-
1
-
-
67650914230
-
AMPK in Health and Disease
-
Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev 2009; 89: 1025-1078
-
(2009)
Physiol Rev
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
2
-
-
73649128543
-
AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance
-
Dzamko N, van Denderen BJ, Hevener AL, et al. AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J Biol Chem 2010; 285: 115-122
-
(2010)
J Biol Chem
, vol.285
, pp. 115-122
-
-
Dzamko, N.1
Van Denderen, B.J.2
Hevener, A.L.3
-
4
-
-
82455209029
-
Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status
-
Stephenne X, Foretz M, Taleux N, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 2011; 54: 3101-3110
-
(2011)
Diabetologia
, vol.54
, pp. 3101-3110
-
-
Stephenne, X.1
Foretz, M.2
Taleux, N.3
-
5
-
-
84890382052
-
Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK)
-
Wu J, Puppala D, Feng X, et al. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem 2013; 288: 35904-35912
-
(2013)
J Biol Chem
, vol.288
, pp. 35904-35912
-
-
Wu, J.1
Puppala, D.2
Feng, X.3
-
6
-
-
84907545906
-
AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis
-
Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 2015; 33: 1-7
-
(2015)
Curr Opin Cell Biol
, vol.33
, pp. 1-7
-
-
Hardie, D.G.1
-
7
-
-
84904638939
-
AMP-activated protein kinase: Maintaining energy homeostasis at the cellular and whole-body levels
-
Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 2014; 34: 31-55
-
(2014)
Annu Rev Nutr
, vol.34
, pp. 31-55
-
-
Hardie, D.G.1
-
8
-
-
84872666094
-
Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver
-
Hasenour CM, Berglund ED, Wasserman DH. Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver. Mol cell Endocrinol 2013; 366: 152-162
-
(2013)
Mol Cell Endocrinol
, vol.366
, pp. 152-162
-
-
Hasenour, C.M.1
Berglund, E.D.2
Wasserman, D.H.3
-
9
-
-
33744514139
-
Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
-
Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006; 3: 403-416
-
(2006)
Cell Metab
, vol.3
, pp. 403-416
-
-
Cool, B.1
Zinker, B.2
Chiou, W.3
-
10
-
-
36348998521
-
Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase
-
Goransson O, McBride A, Hawley SA, et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 2007; 282: 32549-32560
-
(2007)
J Biol Chem
, vol.282
, pp. 32549-32560
-
-
Goransson, O.1
McBride, A.2
Hawley, S.A.3
-
11
-
-
84861222690
-
The ancient drug salicylate directly activates AMP-activated protein kinase
-
Hawley SA, Fullerton MD, Ross FA, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 2012; 336: 918-922
-
(2012)
Science
, vol.336
, pp. 918-922
-
-
Hawley, S.A.1
Fullerton, M.D.2
Ross, F.A.3
-
12
-
-
84904556335
-
Mechanism of action of compound-13: An alpha1-selective small molecule activator of AMPK
-
Hunter RW, Foretz M, Bultot L, et al. Mechanism of action of compound-13: an alpha1-selective small molecule activator of AMPK. Chem Biol 2014; 21: 866-879
-
(2014)
Chem Biol
, vol.21
, pp. 866-879
-
-
Hunter, R.W.1
Foretz, M.2
Bultot, L.3
-
13
-
-
84890963021
-
Structural basis of AMPK regulation by small molecule activators
-
Xiao B, Sanders MJ, Carmena D, et al. Structural basis of AMPK regulation by small molecule activators. Nat Commun 2013; 4: 3017
-
(2013)
Nat Commun
, vol.4
, pp. 3017
-
-
Xiao, B.1
Sanders, M.J.2
Carmena, D.3
-
14
-
-
0023789884
-
Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase
-
MundayMR, Campbell DG, Carling D, Hardie DG. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem 1988; 175: 331-338
-
(1988)
Eur J Biochem
, vol.175
, pp. 331-338
-
-
Munday, M.R.1
Campbell, D.G.2
Carling, D.3
Hardie, D.G.4
-
15
-
-
0015918822
-
-
Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem
