Metabolism , vol.18 , pp. 546-555
    • Zhang, Y.L.1    Guo, H.2    Zhang, C.S.3
  • 55
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3
  • 58
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 2007; 104: 12017-12022
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 12017-12022
    • Jager, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 59
    • 79960969204 scopus 로고    scopus 로고
    • Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice
    • Birkenfeld AL, Lee HY, Guebre-Egziabher F, et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab 2011; 14: 184-195
    • (2011) Cell Metab , vol.14 , pp. 184-195
    • Birkenfeld, A.L.1    Lee, H.Y.2    Guebre-Egziabher, F.3
  • 60
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity
    • Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 2009; 458: 1056-1060
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1    Gerhart-Hines, Z.2    Feige, J.N.3
  • 61
    • 84955242874 scopus 로고    scopus 로고
    • Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction
    • Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 2015; 86: 62-74
    • (2015) J Mol Cell Cardiol , vol.86 , pp. 62-74
    • Li, J.1    Wang, Y.2    Wang, Y.3
  • 62
    • 84884735588 scopus 로고    scopus 로고
    • AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1
    • Wikstrom JD, Israeli T, Bachar-Wikstrom E, et al. AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol Endocrinol 2013; 27: 1706-1723
    • (2013) Mol Endocrinol , vol.27 , pp. 1706-1723
    • Wikstrom, J.D.1    Israeli, T.2    Bachar-Wikstrom, E.3
  • 63
    • 84925494009 scopus 로고    scopus 로고
    • Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate
    • Ducommun S, Deak M, Sumpton D, et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal 2015; 27: 978-988
    • (2015) Cell Signal , vol.27 , pp. 978-988
    • Ducommun, S.1    Deak, M.2    Sumpton, D.3
  • 64
    • 0034074153 scopus 로고    scopus 로고
    • 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase
    • Lochhead PA, Salt IP, Walker KS, et al. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 2000; 49: 896-903
    • (2000) Diabetes , vol.49 , pp. 896-903
    • Lochhead, P.A.1    Salt, I.P.2    Walker, K.S.3
  • 65
    • 0026063181 scopus 로고
    • Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes
    • Vincent MF, Marangos PJ, Gruber HE, Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 1991; 40: 1259-1266
    • (1991) Diabetes , vol.40 , pp. 1259-1266
    • Vincent, M.F.1    Marangos, P.J.2    Gruber, H.E.3    Van Den Berghe, G.4
  • 66
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167-1174
    • (2001) J Clin Invest , vol.108 , pp. 1167-1174
    • Zhou, G.1    Myers, R.2    Li, Y.3
  • 67
    • 0037251455 scopus 로고    scopus 로고
    • The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity
    • Viollet B, Andreelli F, Jorgensen SB, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 2003; 111: 91-98
    • (2003) J Clin Invest , vol.111 , pp. 91-98
    • Viollet, B.1    Andreelli, F.2    Jorgensen, S.B.3
  • 68
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310: 1642-1646
    • (2005) Science , vol.310 , pp. 1642-1646
    • Shaw, R.J.1    Lamia, K.A.2    Vasquez, D.3
  • 69
    • 33645884425 scopus 로고    scopus 로고
    • Liver adenosine monophosphateactivated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin
    • Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphateactivated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 2006; 147: 2432-2441
    • (2006) Endocrinology , vol.147 , pp. 2432-2441
    • Andreelli, F.1    Foretz, M.2    Knauf, C.3
  • 70
    • 17844368938 scopus 로고    scopus 로고
    • Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver
    • Foretz M, Ancellin N, Andreelli F, et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005; 54: 1331-1339
    • (2005) Diabetes , vol.54 , pp. 1331-1339
    • Foretz, M.1    Ancellin, N.2    Andreelli, F.3
  • 71
    • 84930589100 scopus 로고    scopus 로고
    • AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging
    • Bujak AL, Crane JD, Lally JS, et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 2015; 21: 883-890
    • (2015) Cell Metab , vol.21 , pp. 883-890
    • Bujak, A.L.1    Crane, J.D.2    Lally, J.S.3
  • 72
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120: 2355-2369
    • (2010) J Clin Invest , vol.120 , pp. 2355-2369
    • Foretz, M.1    Hebrard, S.2    Leclerc, J.3
  • 73
    • 84905457029 scopus 로고    scopus 로고
    • The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver
    • Patel K, Foretz M, Marion A, et al. The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat Commun 2014; 5: 4535
    • (2014) Nat Commun , vol.5 , pp. 4535
    • Patel, K.1    Foretz, M.2    Marion, A.3
  • 74
    • 84896826866 scopus 로고    scopus 로고
    • 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo
    • Hasenour CM, Ridley DE, Hughey CC, et al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J Biol Chem 2014; 289: 5950-5959
    • (2014) J Biol Chem , vol.289 , pp. 5950-5959
    • Hasenour, C.M.1    De, R.2    Hughey, C.C.3
  • 75
    • 84937501227 scopus 로고    scopus 로고
    • Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes
    • Itoh Y, Sanosaka M, Fuchino H, et al. Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes. J Biol Chem 2015; 290: 17879-17893
    • (2015) J Biol Chem , vol.290 , pp. 17879-17893
    • Itoh, Y.1    Sanosaka, M.2    Fuchino, H.3
  • 76
    • 84877626901 scopus 로고    scopus 로고
    • Revisiting the mechanisms of metformin action in the liver
    • Viollet B, Foretz M. Revisiting the mechanisms of metformin action in the liver. Ann Endocrinol (Paris) 2013; 74: 123-129
    • (2013) Ann Endocrinol (Paris) , vol.74 , pp. 123-129
    • Viollet, B.1    Foretz, M.2
  • 77
    • 84905404389 scopus 로고    scopus 로고
    • Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK)
    • Cao J, Meng S, Chang E, et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J Biol Chem 2014; 289: 20435-20446
    • (2014) J Biol Chem , vol.289 , pp. 20435-20446
    • Cao, J.1    Meng, S.2    Chang, E.3
  • 78
    • 0028158709 scopus 로고
    • Accumulation of metformin by tissues of the normal and diabetic mouse
    • Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994; 24: 49-57
    • (1994) Xenobiotica , vol.24 , pp. 49-57
    • Wilcock, C.1    Bailey, C.J.2
  • 79
    • 0025904170 scopus 로고
    • Subcellular distribution of metformin in rat liver
    • Wilcock C, Wyre ND, Bailey CJ. Subcellular distribution of metformin in rat liver. J Pharm Pharmacol 1991; 43: 442-444
    • (1991) J Pharm Pharmacol , vol.43 , pp. 442-444
    • Wilcock, C.1    Wyre, N.D.2    Bailey, C.J.3
  • 80
    • 84873707522 scopus 로고    scopus 로고
    • Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
    • Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494: 256-260
    • (2013) Nature , vol.494 , pp. 256-260
    • Miller, R.A.1    Chu, Q.2    Xie, J.3
  • 81
    • 65549136655 scopus 로고    scopus 로고
    • Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
    • He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 2009; 137: 635-646
    • (2009) Cell , vol.137 , pp. 635-646
    • He, L.1    Sabet, A.2    Djedjos, S.3
  • 82
    • 84903524608 scopus 로고    scopus 로고
    • Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
    • Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510: 542-546
    • (2014) Nature , vol.510 , pp. 542-546
    • Madiraju, A.K.1    Erion, D.M.2    Rahimi, Y.3
  • 83
    • 84929177057 scopus 로고    scopus 로고
    • Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats
    • Duca FA, Cote CD, Rasmussen BA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med 2015; 21: 506-511
    • (2015) Nat Med , vol.21 , pp. 506-511
    • Duca, F.A.1    Cote, C.D.2    Rasmussen, B.A.3
  • 84
    • 84887454006 scopus 로고    scopus 로고
    • Metabolic disease puts up a fight: Microbes, metabolism and medications
    • Maratos-Flier E. Metabolic disease puts up a fight: microbes, metabolism and medications. Nat Med 2013; 19: 1218-1219
    • (2013) Nat Med , vol.19 , pp. 1218-1219
    • Maratos-Flier, E.1
  • 85
    • 84897960120 scopus 로고    scopus 로고
    • An increase in the Akkermansia spp. Population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice
    • Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63: 727-735
    • (2014) Gut , vol.63 , pp. 727-735
    • Shin, N.R.1    Lee, J.C.2    Lee, H.Y.3
  • 86
    • 84978001436 scopus 로고    scopus 로고
    • Metformin improves the hepatic insulin resistance index independently of anthropometric changes
    • Gomez-Samano MA, Gulias-Herrero A, Cuevas-Ramos D, et al. Metformin improves the hepatic insulin resistance index independently of anthropometric changes. Endocr Pract 2011; 18: 1-24
    • (2011) Endocr Pract , vol.18 , pp. 1-24
    • Ma, G.1    Gulias-Herrero, A.2    Cuevas-Ramos, D.3
  • 87
    • 84862517200 scopus 로고    scopus 로고
    • Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of randomised trials
    • Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in nonalcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 2012; 55: 885-904
    • (2012) Diabetologia , vol.55 , pp. 885-904
    • Musso, G.1    Cassader, M.2    Rosina, F.3    Gambino, R.4
  • 88
    • 84900537112 scopus 로고    scopus 로고
    • Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662
    • Ducommun S, Ford RJ, Bultot L, et al. Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 2014; 306: E688-E696
    • (2014) Am J Physiol Endocrinol Metab , vol.306 , pp. E688-E696
    • Ducommun, S.1    Ford, R.J.2    Bultot, L.3
  • 89
    • 84930606184 scopus 로고    scopus 로고
    • Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
    • Ford RJ, Fullerton MD, Pinkosky SL, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 2015; 468: 125-132
    • (2015) Biochem J , vol.468 , pp. 125-132
    • Ford, R.J.1    Fullerton, M.D.2    Pinkosky, S.L.3
  • 90
    • 84946887754 scopus 로고    scopus 로고
    • Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2)
    • Madsen A, Bozickovic O, Bjune JI, et al. Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Sci Rep 2015; 5: 16430
    • (2015) Sci Rep , vol.5 , pp. 16430
    • Madsen, A.1    Bozickovic, O.2    Bjune, J.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.