-
1
-
-
84877580262
-
Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review
-
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther. 2013; 138(3):333-408. doi: 10.1016/j.pharmthera.2013.01.016.
-
(2013)
Pharmacol Ther
, vol.138
, Issue.3
, pp. 333-408
-
-
Csermely, P.1
Korcsmáros, T.2
Kiss, H.J.M.3
London, G.4
Nussinov, R.5
-
2
-
-
84928196309
-
Similarity-based machine learning methods for predicting drug-target interactions: a brief review.
-
Ding H, Takigawa I, Mamitsuka H, Zhu S. Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform. 2013. doi: 10.1093/bib/bbt056.
-
(2013)
Brief Bioinform.
-
-
Ding, H.1
Takigawa, I.2
Mamitsuka, H.3
Zhu, S.4
-
3
-
-
84991328213
-
Drug - target interaction prediction : databases, web servers and computational models.
-
Chen X, Yan CC, Zhang X, Zhang X, Dai F. Drug - target interaction prediction : databases, web servers and computational models. Brief Bioinform. 2015:1-17. doi: 10.1093/bib/bbv066.
-
(2015)
Brief Bioinform.
, pp. 1-17
-
-
Chen, X.1
Yan, C.C.2
Zhang, X.3
Zhang, X.4
Dai, F.5
-
4
-
-
84871893054
-
Chemogenomic approaches to infer drug-target interaction networks
-
Yamanishi Y. Chemogenomic approaches to infer drug-target interaction networks. Data Min Syst Biol. 2013; 939:97-113. doi: 10.1007/978-1-62703-107-3.
-
(2013)
Data Min Syst Biol
, vol.939
, pp. 97-113
-
-
Yamanishi, Y.1
-
5
-
-
33645923096
-
Computational methods in developing quantitative structure-activity relationships (QSAR): a review
-
Dudek AZ, Arodz T, Gálvez J. Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen. 2006; 9(3):213-8.
-
(2006)
Comb Chem High Throughput Screen
, vol.9
, Issue.3
, pp. 213-218
-
-
Dudek, A.Z.1
Arodz, T.2
Gálvez, J.3
-
6
-
-
84915753460
-
Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach
-
Sawada R, Kotera M, Yamanishi Y. Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inform. 2014; 33(11-12):719-31. doi: 10.1002/minf.201400066.
-
(2014)
Mol Inform
, vol.33
, Issue.11-12
, pp. 719-731
-
-
Sawada, R.1
Kotera, M.2
Yamanishi, Y.3
-
7
-
-
84863695210
-
Prediction of drug-target interactions and drug repositioning via network-based inference
-
Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012; 8(5):1002503. doi: 10.1371/journal.pcbi.1002503.
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.5
, pp. 1002503
-
-
Cheng, F.1
Liu, C.2
Jiang, J.3
Lu, W.4
Li, W.5
Liu, G.6
-
8
-
-
84862215494
-
Drug-target interaction prediction by random walk on the heterogeneous network
-
Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol BioSyst. 2012; 8(7):1970-8. doi: 10.1039/c2mb00002d.
-
(2012)
Mol BioSyst
, vol.8
, Issue.7
, pp. 1970-1978
-
-
Chen, X.1
Liu, M.X.2
Yan, G.Y.3
-
9
-
-
77954230951
-
Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
-
Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics (Oxford, England). 2010; 26(12):246-54. doi: 10.1093/bioinformatics/btq176.
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.12
, pp. 246-254
-
-
Yamanishi, Y.1
Kotera, M.2
Kanehisa, M.3
Goto, S.4
-
10
-
-
80054881553
-
Gaussian interaction profile kernels for predicting drug-target interaction
-
van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics (Oxford, England). 2011; 27(21):3036-43. doi: 10.1093/bioinformatics/btr500.
-
(2011)
Bioinformatics (Oxford, England)
, vol.27
, Issue.21
, pp. 3036-3043
-
-
van Laarhoven, T.1
Nabuurs, S.B.2
Marchiori, E.3
-
11
-
-
84925383120
-
Toward more realistic drug-target interaction predictions.
-
Pahikkala T, Airola A, Pietila S, Shakyawar S, Szwajda A, Tang J, et al. Toward more realistic drug-target interaction predictions. Brief Bioinform. 2014. doi: 10.1093/bib/bbu010.
-
(2014)
Brief Bioinform.