-
Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem 1973; 248: 378-380
-
(1973)
, vol.248
, pp. 378-380
-
-
-
16
-
-
0025310576
-
Regulation of HMG-CoA reductase: Identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver
-
Clarke PR, Hardie DG. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J 1990; 9: 2439-2446
-
(1990)
EMBO J
, vol.9
, pp. 2439-2446
-
-
Clarke, P.R.1
Hardie, D.G.2
-
17
-
-
0015864346
-
Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol
-
Beg ZH, Allmann DW, Gibson DM. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol. Biochem Biophys Res Commun 1973; 54: 1362-1369
-
(1973)
Biochem Biophys Res Commun
, vol.54
, pp. 1362-1369
-
-
Zh, B.1
Allmann, D.W.2
Gibson, D.M.3
-
18
-
-
84889887123
-
Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
-
Fullerton MD, Galic S, Marcinko K, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 2013; 19: 1649-1654
-
(2013)
Nat Med
, vol.19
, pp. 1649-1654
-
-
Fullerton, M.D.1
Galic, S.2
Marcinko, K.3
-
19
-
-
84924219832
-
Protein phosphatase 4 promotes hepatic lipogenesis through dephosphorylating acetylCoA carboxylase 1 on serine 79
-
Meng X, Li M, Guo J, et al. Protein phosphatase 4 promotes hepatic lipogenesis through dephosphorylating acetylCoA carboxylase 1 on serine 79. Mol Med Rep 2014; 10: 1959-1963
-
(2014)
Mol Med Rep
, vol.10
, pp. 1959-1963
-
-
Meng, X.1
Li, M.2
Guo, J.3
-
20
-
-
84902306653
-
Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation
-
Chow JD, Lawrence RT, Healy ME, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Mol Metab 2014; 3: 419-431
-
(2014)
Mol Metab
, vol.3
, pp. 419-431
-
-
Chow, J.D.1
Lawrence, R.T.2
Healy, M.E.3
-
21
-
-
84863613036
-
Acetyl-CoA carboxylase regulates global histone acetylation
-
Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 2012; 287: 23865-23876
-
(2012)
J Biol Chem
, vol.287
, pp. 23865-23876
-
-
Galdieri, L.1
Vancura, A.2
-
22
-
-
84891711763
-
The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation
-
Zhang M, Galdieri L, Vancura A. The yeast AMPK homolog SNF1 regulates acetyl coenzyme A homeostasis and histone acetylation. Mol Cell Biol 2013; 33: 4701-4717
-
(2013)
Mol Cell Biol
, vol.33
, pp. 4701-4717
-
-
Zhang, M.1
Galdieri, L.2
Vancura, A.3
-
24
-
-
33847232207
-
Hepatic de novo lipogenesis is present in liverspecific ACC1-deficient mice
-
Harada N, Oda Z, Hara Y, et al. Hepatic De novo lipogenesis is present in liverspecific ACC1-deficient mice. Mol Cell Biol 2007; 27: 1881-1888
-
(2007)
Mol Cell Biol
, vol.27
, pp. 1881-1888
-
-
Harada, N.1
Oda, Z.2
Hara, Y.3
-
25
-
-
33744781581
-
Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis
-
Mao J, DeMayo FJ, Li H, et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 2006; 103: 8552-8557
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 8552-8557
-
-
Mao, J.1
DeMayo, F.J.2
Li, H.3
-
26
-
-
0029958652
-
Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2
-
Sato R, Inoue J, Kawabe Y, et al. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 1996; 271: 26461-26464
-
(1996)
J Biol Chem
, vol.271
, pp. 26461-26464
-
-
Sato, R.1
Inoue, J.2
Kawabe, Y.3
-
27
-
-
0030941803
-
The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
-
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89: 331-340
-
(1997)
Cell
, vol.89
, pp. 331-340
-
-
Brown, M.S.1
Goldstein, J.L.2
-
28
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13: 376-388
-
(2011)
Cell Metab
, vol.13
, pp. 376-388
-
-
Li, Y.1
Xu, S.2
Mihaylova, M.M.3
-
29
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408-420
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
-
30
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577-590
