-
1
-
-
84903450420
-
Steroid receptor coactivators: Servants and masters for control of systems metabolism
-
Stashi, E., York, B. & O'Malley, B. W. Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab 25, 337-347, doi: 10.1016/j.tem.2014.05.004 (2014).
-
(2014)
Trends Endocrinol Metab
, vol.25
, pp. 337-347
-
-
Stashi, E.1
York, B.2
O'Malley, B.W.3
-
2
-
-
82655174048
-
Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy
-
Johnson, A. B. & O'Malley, B. W. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 348, 430-439, doi: 10.1016/j.mce.2011.04.021 (2012).
-
(2012)
Mol Cell Endocrinol
, vol.348
, pp. 430-439
-
-
Johnson, A.B.1
O'Malley, B.W.2
-
3
-
-
78649846415
-
Steroid receptor coactivator (SRC) family: Masters of systems biology
-
York, B. & O'Malley, B. W. Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285, 38743-38750, doi: 10.1074/jbc.R110.193367 (2010).
-
(2010)
J Biol Chem
, vol.285
, pp. 38743-38750
-
-
York, B.1
O'Malley, B.W.2
-
4
-
-
84924049891
-
Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis
-
Dasgupta, S. et al. Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis. J Clin Invest 125, 1174-1188, doi: 10.1172/JCI76029 (2015).
-
(2015)
J Clin Invest
, vol.125
, pp. 1174-1188
-
-
Dasgupta, S.1
-
5
-
-
50449092139
-
Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3′, 5′ -cyclic adenosine 5′ -monophosphate-dependent protein kinase
-
Fenne, I. S. et al. Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3′, 5′ -cyclic adenosine 5′ -monophosphate-dependent protein kinase. Endocrinology 149, 4336-4345, doi: 10.1210/en.2008-0037 (2008).
-
(2008)
Endocrinology
, vol.149
, pp. 4336-4345
-
-
Fenne, I.S.1
-
6
-
-
84896715962
-
SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm
-
Stashi, E. et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep 6, 633-645, doi: 10.1016/j.celrep.2014.01.027 (2014).
-
(2014)
Cell Rep
, vol.6
, pp. 633-645
-
-
Stashi, E.1
-
7
-
-
78650911273
-
Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption
-
Chopra, A. R. et al. Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption. Cell Metab 13, 35-43, doi: 10.1016/j.cmet.2010.12.001 (2011).
-
(2011)
Cell Metab
, vol.13
, pp. 35-43
-
-
Chopra, A.R.1
-
8
-
-
0037184960
-
SRC-1 and TIF2 control energy balance between white and brown adipose tissues
-
Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931-941 (2002).
-
(2002)
Cell
, vol.111
, pp. 931-941
-
-
Picard, F.1
-
9
-
-
33746517873
-
The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism
-
Jeong, J. W. et al. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Mol Endocrinol 20, 1138-1152, doi: 10.1210/me.2005-0407 (2006).
-
(2006)
Mol Endocrinol
, vol.20
, pp. 1138-1152
-
-
Jeong, J.W.1
-
10
-
-
57149089662
-
Absence of the SRC-2 coactivator results in a glycogenopathy resembling von Gierke's disease
-
Chopra, A. R. et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 322, 1395-1399, doi: 10.1126/science.1164847 (2008).
-
(2008)
Science
, vol.322
, pp. 1395-1399
-
-
Chopra, A.R.1
-
11
-
-
33746517873
-
The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism
-
Jeong, J. W. et al. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Molecular endocrinology 20, 1138-1152, doi: 10.1210/me.2005-0407 (2006).
-
(2006)
Molecular Endocrinology
, vol.20
, pp. 1138-1152
-
-
Jeong, J.W.1
-
12
-
-
0036251153
-
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125-1131, doi: 10.1172/JCI15593 (2002).
-
(2002)
J Clin Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
13
-
-
11244253854
-
Initiating oral glucose-lowering therapy with metformin in type 2 diabetic patients: An evidence-based strategy to reduce the burden of late-developing diabetes complications
-
Consoli, A. et al. Initiating oral glucose-lowering therapy with metformin in type 2 diabetic patients: an evidence-based strategy to reduce the burden of late-developing diabetes complications. Diabetes Metab 30, 509-516 (2004).
-
(2004)
Diabetes Metab
, vol.30
, pp. 509-516
-
-
Consoli, A.1
-
14
-
-
84928233870
-
Pharmacologic treatment of type 2 diabetes: Oral medications
-
Tran, L. et al. Pharmacologic Treatment of Type 2 Diabetes: Oral Medications. Ann Pharmacother 49, 540-556, doi: 10.1177/1060028014558289 (2015).