-
-
Pahikkala, T.1
Airola, A.2
Pietila, S.3
Shakyawar, S.4
Szwajda, A.5
Tang, J.6
-
12
-
-
84884286350
-
Efficient regularized least-squares algorithms for conditional ranking on relational data
-
Pahikkala T, Airola A, Stock M, Baets BD, Waegeman W. Efficient regularized least-squares algorithms for conditional ranking on relational data. Mach Learn. 2013; 93:321-356. arXiv:1209.4825v2.
-
(2013)
Mach Learn.
, vol.93
, pp. 321-356
-
-
Pahikkala, T.1
Airola, A.2
Stock, M.3
Baets, B.D.4
Waegeman, W.5
-
13
-
-
80052213499
-
Multiple kernel learning algorithms
-
Gönen M, Alpaydin E. Multiple kernel learning algorithms. J Mach Learn Res. 2011; 12:2211-268.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2211-2268
-
-
Gönen, M.1
Alpaydin, E.2
-
14
-
-
79951729882
-
Combining drug and gene similarity measures for drug-target elucidation
-
Perlman L, Gottlieb A, Atias N, Ruppin E, Sharan R. Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol. 2011; 18(2):133-45. doi: 10.1089/cmb.2010.0213.
-
(2011)
J Comput Biol
, vol.18
, Issue.2
, pp. 133-145
-
-
Perlman, L.1
Gottlieb, A.2
Atias, N.3
Ruppin, E.4
Sharan, R.5
-
15
-
-
80155156908
-
Kernel-based data fusion improves the drug-protein interaction prediction
-
Wang YC, Zhang CH, Deng NY, Wang Y. Kernel-based data fusion improves the drug-protein interaction prediction. Comput Biol Chem. 2011; 35(6):353-62. doi: 10.1016/j.compbiolchem.2011.10.003.
-
(2011)
Comput Biol Chem
, vol.35
, Issue.6
, pp. 353-362
-
-
Wang, Y.C.1
Zhang, C.H.2
Deng, N.Y.3
Wang, Y.4
-
16
-
-
84892907298
-
Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data
-
Wang Y, Chen S, Deng N, Wang Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS ONE. 2013; 8(11):78518. doi: 10.1371/journal.pone.0078518.
-
(2013)
PLoS ONE
, vol.8
, Issue.11
, pp. 78518
-
-
Wang, Y.1
Chen, S.2
Deng, N.3
Wang, Y.4
-
17
-
-
24744435534
-
Kernel methods for predicting protein-protein interactions
-
Ben-Hur A, Noble WS. Kernel methods for predicting protein-protein interactions,. Bioinformatics (Oxford, England). 2005; 21 Suppl 1:38-46. doi: 10.1093/bioinformatics/bti1016.
-
(2005)
Bioinformatics (Oxford, England)
, vol.21
, pp. 38-46
-
-
Ben-Hur, A.1
Noble, W.S.2
-
18
-
-
77952305592
-
Large-scale prediction of protein-protein interactions from structures
-
Hue M, Riffle M, Vert J-p, Noble WS. Large-scale prediction of protein-protein interactions from structures. BMC Bioinforma. 2010; 11:144.
-
(2010)
BMC Bioinforma.
, vol.11
, pp. 144
-
-
Hue, M.1
Riffle, M.2
Vert, J.-P.3
Noble, W.S.4
-
19
-
-
84906539673
-
Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization.
-
Ammad-Ud-Din M, Georgii E, Gönen M, Laitinen T, Kallioniemi O, Wennerberg K, et al. Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization. J Chem Inf Model. 2014; 1. doi: 10.1021/ci500152b.
-
(2014)
J Chem Inf Model.
, pp. 1
-
-
Ammad-Ud-Din, M.1
Georgii, E.2
Gönen, M.3
Laitinen, T.4
Kallioniemi, O.5
Wennerberg, K.6
-
20
-
-
2442674422
-
Kernel-based data fusion and its application to protein function prediction in yeast.
-
Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS. Kernel-based data fusion and its application to protein function prediction in yeast. In: Pacific Symposium on Biocomputing. World Scientific: 2004. p. 300-11.
-
(2004)
Pacific Symposium on Biocomputing. World Scientific
, pp. 300-311
-
-
Lanckriet, G.R.1
Deng, M.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
21
-
-
84928711013
-
Integrating multiple networks for protein function prediction
-
Yu G, Zhu H, Domeniconi C, Guo M. Integrating multiple networks for protein function prediction. BMC Syst Biol. 2015; 9(Suppl 1):3. doi: 10.1186/1752-0509-9-S1-S3.