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
31
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-226
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
32
-
-
84856379516
-
Regulation of hepatic lipin-1 by ethanol: Role of AMPactivated protein kinase/sterol regulatory element-binding protein 1 signaling in mice
-
Hu M, Wang F, Li X, et al. Regulation of hepatic lipin-1 by ethanol: role of AMPactivated protein kinase/sterol regulatory element-binding protein 1 signaling in mice. Hepatology 2012; 55: 437-446
-
(2012)
Hepatology
, vol.55
, pp. 437-446
-
-
Hu, M.1
Wang, F.2
Li, X.3
-
33
-
-
84871226706
-
AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism
-
Pinkosky SL, Filippov S, Srivastava RA, et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res 2013; 54: 134-151
-
(2013)
J Lipid Res
, vol.54
, pp. 134-151
-
-
Pinkosky, S.L.1
Filippov, S.2
Srivastava, R.A.3
-
34
-
-
84951138850
-
High intensity interval training improves liver and adipose tissue insulin sensitivity
-
Marcinko K, Sikkema SR, Samaan MC, et al. High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol Metab 2015; 4: 903-915
-
(2015)
Mol Metab
, vol.4
, pp. 903-915
-
-
Marcinko, K.1
Sikkema, S.R.2
Samaan, M.C.3
-
35
-
-
0037040185
-
Mechanism for fatty acid sparing effect on glucose-induced transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase
-
Kawaguchi T, Osatomi K, Yamashita H, et al. Mechanism for fatty acid sparing effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Biol Chem 2002; 277: 3829-3835
-
(2002)
J Biol Chem
, vol.277
, pp. 3829-3835
-
-
Kawaguchi, T.1
Osatomi, K.2
Yamashita, H.3
-
36
-
-
84896769099
-
Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
-
Lien F, Berthier A, Bouchaert E, et al. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J Clin Invest 2014; 124: 1037-1051
-
(2014)
J Clin Invest
, vol.124
, pp. 1037-1051
-
-
Lien, F.1
Berthier, A.2
Bouchaert, E.3
-
37
-
-
84923285482
-
Lysosome: Regulator of lipid degradation pathways
-
Settembre C, Ballabio A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol 2014; 24: 743-750
-
(2014)
Trends Cell Biol
, vol.24
, pp. 743-750
-
-
Settembre, C.1
Ballabio, A.2
-
38
-
-
84895930872
-
Liver autophagy: Much more than just taking out the trash
-
Schneider JL, Cuervo AM. Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol 2014; 11: 187-200
-
(2014)
Nat Rev Gastroenterol Hepatol
, vol.11
, pp. 187-200
-
-
Schneider, J.L.1
Cuervo, A.M.2
-
39
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature 2009; 458: 1131-1135
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
-
40
-
-
80054788704
-
Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes
-
Mei S, Ni HM, Manley S, et al. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther 2011; 339: 487-498
-
(2011)
J Pharmacol Exp Ther
, vol.339
, pp. 487-498
-
-
Mei, S.1
Ni, H.M.2
Manley, S.3
-
41
-
-
78049467743
-
Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice
-
Ding WX, Li M, Chen X, et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice.Gastroenterology 2010; 139: 1740-1752
-
(2010)
Gastroenterology
, vol.139
, pp. 1740-1752
-
-
Ding, W.X.1
Li, M.2
Chen, X.3
-
42
-
-
80053312481
-
Autophagy and lipid metabolism coordinately modulate life span in germline-less C. Elegans
-
Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 2011; 21: 1507-1514
-
(2011)
Curr Biol
, vol.21
, pp. 1507-1514
-
-
Lapierre, L.R.1
Gelino, S.2
Melendez, A.3
Hansen, M.4
-
43
-
-
84878533962
-
MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
-
O Rourke EJ, Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 2013; 15: 668-676
-
(2013)
Nat Cell Biol
, vol.15
, pp. 668-676
-
-
Orourke, E.J.1
Ruvkun, G.2
-
44
