메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2)

Author keywords

[No Author keywords available]

Indexed keywords

ANTIDIABETIC AGENT; CHOLESTEROL; FASN PROTEIN, HUMAN; FATTY ACID SYNTHASE; GLUCOSE; METFORMIN; NUCLEAR RECEPTOR COACTIVATOR 2; PROTEIN BINDING; STEROL REGULATORY ELEMENT BINDING PROTEIN 1; TRANSCRIPTOME;

EID: 84946887754     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep16430     Document Type: Article
Times cited : (43)

References (42)
  • 1
    • 84903450420 scopus 로고    scopus 로고
    • Steroid receptor coactivators: Servants and masters for control of systems metabolism
    • Stashi, E., York, B. & O'Malley, B. W. Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab 25, 337-347, doi: 10.1016/j.tem.2014.05.004 (2014).
    • (2014) Trends Endocrinol Metab , vol.25 , pp. 337-347
    • Stashi, E.1    York, B.2    O'Malley, B.W.3
  • 2
    • 82655174048 scopus 로고    scopus 로고
    • Steroid receptor coactivators 1, 2, and 3: Critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy
    • Johnson, A. B. & O'Malley, B. W. Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 348, 430-439, doi: 10.1016/j.mce.2011.04.021 (2012).
    • (2012) Mol Cell Endocrinol , vol.348 , pp. 430-439
    • Johnson, A.B.1    O'Malley, B.W.2
  • 3
    • 78649846415 scopus 로고    scopus 로고
    • Steroid receptor coactivator (SRC) family: Masters of systems biology
    • York, B. & O'Malley, B. W. Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285, 38743-38750, doi: 10.1074/jbc.R110.193367 (2010).
    • (2010) J Biol Chem , vol.285 , pp. 38743-38750
    • York, B.1    O'Malley, B.W.2
  • 4
    • 84924049891 scopus 로고    scopus 로고
    • Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis
    • Dasgupta, S. et al. Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis. J Clin Invest 125, 1174-1188, doi: 10.1172/JCI76029 (2015).
    • (2015) J Clin Invest , vol.125 , pp. 1174-1188
    • Dasgupta, S.1
  • 5
    • 50449092139 scopus 로고    scopus 로고
    • Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3′, 5′ -cyclic adenosine 5′ -monophosphate-dependent protein kinase
    • Fenne, I. S. et al. Recruitment of coactivator glucocorticoid receptor interacting protein 1 to an estrogen receptor transcription complex is regulated by the 3′, 5′ -cyclic adenosine 5′ -monophosphate-dependent protein kinase. Endocrinology 149, 4336-4345, doi: 10.1210/en.2008-0037 (2008).
    • (2008) Endocrinology , vol.149 , pp. 4336-4345
    • Fenne, I.S.1
  • 6
    • 84896715962 scopus 로고    scopus 로고
    • SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm
    • Stashi, E. et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep 6, 633-645, doi: 10.1016/j.celrep.2014.01.027 (2014).
    • (2014) Cell Rep , vol.6 , pp. 633-645
    • Stashi, E.1
  • 7
    • 78650911273 scopus 로고    scopus 로고
    • Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption
    • Chopra, A. R. et al. Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption. Cell Metab 13, 35-43, doi: 10.1016/j.cmet.2010.12.001 (2011).
    • (2011) Cell Metab , vol.13 , pp. 35-43
    • Chopra, A.R.1
  • 8
    • 0037184960 scopus 로고    scopus 로고
    • SRC-1 and TIF2 control energy balance between white and brown adipose tissues
    • Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931-941 (2002).
    • (2002) Cell , vol.111 , pp. 931-941
    • Picard, F.1
  • 9
    • 33746517873 scopus 로고    scopus 로고
    • The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism
    • Jeong, J. W. et al. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Mol Endocrinol 20, 1138-1152, doi: 10.1210/me.2005-0407 (2006).
    • (2006) Mol Endocrinol , vol.20 , pp. 1138-1152
    • Jeong, J.W.1
  • 10
    • 57149089662 scopus 로고    scopus 로고
    • Absence of the SRC-2 coactivator results in a glycogenopathy resembling von Gierke's disease
    • Chopra, A. R. et al. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science 322, 1395-1399, doi: 10.1126/science.1164847 (2008).
    • (2008) Science , vol.322 , pp. 1395-1399
    • Chopra, A.R.1
  • 11
    • 33746517873 scopus 로고    scopus 로고
    • The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism
    • Jeong, J. W. et al. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Molecular endocrinology 20, 1138-1152, doi: 10.1210/me.2005-0407 (2006).
    • (2006) Molecular Endocrinology , vol.20 , pp. 1138-1152
    • Jeong, J.W.1
  • 12
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125-1131, doi: 10.1172/JCI15593 (2002).
    • (2002) J Clin Invest , vol.109 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 13