-
(2015)
BMC Syst Biol
, vol.9
, pp. 3
-
-
Yu, G.1
Zhu, H.2
Domeniconi, C.3
Guo, M.4
-
23
-
-
46249090791
-
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
-
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics (Oxford, England). 2008; 24(13):232-40. doi: 10.1093/bioinformatics/btn162.
-
(2008)
Bioinformatics (Oxford, England)
, vol.24
, Issue.13
, pp. 232-240
-
-
Yamanishi, Y.1
Araki, M.2
Gutteridge, A.3
Honda, W.4
Kanehisa, M.5
-
24
-
-
84870805181
-
Flaws in evaluation schemes for pair-input computational predictions
-
Park Y, Marcotte EM. Flaws in evaluation schemes for pair-input computational predictions. Nat Methods. 2012; 9(12):1134-6. doi: 10.1038/nmeth.2259.
-
(2012)
Nat Methods
, vol.9
, Issue.12
, pp. 1134-1136
-
-
Park, Y.1
Marcotte, E.M.2
-
25
-
-
77956953029
-
Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
-
Xia Z, Wu LY, Zhou X, Wong STC. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol. 2010; 4 Suppl 2(Suppl 2):6. doi: 10.1186/1752-0509-4-S2-S6.
-
(2010)
BMC Syst Biol
, vol.4
, pp. 6
-
-
Xia, Z.1
Wu, L.Y.2
Zhou, X.3
Wong, S.T.C.4
-
26
-
-
69849094133
-
Supervised prediction of drug-target interactions using bipartite local models
-
Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics (Oxford, England). 2009; 25(18):2397-403. doi: 10.1093/bioinformatics/btp433.
-
(2009)
Bioinformatics (Oxford, England)
, vol.25
, Issue.18
, pp. 2397-2403
-
-
Bleakley, K.1
Yamanishi, Y.2
-
27
-
-
52749085437
-
Protein-ligand interaction prediction: an improved chemogenomics approach
-
Jacob L, Vert JP. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics (Oxford, England). 2008; 24(19):2149-56. doi: 10.1093/bioinformatics/btn409.
-
(2008)
Bioinformatics (Oxford, England)
, vol.24
, Issue.19
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.P.2
-
30
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
Kimeldorf G, Wahba G. Some results on Tchebycheffian spline functions. J Math Anal Appl. 1971; 33(1):82-95.
-
(1971)
J Math Anal Appl
, vol.33
, Issue.1
, pp. 82-95
-
-
Kimeldorf, G.1
Wahba, G.2
-
31
-
-
67650705012
-
On pairwise kernels: an efficient alternative and generalization analysis
-
Kashima H, Oyama S, Yamanishi Y, Tsuda K. On pairwise kernels: an efficient alternative and generalization analysis. Adv Data Min Knowl Disc. 2009; 5476:1030-7.
-
(2009)
Adv Data Min Knowl Disc.
, vol.5476
, pp. 1030-1037
-
-
Kashima, H.1
Oyama, S.2
Yamanishi, Y.3
Tsuda, K.4
-
34
-
-
0033471382
-
An interior point algorithm for large-scale nonlinear programming
-
Byrd RH, Hribar ME, Nocedal J. An interior point algorithm for large-scale nonlinear programming. SIAM J Optim. 1999; 9(4):877-900. doi: 10.1137/S1052623497325107.
-
(1999)
SIAM J Optim
, vol.9
, Issue.4
, pp. 877-900
-
-
Byrd, R.H.1
Hribar, M.E.2
Nocedal, J.3
-
35
-
-
84957028162
-
-
version 8.1.0 (R2013a). Natick, Massachusetts: The MathWorks Inc
-
MATLAB. version 8.1.0 (R2013a). Natick, Massachusetts: The MathWorks Inc.; 2013.