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016-1023
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
45
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011; 331: 456-461
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
-
46
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet Bs, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13: 132-141
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Bs, V.3
Guan, K.L.4
-
47
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
-
Kim J, Kim YC, Fang C, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013; 152: 290-303
-
(2013)
Cell
, vol.152
, pp. 290-303
-
-
Kim, J.1
Kim, Y.C.2
Fang, C.3
-
48
-
-
79959963047
-
Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop
-
Loffler AS, Alers S, Dieterle AM, et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 2011; 7: 696-706
-
(2011)
Autophagy
, vol.7
, pp. 696-706
-
-
Loffler, A.S.1
Alers, S.2
Dieterle, A.M.3
-
49
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res 2014; 24: 42-57
-
(2014)
Cell Res
, vol.24
, pp. 42-57
-
-
Russell, R.C.1
Yuan, H.X.2
Guan, K.L.3
-
50
-
-
84953638824
-
AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation
-
Chang C, Su H, Zhang D, et al. AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 2015; 60: 930-940
-
(2015)
Mol Cell
, vol.60
, pp. 930-940
-
-
Chang, C.1
Su, H.2
Zhang, D.3
-
51
-
-
84905472344
-
TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis
-
Inokuchi-Shimizu S, Park EJ, Roh YS, et al. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis. J Clin Invest 2014; 124: 3566-3578
-
(2014)
J Clin Invest
, vol.124
, pp. 3566-3578
-
-
Inokuchi-Shimizu, S.1
Park, E.J.2
Roh, Y.S.3
-
52
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15: 647-658
-
(2013)
Nat Cell Biol
, vol.15
, pp. 647-658
-
-
Settembre, C.1
De Cegli, R.2
Mansueto, G.3
-
53
-
-
84907519033
-
The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
Zhang CS, Jiang B, Li M, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20: 526-540
-
(2014)
Cell Metab
, vol.20
, pp. 526-540
-
-
Zhang, C.S.1
Jiang, B.2
Li, M.3
-
54
-
-
84885142437
-
AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation
-
Zhang YL, Guo H, Zhang CS, et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell metabolism 2013; 18: 546-555
-
(2013)
Cell Metabolism
, vol.18
, pp. 546-555
-
-
Zhang, Y.L.1
Guo, H.2
Zhang, C.S.3
-
55
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
-
58
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 2007; 104: 12017-12022
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
59
-
-
79960969204
-
Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice
-
Birkenfeld AL, Lee HY, Guebre-Egziabher F, et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab 2011; 14: 184-195
-
(2011)
Cell Metab
, vol.14
, pp. 184-195
-
-
Birkenfeld, A.L.1
Lee, H.Y.2
Guebre-Egziabher, F.3
-
60
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 2009; 458: 1056-1060
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
-
61
-
-
84955242874
-
Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction
-
Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 2015; 86: 62-74
-
(2015)
J Mol Cell Cardiol
, vol.86
, pp. 62-74
-
-
Li, J.1
Wang, Y.2
Wang, Y.3
-
62
-
-
84884735588
-
AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1
-
Wikstrom JD, Israeli T, Bachar-Wikstrom E, et al. AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol Endocrinol 2013; 27: 1706-1723
-
(2013)
Mol Endocrinol
, vol.27
, pp. 1706-1723
-
-
Wikstrom, J.D.1
Israeli, T.2
Bachar-Wikstrom, E.3
-
63
-
-
84925494009
-
Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate
-
Ducommun S, Deak M, Sumpton D, et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal 2015; 27: 978-988