-
(2015)
Ann Pharmacother
, vol.49
, pp. 540-556
-
-
Tran, L.1
-
15
-
-
28844433635
-
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
-
Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646, doi: 10.1126/science.1120781 (2005).
-
(2005)
Science
, vol.310
, pp. 1642-1646
-
-
Shaw, R.J.1
-
16
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: An overview
-
Viollet, B. et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122, 253-270, doi: 10.1042/CS20110386 (2012).
-
(2012)
Clin Sci (Lond)
, vol.122
, pp. 253-270
-
-
Viollet, B.1
-
17
-
-
0023937806
-
The antidiabetic drug metformin decreases cholesterol metabolism in cultured human fibroblasts
-
Maziere, J. C. et al. The antidiabetic drug metformin decreases cholesterol metabolism in cultured human fibroblasts. Atherosclerosis 71, 27-33 (1988).
-
(1988)
Atherosclerosis
, vol.71
, pp. 27-33
-
-
Maziere, J.C.1
-
18
-
-
33750442923
-
Genome-wide analysis of estrogen receptor binding sites
-
Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. Nature genetics 38, 1289-1297, doi: 10.1038/ng1901 (2006).
-
(2006)
Nature Genetics
, vol.38
, pp. 1289-1297
-
-
Carroll, J.S.1
-
19
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of clinical investigation 108, 1167-1174, doi: 10.1172/JCI13505 (2001).
-
(2001)
The Journal of Clinical Investigation
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
-
20
-
-
0012785395
-
Metformin reverses fatty liver disease in obese, leptin-deficient mice
-
Lin, H. Z. et al. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 6, 998-1003, doi: 10.1038/79697 (2000).
-
(2000)
Nat Med
, vol.6
, pp. 998-1003
-
-
Lin, H.Z.1
-
21
-
-
84930606184
-
Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
-
Ford, R. J. et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 468, 125-132, doi: 10.1042/BJ20150125 (2015).
-
(2015)
Biochem J
, vol.468
, pp. 125-132
-
-
Ford, R.J.1
-
22
-
-
78651103598
-
Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia
-
Matafome, P. et al. Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia. Diabetes Metab Res Rev 27, 54-62, doi: 10.1002/dmrr.1157 (2011).
-
(2011)
Diabetes Metab Res Rev
, vol.27
, pp. 54-62
-
-
Matafome, P.1
-
23
-
-
67349257934
-
The effect of metformin on leptin in obese patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease
-
Nar, A. & Gedik, O. The effect of metformin on leptin in obese patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Acta Diabetol 46, 113-118, doi: 10.1007/s00592-008-0067-2 (2009).
-
(2009)
Acta Diabetol
, vol.46
, pp. 113-118
-
-
Nar, A.1
Gedik, O.2
-
25
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11, 390-401, doi: 10.1016/j.cmet.2010.03.014 (2010).
-
(2010)
Cell Metab
, vol.11
, pp. 390-401
-
-
Kalender, A.1
-
26
-
-
79957576579
-
Control of nuclear receptor activities in metabolism by post-translational modifications
-
Berrabah, W., Aumercier, P., Lefebvre, P. & Staels, B. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS letters 585, 1640-1650, doi: 10.1016/j.febslet.2011.03.066 (2011).
-
(2011)
FEBS Letters
, vol.585
, pp. 1640-1650
-
-
Berrabah, W.1
Aumercier, P.2
Lefebvre, P.3
Staels, B.4
-
27
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120, 2355-2369, doi: 10.1172/JCI40671 (2010).
-
(2010)
J Clin Invest
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
-
28
-
-
84903524608
-
Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
-
Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542-546, doi: 10.1038/nature13270 (2014).
-
(2014)
Nature
, vol.510
, pp. 542-546
-
-
Madiraju, A.K.1
-
29
-
-
0036324142
-
The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
-
Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420-2425 (2002).
-
(2002)
Diabetes
, vol.51
, pp. 2420-2425
-
-
Hawley, S.A.1
Gadalla, A.E.2
Olsen, G.S.3
Hardie, D.G.4
-
30
-
-
1842506719
-
Metformin therapy increases insulin-like growth factor binding protein-1 in hyperinsulinemic women with polycystic ovary syndrome
-
Pawelczyk, L., Spaczynski, R. Z., Banaszewska, B. & Duleba, A. J. Metformin therapy increases insulin-like growth factor binding protein-1 in hyperinsulinemic women with polycystic ovary syndrome. European journal of obstetrics, gynecology, and reproductive biology 113, 209-213, doi: 10.1016/j.ejogrb.2003.09.031 (2004).