-
(2013)
-
-
-
36
-
-
38549126643
-
KEGG for linking genomes to life and the environment
-
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008; 36(suppl 1):480-4.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 480-484
-
-
Kanehisa, M.1
Araki, M.2
Goto, S.3
Hattori, M.4
Hirakawa, M.5
Itoh, M.6
-
37
-
-
0345863907
-
BRENDA, the enzyme database: updates and major new developments
-
Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 2004; 32(suppl 1):431-3.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 431-433
-
-
Schomburg, I.1
Chang, A.2
Ebeling, C.3
Gremse, M.4
Heldt, C.5
Huhn, G.6
-
38
-
-
38549182474
-
SuperTarget and Matador: resources for exploring drug-target relationships
-
Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, et al. SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res. 2008; 36(suppl 1):919-22.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 919-922
-
-
Günther, S.1
Kuhn, M.2
Dunkel, M.3
Campillos, M.4
Senger, C.5
Petsalaki, E.6
-
39
-
-
38549151817
-
DrugBank: a knowledgebase for drugs, drug actions and drug targets
-
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008; 36(suppl 1):901-6.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 901-906
-
-
Wishart, D.S.1
Knox, C.2
Guo, A.C.3
Cheng, D.4
Shrivastava, S.5
Tzur, D.6
-
41
-
-
0036358995
-
The spectrum kernel: a string kernel for SVM protein classification
-
Leslie CS, Eskin E, Noble WS. The spectrum kernel: a string kernel for SVM protein classification. In: Pac Symp Biocomput vol. 7: 2002. p. 566-575.
-
(2002)
Pac Symp Biocomput
, vol.7
, pp. 566-575
-
-
Leslie, C.S.1
Eskin, E.2
Noble, W.S.3
-
42
-
-
84943638759
-
KeBABS - an R package for kernel-based analysis of biological sequences
-
Palme J, Hochreiter S, Bodenhofer U. KeBABS - an R package for kernel-based analysis of biological sequences. Bioinformatics. 2015; 31(15):2574-2576. doi: 10.1093/bioinformatics/btv176.
-
(2015)
Bioinformatics
, vol.31
, Issue.15
, pp. 2574-2576
-
-
Palme, J.1
Hochreiter, S.2
Bodenhofer, U.3
-
43
-
-
84979860632
-
The BioMart community portal: an innovative alternative to large, centralized data repositories.
-
Smedley D, Haider S, Durinck S, Al E. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 2015. doi: 10.1093/nar/gkv350.
-
(2015)
Nucleic Acids Res.
-
-
Smedley, D.1
Haider, S.2
Durinck, S.3
Al, E.4
-
44
-
-
67849110934
-
Fast Gene Ontology based clustering for microarray experiments
-
Ovaska K, Laakso M, Hautaniemi S. Fast Gene Ontology based clustering for microarray experiments. BioData Min. 2008; 1(1):11.
-
(2008)
BioData Min
, vol.1
, Issue.1
, pp. 11
-
-
Ovaska, K.1
Laakso, M.2
Hautaniemi, S.3
-
45
-
-
0002016474
-
Semantic Similarity in a Taxonomy: An Information Based Measure and Its Application to Problems of Ambiguity in Natural Language
-
Resnik P. Semantic Similarity in a Taxonomy: An Information Based Measure and Its Application to Problems of Ambiguity in Natural Language. J Artif Intell Res. 1999; 11:95-130.
-
(1999)
J Artif Intell Res
, vol.11
, pp. 95-130
-
-
Resnik, P.1
-
46
-
-
33644873184
-
BioGRID: a general repository for interaction datasets
-
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006; 34(suppl 1):535-9.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 535-539
-
-
Stark, C.1
Breitkreutz, B.J.2
Reguly, T.3
Boucher, L.4
Breitkreutz, A.5
Tyers, M.6
-
47
-
-
0141843591
-
Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways
-
Hattori M, Okuno Y, Goto S, Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Ceram Soc. 2003; 125(39):11853-65.
-
(2003)
J Am Ceram Soc
, vol.125
, Issue.39
, pp. 11853-11865
-
-
Hattori, M.1
Okuno, Y.2
Goto, S.3
Kanehisa, M.4
-
48
-
-
84947703462
-
Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map.
-
Klambauer G, Wischenbart M, Mahr M, Unterthiner T, Mayr A, Hochreiter S. Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the Connectivity Map. Bioinformatics. 2015. Advance access doi: 10.1093/bioinformatics/btv373.
-
(2015)
Bioinformatics.
-
-
Klambauer, G.1
Wischenbart, M.2
Mahr, M.3
Unterthiner, T.4
Mayr, A.5
Hochreiter, S.6
-
49
-
-
1942516986
-
Marginalized kernels between labeled graphs
-
Kashima H, Tsuda K, Inokuchi A. Marginalized kernels between labeled graphs. In: ICML, vol. 3: 2003. p. 321-328.