-
(2015)
Cell Signal
, vol.27
, pp. 978-988
-
-
Ducommun, S.1
Deak, M.2
Sumpton, D.3
-
64
-
-
0034074153
-
5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase
-
Lochhead PA, Salt IP, Walker KS, et al. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 2000; 49: 896-903
-
(2000)
Diabetes
, vol.49
, pp. 896-903
-
-
Lochhead, P.A.1
Salt, I.P.2
Walker, K.S.3
-
65
-
-
0026063181
-
Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes
-
Vincent MF, Marangos PJ, Gruber HE, Van den Berghe G. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 1991; 40: 1259-1266
-
(1991)
Diabetes
, vol.40
, pp. 1259-1266
-
-
Vincent, M.F.1
Marangos, P.J.2
Gruber, H.E.3
Van Den Berghe, G.4
-
66
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167-1174
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
67
-
-
0037251455
-
The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity
-
Viollet B, Andreelli F, Jorgensen SB, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 2003; 111: 91-98
-
(2003)
J Clin Invest
, vol.111
, pp. 91-98
-
-
Viollet, B.1
Andreelli, F.2
Jorgensen, S.B.3
-
68
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005; 310: 1642-1646
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
Lamia, K.A.2
Vasquez, D.3
-
69
-
-
33645884425
-
Liver adenosine monophosphateactivated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin
-
Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphateactivated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 2006; 147: 2432-2441
-
(2006)
Endocrinology
, vol.147
, pp. 2432-2441
-
-
Andreelli, F.1
Foretz, M.2
Knauf, C.3
-
70
-
-
17844368938
-
Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver
-
Foretz M, Ancellin N, Andreelli F, et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 2005; 54: 1331-1339
-
(2005)
Diabetes
, vol.54
, pp. 1331-1339
-
-
Foretz, M.1
Ancellin, N.2
Andreelli, F.3
-
71
-
-
84930589100
-
AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging
-
Bujak AL, Crane JD, Lally JS, et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 2015; 21: 883-890
-
(2015)
Cell Metab
, vol.21
, pp. 883-890
-
-
Bujak, A.L.1
Crane, J.D.2
Lally, J.S.3
-
72
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 2010; 120: 2355-2369
-
(2010)
J Clin Invest
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hebrard, S.2
Leclerc, J.3
-
73
-
-
84905457029
-
The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver
-
Patel K, Foretz M, Marion A, et al. The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat Commun 2014; 5: 4535
-
(2014)
Nat Commun
, vol.5
, pp. 4535
-
-
Patel, K.1
Foretz, M.2
Marion, A.3
-
74
-
-
84896826866
-
5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo
-
Hasenour CM, Ridley DE, Hughey CC, et al. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J Biol Chem 2014; 289: 5950-5959
-
(2014)
J Biol Chem
, vol.289
, pp. 5950-5959
-
-
Hasenour, C.M.1
De, R.2
Hughey, C.C.3
-
75
-
-
84937501227
-
Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes
-
Itoh Y, Sanosaka M, Fuchino H, et al. Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes. J Biol Chem 2015; 290: 17879-17893
-
(2015)
J Biol Chem
, vol.290
, pp. 17879-17893
-
-
Itoh, Y.1
Sanosaka, M.2
Fuchino, H.3
-
76
-
-
84877626901
-
Revisiting the mechanisms of metformin action in the liver
-
Viollet B, Foretz M. Revisiting the mechanisms of metformin action in the liver. Ann Endocrinol (Paris) 2013; 74: 123-129
-
(2013)
Ann Endocrinol (Paris)
, vol.74
, pp. 123-129
-
-
Viollet, B.1
Foretz, M.2
-
77
-
-
84905404389
-
Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK)
-
Cao J, Meng S, Chang E, et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J Biol Chem 2014; 289: 20435-20446