    • 11244253854 scopus 로고    scopus 로고
    • Initiating oral glucose-lowering therapy with metformin in type 2 diabetic patients: An evidence-based strategy to reduce the burden of late-developing diabetes complications
    • Consoli, A. et al. Initiating oral glucose-lowering therapy with metformin in type 2 diabetic patients: an evidence-based strategy to reduce the burden of late-developing diabetes complications. Diabetes Metab 30, 509-516 (2004).
    • (2004) Diabetes Metab , vol.30 , pp. 509-516
    • Consoli, A.1
  • 14
    • 84928233870 scopus 로고    scopus 로고
    • Pharmacologic treatment of type 2 diabetes: Oral medications
    • Tran, L. et al. Pharmacologic Treatment of Type 2 Diabetes: Oral Medications. Ann Pharmacother 49, 540-556, doi: 10.1177/1060028014558289 (2015).
    • (2015) Ann Pharmacother , vol.49 , pp. 540-556
    • Tran, L.1
  • 15
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646, doi: 10.1126/science.1120781 (2005).
    • (2005) Science , vol.310 , pp. 1642-1646
    • Shaw, R.J.1
  • 16
    • 84855603512 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of metformin: An overview
    • Viollet, B. et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122, 253-270, doi: 10.1042/CS20110386 (2012).
    • (2012) Clin Sci (Lond) , vol.122 , pp. 253-270
    • Viollet, B.1
  • 17
    • 0023937806 scopus 로고
    • The antidiabetic drug metformin decreases cholesterol metabolism in cultured human fibroblasts
    • Maziere, J. C. et al. The antidiabetic drug metformin decreases cholesterol metabolism in cultured human fibroblasts. Atherosclerosis 71, 27-33 (1988).
    • (1988) Atherosclerosis , vol.71 , pp. 27-33
    • Maziere, J.C.1
  • 18
    • 33750442923 scopus 로고    scopus 로고
    • Genome-wide analysis of estrogen receptor binding sites
    • Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. Nature genetics 38, 1289-1297, doi: 10.1038/ng1901 (2006).
    • (2006) Nature Genetics , vol.38 , pp. 1289-1297
    • Carroll, J.S.1
  • 19
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of clinical investigation 108, 1167-1174, doi: 10.1172/JCI13505 (2001).
    • (2001) The Journal of Clinical Investigation , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 20
    • 0012785395 scopus 로고    scopus 로고
    • Metformin reverses fatty liver disease in obese, leptin-deficient mice
    • Lin, H. Z. et al. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 6, 998-1003, doi: 10.1038/79697 (2000).
    • (2000) Nat Med , vol.6 , pp. 998-1003
    • Lin, H.Z.1
  • 21
    • 84930606184 scopus 로고    scopus 로고
    • Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity
    • Ford, R. J. et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 468, 125-132, doi: 10.1042/BJ20150125 (2015).
    • (2015) Biochem J , vol.468 , pp. 125-132
    • Ford, R.J.1
  • 22
    • 78651103598 scopus 로고    scopus 로고
    • Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia
    • Matafome, P. et al. Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia. Diabetes Metab Res Rev 27, 54-62, doi: 10.1002/dmrr.1157 (2011).
    • (2011) Diabetes Metab Res Rev , vol.27 , pp. 54-62
    • Matafome, P.1
  • 23
    • 67349257934 scopus 로고    scopus 로고
    • The effect of metformin on leptin in obese patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease
    • Nar, A. & Gedik, O. The effect of metformin on leptin in obese patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Acta Diabetol 46, 113-118, doi: 10.1007/s00592-008-0067-2 (2009).
    • (2009) Acta Diabetol , vol.46 , pp. 113-118
    • Nar, A.1    Gedik, O.2
  • 25
    • 77955287742 scopus 로고    scopus 로고
    • Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
    • Kalender, A. et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11, 390-401, doi: 10.1016/j.cmet.2010.03.014 (2010).
    • (2010) Cell Metab , vol.11 , pp. 390-401
    • Kalender, A.1
  • 26
    • 79957576579 scopus 로고    scopus 로고
    • Control of nuclear receptor activities in metabolism by post-translational modifications
    • Berrabah, W., Aumercier, P., Lefebvre, P. & Staels, B. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS letters 585, 1640-1650, doi: 10.1016/j.febslet.2011.03.066 (2011).
    • (2011) FEBS Letters , vol.585 , pp. 1640-1650
    • Berrabah, W.1    Aumercier, P.2    Lefebvre, P.3    Staels, B.4
  • 27
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120, 2355-2369, doi: 10.1172/JCI40671 (2010).
    • (2010) J Clin Invest , vol.120 , pp. 2355-2369
    • Foretz, M.1
  • 28
    • 84903524608 scopus 로고    scopus 로고
    • Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
    • Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542-546, doi: 10.1038/nature13270 (2014).
    • (2014) Nature , vol.510 , pp. 542-546
    • Madiraju, A.K.1
  • 29
    • 0036324142 scopus 로고    scopus 로고
    • The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
    • Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420-2425 (2002).
    • (2002) Diabetes , vol.51 , pp. 2420-2425
    • Hawley, S.A.1    Gadalla, A.E.2    Olsen, G.S.3    Hardie, D.G.4
  • 30
  • 31
    • 85047685583 scopus 로고    scopus 로고
    • Effect of metformin on insulin-like growth factor (IGF) I and IGF-binding protein I in polycystic ovary syndrome
    • De Leo, V., La Marca, A., Orvieto, R. & Morgante, G. Effect of metformin on insulin-like growth factor (IGF) I and IGF-binding protein I in polycystic ovary syndrome. The Journal of clinical endocrinology and metabolism 85, 1598-1600, doi: 10.1210/jcem.85.4.6560 (2000).
    • (2000) The Journal of Clinical Endocrinology and Metabolism , vol.85 , pp. 1598-1600
    • De Leo, V.1    La Marca, A.2    Orvieto, R.3    Morgante, G.4
  • 32
    • 84924049891 scopus 로고    scopus 로고
    • Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis
    • Dasgupta, S. et al. Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis. The Journal of clinical investigation 125, 1174-1188, doi: 10.1172/JCI76029 (2015).
    • (2015) The Journal of Clinical Investigation , vol.125 , pp. 1174-1188
    • Dasgupta, S.1
  • 33
    • 84880784754 scopus 로고    scopus 로고
    • Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells
    • Fenne, I. S. et al. Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells. PloS one 8, e70096, doi: 10.1371/journal.pone.0070096 (2013).
    • (2013) PloS One , vol.8 , pp. e70096
    • Fenne, I.S.1
  • 34
    • 84875825672 scopus 로고    scopus 로고
    • Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2
    • Zhang, J. et al. Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2. Scientific reports 3, 1476, doi: 10.1038/srep01476 (2013).
    • (2013) Scientific Reports , vol.3 , pp. 1476
    • Zhang, J.1
  • 35
    • 84904268174 scopus 로고    scopus 로고
    • Androgen deprivation therapy induces androgen receptor-dependent upregulation of Egr1 in prostate cancers
    • Xu, B. et al. Androgen deprivation therapy induces androgen receptor-dependent upregulation of Egr1 in prostate cancers. International journal of clinical and experimental pathology 7, 2883-2893 (2014).
    • (2014) International Journal of Clinical and Experimental Pathology , vol.7 , pp. 2883-2893
    • Xu, B.1
  • 36
    • 80051931336 scopus 로고    scopus 로고
    • Early growth response 1 (Egr1) regulates cholesterol biosynthetic gene expression
    • Gokey, N. G., Lopez-Anido, C., Gillian-Daniel, A. L. & Svaren, J. Early growth response 1 (Egr1) regulates cholesterol biosynthetic gene expression. The Journal of biological chemistry 286, 29501-29510, doi: 10.1074/jbc.M111.263509 (2011).
    • (2011) The Journal of Biological Chemistry , vol.286 , pp. 29501-29510
    • Gokey, N.G.1    Lopez-Anido, C.2    Gillian-Daniel, A.L.3    Svaren, J.4
  • 37
    • 84886557970 scopus 로고    scopus 로고
    • Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes
    • Margel, D. et al. Metformin use and all-cause and prostate cancer-specific mortality among men with diabetes. J Clin Oncol 31, 3069-3075, doi: 10.1200/JCO.2012.46.7043 (2013).
    • (2013) J Clin Oncol , vol.31 , pp. 3069-3075
    • Margel, D.1
  • 38
    • 79951962147 scopus 로고    scopus 로고
    • CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals
    • Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12, 141-151, doi: 10.1038/nrm3072 (2011).
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 141-151
    • Altarejos, J.Y.1    Montminy, M.2
  • 39
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111, doi: 10.1038/nature03967 (2005).
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1
  • 40
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167-1174, doi: 10.1172/JCI13505 (2001).
    • (2001) J Clin Invest , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 42
    • 84892511644 scopus 로고    scopus 로고
    • Large-scale gene function analysis with the PANTHER classification system
    • Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8, 1551-1566, doi: 10.1038/nprot.2013.092 (2013).
    • (2013) Nat Protoc , vol.8 , pp. 1551-1566
    • Mi, H.1    Muruganujan, A.2    Casagrande, J.T.3    Thomas, P.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.