메뉴 건너뛰기




Volumn 17, Issue 4, 2016, Pages 696-712

Drug-target interaction prediction: Databases, web servers and computational models

Author keywords

Biological networks; Computational models; Drug discovery; Drug target interactions prediction; Machine learning

Indexed keywords

DRUG DELIVERY SYSTEM; DRUG DEVELOPMENT; FACTUAL DATABASE; HUMAN;

EID: 84991328213     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbv066     Document Type: Article
Times cited : (496)

References (89)
  • 1
    • 4344645978 scopus 로고    scopus 로고
    • Can the pharmaceutical industry reduce attrition rates?
    • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004;3:711-15.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 711-715
    • Kola, I.1    Landis, J.2
  • 2
    • 77649234756 scopus 로고    scopus 로고
    • How to improve R&D productivity: the pharmaceutical industry's grand challenge
    • Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov 2010;9:203-14.
    • (2010) Nat Rev Drug Discov , vol.9 , pp. 203-214
    • Paul, S.M.1    Mytelka, D.S.2    Dunwiddie, C.T.3
  • 3
    • 2442482962 scopus 로고    scopus 로고
    • Key factors in the rising cost of new drug discovery and development
    • Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 2004;3:417-29.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 417-429
    • Dickson, M.1    Gagnon, J.P.2
  • 4
    • 84877131233 scopus 로고    scopus 로고
    • A semi-supervised method for drug-target interaction prediction with consistency in networks
    • Chen H, Zhang Z. A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS One 2013;8:e62975.
    • (2013) PLoS One , vol.8
    • Chen, H.1    Zhang, Z.2
  • 6
    • 84879970943 scopus 로고    scopus 로고
    • Predicting drug-target interactions using restricted Boltzmann machines
    • Wang Y, Zeng J. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 2013;29:i126-34.
    • (2013) Bioinformatics , vol.29 , pp. i126-i134
    • Wang, Y.1    Zeng, J.2
  • 7
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: the next paradigm in drug discovery
    • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008;4:682-90.
    • (2008) Nat Chem Biol , vol.4 , pp. 682-690
    • Hopkins, A.L.1
  • 8
    • 84864801155 scopus 로고    scopus 로고
    • Drug discovery in the age of systems biology: the rise of computational approaches for data integration
    • Iskar M, Zeller G, Zhao X-M, et al. Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Curr Opin Biotechnol 2012;23:609-16.
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 609-616
    • Iskar, M.1    Zeller, G.2    Zhao, X.-M.3
  • 9
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008;24:i232-40.
    • (2008) Bioinformatics , vol.24 , pp. i232-i240
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3
  • 10
    • 84862215494 scopus 로고    scopus 로고
    • Drug-target interaction prediction by random walk on the heterogeneous network
    • Chen X, Liu M-X, Yan G-Y. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst 2012;8:1970-8.
    • (2012) Mol Biosyst , vol.8 , pp. 1970-1978
    • Chen, X.1    Liu, M.-X.2    Yan, G.-Y.3
  • 11
    • 33646893689 scopus 로고    scopus 로고
    • Identifying offtarget effects and hidden phenotypes of drugs in human cells
    • MacDonald ML, Lamerdin J, Owens S, et al. Identifying offtarget effects and hidden phenotypes of drugs in human cells. Nat Chem Biol 2006;2:329-37.
    • (2006) Nat Chem Biol , vol.2 , pp. 329-337
    • MacDonald, M.L.1    Lamerdin, J.2    Owens, S.3
  • 12
    • 84855882587 scopus 로고    scopus 로고
    • Novel computational approaches to polypharmacology as a means to define responses to individual drugs
    • Xie L, Xie L, Kinnings SL, et al. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Ann Rev Pharmacol Toxicol 2012;52:361-79.
    • (2012) Ann Rev Pharmacol Toxicol , vol.52 , pp. 361-379
    • Xie, L.1    Xie, L.2    Kinnings, S.L.3
  • 13
    • 55549101279 scopus 로고    scopus 로고
    • Finding multiple target optimal intervention in disease-related molecular network
    • Yang K, Bai H, Ouyang Q, et al. Finding multiple target optimal intervention in disease-related molecular network. Mol Syst Biol 2008;4:228.
    • (2008) Mol Syst Biol , vol.4 , pp. 228
    • Yang, K.1    Bai, H.2    Ouyang, Q.3
  • 14
    • 33845762340 scopus 로고    scopus 로고
    • Multi-target therapeutics: when the whole is greater than the sum of the parts