-
(2014)
J Biol Chem
, vol.289
, pp. 20435-20446
-
-
Cao, J.1
Meng, S.2
Chang, E.3
-
78
-
-
0028158709
-
Accumulation of metformin by tissues of the normal and diabetic mouse
-
Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 1994; 24: 49-57
-
(1994)
Xenobiotica
, vol.24
, pp. 49-57
-
-
Wilcock, C.1
Bailey, C.J.2
-
79
-
-
0025904170
-
Subcellular distribution of metformin in rat liver
-
Wilcock C, Wyre ND, Bailey CJ. Subcellular distribution of metformin in rat liver. J Pharm Pharmacol 1991; 43: 442-444
-
(1991)
J Pharm Pharmacol
, vol.43
, pp. 442-444
-
-
Wilcock, C.1
Wyre, N.D.2
Bailey, C.J.3
-
80
-
-
84873707522
-
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
-
Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494: 256-260
-
(2013)
Nature
, vol.494
, pp. 256-260
-
-
Miller, R.A.1
Chu, Q.2
Xie, J.3
-
81
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 2009; 137: 635-646
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
Sabet, A.2
Djedjos, S.3
-
82
-
-
84903524608
-
Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
-
Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510: 542-546
-
(2014)
Nature
, vol.510
, pp. 542-546
-
-
Madiraju, A.K.1
Erion, D.M.2
Rahimi, Y.3
-
83
-
-
84929177057
-
Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats
-
Duca FA, Cote CD, Rasmussen BA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med 2015; 21: 506-511
-
(2015)
Nat Med
, vol.21
, pp. 506-511
-
-
Duca, F.A.1
Cote, C.D.2
Rasmussen, B.A.3
-
84
-
-
84887454006
-
Metabolic disease puts up a fight: Microbes, metabolism and medications
-
Maratos-Flier E. Metabolic disease puts up a fight: microbes, metabolism and medications. Nat Med 2013; 19: 1218-1219
-
(2013)
Nat Med
, vol.19
, pp. 1218-1219
-
-
Maratos-Flier, E.1
-
85
-
-
84897960120
-
An increase in the Akkermansia spp. Population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice
-
Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63: 727-735
-
(2014)
Gut
, vol.63
, pp. 727-735
-
-
Shin, N.R.1
Lee, J.C.2
Lee, H.Y.3
-
86
-
-
84978001436
-
Metformin improves the hepatic insulin resistance index independently of anthropometric changes
-
Gomez-Samano MA, Gulias-Herrero A, Cuevas-Ramos D, et al. Metformin improves the hepatic insulin resistance index independently of anthropometric changes. Endocr Pract 2011; 18: 1-24
-
(2011)
Endocr Pract
, vol.18
, pp. 1-24
-
-
Ma, G.1
Gulias-Herrero, A.2
Cuevas-Ramos, D.3
-
87
-
-
84862517200
-
Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of randomised trials
-
Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in nonalcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 2012; 55: 885-904
-
(2012)
Diabetologia
, vol.55
, pp. 885-904
-
-
Musso, G.1
Cassader, M.2
Rosina, F.3
Gambino, R.4
-
88
-
-
84900537112
-
Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662
-
Ducommun S, Ford RJ, Bultot L, et al. Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662. Am J Physiol Endocrinol Metab 2014; 306: E688-E696
-
(2014)
Am J Physiol Endocrinol Metab
, vol.306
, pp. E688-E696
-
-
Ducommun, S.1
Ford, R.J.2
Bultot, L.3
-
89
-
-
84930606184
-
Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
-
Ford RJ, Fullerton MD, Pinkosky SL, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 2015; 468: 125-132
-
(2015)
Biochem J
, vol.468
, pp. 125-132
-
-
Ford, R.J.1
Fullerton, M.D.2
Pinkosky, S.L.3
-
90
-
-
84946887754
-
Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2)
-
Madsen A, Bozickovic O, Bjune JI, et al. Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Sci Rep 2015; 5: 16430
-
(2015)
Sci Rep
, vol.5
, pp. 16430
-
-
Madsen, A.1
Bozickovic, O.2
Bjune, J.I.3
|