-
(2003)
ICML
, vol.3
, pp. 321-328
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
50
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola L, Swamidass SJ, Saigo H, Baldi P. Graph kernels for chemical informatics. Neural Netw. 2005; 18(8):1093-110. doi: 10.1016/j.neunet.2005.07.009.
-
(2005)
Neural Netw
, vol.18
, Issue.8
, pp. 1093-1110
-
-
Ralaivola, L.1
Swamidass, S.J.2
Saigo, H.3
Baldi, P.4
-
51
-
-
84866446560
-
Drug target prediction using adverse event report systems: A pharmacogenomic approach
-
Takarabe M, Kotera M, Nishimura Y, Goto S, Yamanishi Y. Drug target prediction using adverse event report systems: A pharmacogenomic approach. Bioinformatics. 2012; 28(18):611-8. doi: 10.1093/bioinformatics/bts413.
-
(2012)
Bioinformatics
, vol.28
, Issue.18
, pp. 611-618
-
-
Takarabe, M.1
Kotera, M.2
Nishimura, Y.3
Goto, S.4
Yamanishi, Y.5
-
52
-
-
76149120425
-
A side effect resource to capture phenotypic effects of drugs
-
Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010; 6(1):343.
-
(2010)
Mol Syst Biol
, vol.6
, Issue.1
, pp. 343
-
-
Kuhn, M.1
Campillos, M.2
Letunic, I.3
Jensen, L.J.4
Bork, P.5
-
53
-
-
67549113661
-
A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction
-
Qiu S, Lane T. A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction. IEEE/ACM Trans Comput Biol Bioinf. 2009; 6(2):190-9.
-
(2009)
IEEE/ACM Trans Comput Biol Bioinf
, vol.6
, Issue.2
, pp. 190-199
-
-
Qiu, S.1
Lane, T.2
-
55
-
-
84866459051
-
Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
-
Gönen M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics (Oxford, England). 2012; 28(18):2304-10. doi: 10.1093/bioinformatics/bts360.
-
(2012)
Bioinformatics (Oxford, England)
, vol.28
, Issue.18
, pp. 2304-2310
-
-
Gönen, M.1
-
57
-
-
0033982936
-
KEGG: kyoto encyclopedia of genes and genomes
-
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27-30.
-
(2000)
Nucleic Acids Res
, vol.28
, Issue.1
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
58
-
-
84891762026
-
The ChEMBL bioactivity database: an update
-
Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014; 42(D1):1083-90. doi: 10.1093/nar/gkt1031.
-
(2014)
Nucleic Acids Res
, vol.42 D1
, pp. 1083-1090
-
-
Bento, A.P.1
Gaulton, A.2
Hersey, A.3
Bellis, L.J.4
Chambers, J.5
Davies, M.6
-
59
-
-
0031844094
-
Topical tretinoin in acne therapy
-
Webster GF. Topical tretinoin in acne therapy. J Am Acad Dermatol. 1998; 39(2):38-44.
-
(1998)
J Am Acad Dermatol
, vol.39
, Issue.2
, pp. 38-44
-
-
Webster, G.F.1
-
60
-
-
0036181028
-
Sulfonylurea receptor-1 (sur1): Genetic and metabolic evidences for a role in the susceptibility to type 2 diabetes mellitus
-
REIS A, VELHO G. Sulfonylurea receptor-1 (sur1): Genetic and metabolic evidences for a role in the susceptibility to type 2 diabetes mellitus. Diabetes Metab. 2002; 28(1):14-19.
-
(2002)
Diabetes Metab
, vol.28
, Issue.1
, pp. 14-19
-
-
REIS, A.1
VELHO, G.2
-
61
-
-
33845865582
-
Diazoxide prevents diabetes through inhibiting pancreatic β-cells from apoptosis via bcl-2/bax rate and p38- β mitogen-activated protein kinase
-
Huang Q, Bu S, Yu Y, Guo Z, Ghatnekar G, Bu M, et al. Diazoxide prevents diabetes through inhibiting pancreatic β-cells from apoptosis via bcl-2/bax rate and p38- β mitogen-activated protein kinase. Endocrinology. 2007; 148(1):81-91.
-
(2007)
Endocrinology
, vol.148
, Issue.1
, pp. 81-91
-
-
Huang, Q.1
Bu, S.2
Yu, Y.3
Guo, Z.4
Ghatnekar, G.5
Bu, M.6
|