    • Zimmermann GR, Lehar J, Keith CT. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 2007;12:34-42.
    • (2007) Drug Discov Today , vol.12 , pp. 34-42
    • Zimmermann, G.R.1    Lehar, J.2    Keith, C.T.3
  • 15
    • 27144443099 scopus 로고    scopus 로고
    • Drug discovery: playing dirty
    • Frantz S. Drug discovery: playing dirty. Nature 2005;437:942-3.
    • (2005) Nature , vol.437 , pp. 942-943
    • Frantz, S.1
  • 16
    • 79951512210 scopus 로고    scopus 로고
    • Strategies to discover unexpected targets for drugs active at G protein-coupled receptors
    • Allen JA, Roth BL. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Ann Rev Pharmacol Toxicol 2011;51:117-44.
    • (2011) Ann Rev Pharmacol Toxicol , vol.51 , pp. 117-144
    • Allen, J.A.1    Roth, B.L.2
  • 17
    • 4344668661 scopus 로고    scopus 로고
    • Drug repositioning: identifying and developing new uses for existing drugs
    • Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004;3:673-83.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 673-683
    • Ashburn, T.T.1    Thor, K.B.2
  • 18
    • 84855840733 scopus 로고    scopus 로고
    • Target-drug interactions: first principles and their application to drug discovery
    • Nú ñ ez S, Venhorst J, Kruse CG. Target-drug interactions: first principles and their application to drug discovery. Drug Discov Today 2012;17:10-22.
    • (2012) Drug Discov Today , vol.17 , pp. 10-22
    • Núñez, S.1    Venhorst, J.2    Kruse, C.G.3
  • 19
    • 33749234216 scopus 로고    scopus 로고
    • Drugs, their targets and the nature and number of drug targets
    • Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 2006;5:821-34.
    • (2006) Nat Rev Drug Discov , vol.5 , pp. 821-834
    • Imming, P.1    Sinning, C.2    Meyer, A.3
  • 22
    • 0034677966 scopus 로고    scopus 로고
    • Drug discovery: a historical perspective
    • Drews J. Drug discovery: a historical perspective. Science 2000;287:1960-4.
    • (2000) Science , vol.287 , pp. 1960-1964
    • Drews, J.1
  • 23
    • 0038458880 scopus 로고    scopus 로고
    • Prioritizing the human genome: knowledge management for drug discovery
    • Golden J. Prioritizing the human genome: knowledge management for drug discovery. Curr Opin Drug Discov Dev 2003;6:310-16.
    • (2003) Curr Opin Drug Discov Dev , vol.6 , pp. 310-316
    • Golden, J.1
  • 24
    • 33646532662 scopus 로고    scopus 로고
    • Progress and problems in the exploration of therapeutic targets
    • Zheng C, Han L, Yap CW, et al. Progress and problems in the exploration of therapeutic targets. Drug Discov Today 2006;11:412-20.
    • (2006) Drug Discov Today , vol.11 , pp. 412-420
    • Zheng, C.1    Han, L.2    Yap, C.W.3
  • 25
    • 38649120829 scopus 로고    scopus 로고
    • Drugs and their molecular targets: an updated overview
    • Landry Y, Gies JP. Drugs and their molecular targets: an updated overview. Fundam Clin Pharmacol 2008;22:1-18.
    • (2008) Fundam Clin Pharmacol , vol.22 , pp. 1-18
    • Landry, Y.1    Gies, J.P.2
  • 26
    • 33846062023 scopus 로고    scopus 로고
    • Database resources of the national center for biotechnology information
    • Wheeler DL, Barrett T, Benson DA, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2007;35:D5-12.
    • (2007) Nucleic Acids Res , vol.35 , pp. D5-D12
    • Wheeler, D.L.1    Barrett, T.2    Benson, D.A.3
  • 27
    • 78651310799 scopus 로고    scopus 로고
    • Database resources of the national center for biotechnology information
    • Sayers EW, Barrett T, Benson DA et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2011;39:D38-51.
    • (2011) Nucleic Acids Res , vol.39 , pp. D38-D51
    • Sayers, E.W.1    Barrett, T.2    Benson, D.A.3
  • 28
    • 11144341956 scopus 로고    scopus 로고
    • Chemical space and biology
    • Dobson CM. Chemical space and biology. Nature 2004;432:824-8.
    • (2004) Nature , vol.432 , pp. 824-828
    • Dobson, C.M.1
  • 29
    • 84861610134 scopus 로고    scopus 로고
    • A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data
    • Yu H, Chen J, Xu X, et al. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 2012;7:e37608.
    • (2012) PLoS One , vol.7
    • Yu, H.1    Chen, J.2    Xu, X.3
  • 30
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: new developments in KEGG
    • Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006;34:D354-7.
    • (2006) Nucleic Acids Res , vol.34 , pp. D354-D357