-
(2004)
European Journal of Obstetrics, Gynecology, and Reproductive Biology
, vol.113
, pp. 209-213
-
-
Pawelczyk, L.1
Spaczynski, R.Z.2
Banaszewska, B.3
Duleba, A.J.4
-
31
-
-
85047685583
-
Effect of metformin on insulin-like growth factor (IGF) I and IGF-binding protein I in polycystic ovary syndrome
-
De Leo, V., La Marca, A., Orvieto, R. & Morgante, G. Effect of metformin on insulin-like growth factor (IGF) I and IGF-binding protein I in polycystic ovary syndrome. The Journal of clinical endocrinology and metabolism 85, 1598-1600, doi: 10.1210/jcem.85.4.6560 (2000).
-
(2000)
The Journal of Clinical Endocrinology and Metabolism
, vol.85
, pp. 1598-1600
-
-
De Leo, V.1
La Marca, A.2
Orvieto, R.3
Morgante, G.4
-
32
-
-
84924049891
-
Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis
-
Dasgupta, S. et al. Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis. The Journal of clinical investigation 125, 1174-1188, doi: 10.1172/JCI76029 (2015).
-
(2015)
The Journal of Clinical Investigation
, vol.125
, pp. 1174-1188
-
-
Dasgupta, S.1
-
33
-
-
84880784754
-
Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells
-
Fenne, I. S. et al. Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells. PloS one 8, e70096, doi: 10.1371/journal.pone.0070096 (2013).
-
(2013)
PloS One
, vol.8
, pp. e70096
-
-
Fenne, I.S.1
-
34
-
-
84875825672
-
Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2
-
Zhang, J. et al. Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2. Scientific reports 3, 1476, doi: 10.1038/srep01476 (2013).
-
(2013)
Scientific Reports
, vol.3
, pp. 1476
-
-
Zhang, J.1
-
35
-
-
84904268174
-
Androgen deprivation therapy induces androgen receptor-dependent upregulation of Egr1 in prostate cancers
-
Xu, B. et al. Androgen deprivation therapy induces androgen receptor-dependent upregulation of Egr1 in prostate cancers. International journal of clinical and experimental pathology 7, 2883-2893 (2014).
-
(2014)
International Journal of Clinical and Experimental Pathology
, vol.7
, pp. 2883-2893
-
-
Xu, B.1
-
36
-
-
80051931336
-
Early growth response 1 (Egr1) regulates cholesterol biosynthetic gene expression
-
Gokey, N. G., Lopez-Anido, C., Gillian-Daniel, A. L. & Svaren, J. Early growth response 1 (Egr1) regulates cholesterol biosynthetic gene expression. The Journal of biological chemistry 286, 29501-29510, doi: 10.1074/jbc.M111.263509 (2011).
-
(2011)
The Journal of Biological Chemistry
, vol.286
, pp. 29501-29510
-
-
Gokey, N.G.1
Lopez-Anido, C.2
Gillian-Daniel, A.L.3
Svaren, J.4
-
37
-
-
84886557970
-
Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes
-
Margel, D. et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol 31, 3069-3075, doi: 10.1200/JCO.2012.46.7043 (2013).
-
(2013)
J Clin Oncol
, vol.31
, pp. 3069-3075
-
-
Margel, D.1
-
38
-
-
79951962147
-
CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals
-
Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12, 141-151, doi: 10.1038/nrm3072 (2011).
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 141-151
-
-
Altarejos, J.Y.1
Montminy, M.2
-
39
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111, doi: 10.1038/nature03967 (2005).
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
-
40
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167-1174, doi: 10.1172/JCI13505 (2001).
-
(2001)
J Clin Invest
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
-
41
-
-
0038801194
-
SREBPs: Transcriptional mediators of lipid homeostasis
-
Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol 67, 491-498 (2002).
-
(2002)
Cold Spring Harb Symp Quant Biol
, vol.67
, pp. 491-498
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
42
-
-
84892511644
-
Large-scale gene function analysis with the PANTHER classification system
-
Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8, 1551-1566, doi: 10.1038/nprot.2013.092 (2013).
-
(2013)
Nat Protoc
, vol.8
, pp. 1551-1566
-
-
Mi, H.1
Muruganujan, A.2
Casagrande, J.T.3
Thomas, P.D.4
|