    • Kanehisa, M.1    Goto, S.2    Hattori, M.3
  • 31
    • 0034331004 scopus 로고    scopus 로고
    • Chemical genetics: ligand-based discovery of gene function
    • Stockwell BR. Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 2000;1:116-25.
    • (2000) Nat Rev Genet , vol.1 , pp. 116-125
    • Stockwell, B.R.1
  • 32
    • 84877999014 scopus 로고    scopus 로고
    • A two-step similarity-based method for prediction of drug's target group
    • Chen L, Zeng W-M. A two-step similarity-based method for prediction of drug's target group. Protein Pept Lett 2013;20:364-70.
    • (2013) Protein Pept Lett , vol.20 , pp. 364-370
    • Chen, L.1    Zeng, W.-M.2
  • 33
    • 52749089141 scopus 로고    scopus 로고
    • The prediction of interferon treatment effects based on time series microarray gene expression profiles
    • Huang T, Tu K, Shyr Y, et al. The prediction of interferon treatment effects based on time series microarray gene expression profiles. J Transl Med 2008;6:44.
    • (2008) J Transl Med , vol.6 , pp. 44
    • Huang, T.1    Tu, K.2    Shyr, Y.3
  • 34
    • 70549098217 scopus 로고    scopus 로고
    • Functional association between influenza A (H1N1) virus and human
    • Huang T, Cui W, He Z-S, et al. Functional association between influenza A (H1N1) virus and human. Biochem Biophys Res Commun 2009;390:1111-13.
    • (2009) Biochem Biophys Res Commun , vol.390 , pp. 1111-1113
    • Huang, T.1    Cui, W.2    He, Z.-S.3
  • 36
    • 0032782694 scopus 로고    scopus 로고
    • Genomic technologies in drug discovery and development
    • Hughes JE. Genomic technologies in drug discovery and development. Drug Discov Today 1999;4:6.
    • (1999) Drug Discov Today , vol.4 , pp. 6
    • Hughes, J.E.1
  • 37
    • 84155192359 scopus 로고    scopus 로고
    • Proteomics applied to exercise physiology: a cutting-edge technology
    • Petriz BA, Gomes CP, Rocha LA, et al. Proteomics applied to exercise physiology: a cutting-edge technology. J Cell Physiol 2012;227:885-98.
    • (2012) J Cell Physiol , vol.227 , pp. 885-898
    • Petriz, B.A.1    Gomes, C.P.2    Rocha, L.A.3
  • 38
    • 84879552680 scopus 로고    scopus 로고
    • Drug target inference through pathway analysis of genomics data
    • Ma H, Zhao H. Drug target inference through pathway analysis of genomics data. Adv Drug Deliv Rev 2013;65:966-72.
    • (2013) Adv Drug Deliv Rev , vol.65 , pp. 966-972
    • Ma, H.1    Zhao, H.2
  • 39
    • 0038522853 scopus 로고    scopus 로고
    • Multidimensional chemical genetic analysis of diversity-oriented synthesisderived deacetylase inhibitors using cell-based assays
    • Haggarty SJ, Koeller KM, Wong JC, et al. Multidimensional chemical genetic analysis of diversity-oriented synthesisderived deacetylase inhibitors using cell-based assays. Chem Biol 2003;10:383-96.
    • (2003) Chem Biol , vol.10 , pp. 383-396
    • Haggarty, S.J.1    Koeller, K.M.2    Wong, J.C.3
  • 40
    • 0037061492 scopus 로고    scopus 로고
    • Dissecting glucose signalling with diversity-oriented synthesis and smallmolecule microarrays
    • Kuruvilla FG, Shamji AF, Sternson SM et al. Dissecting glucose signalling with diversity-oriented synthesis and smallmolecule microarrays. Nature 2002;416:653-7.
    • (2002) Nature , vol.416 , pp. 653-657
    • Kuruvilla, F.G.1    Shamji, A.F.2    Sternson, S.M.3
  • 41
    • 84891767304 scopus 로고    scopus 로고
    • DrugBank 4.0: shedding new light on drug metabolism
    • Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014;42:D1091-7.
    • (2014) Nucleic Acids Res , vol.42 , pp. D1091-D1097
    • Law, V.1    Knox, C.2    Djoumbou, Y.3
  • 42
    • 84891822308 scopus 로고    scopus 로고
    • Therapeutic target database update 2014: a resource for targeted therapeutics
    • Qin C, Zhang C, Zhu F, et al. Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res 2014;42:D1118-23.
    • (2014) Nucleic Acids Res , vol.42 , pp. D1118-D1123
    • Qin, C.1    Zhang, C.2    Zhu, F.3
  • 43
    • 84857840354 scopus 로고    scopus 로고
    • SuperTarget goes quantitative: update on drug-target interactions
    • Hecker N, Ahmed J, von Eichborn J, et al. SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids Res 2012;40:D1113-17.
    • (2012) Nucleic Acids Res , vol.40 , pp. D1113-D1117
    • Hecker, N.1    Ahmed, J.2    von Eichborn, J.3
  • 44
    • 38549182474 scopus 로고    scopus 로고
    • SuperTarget and Matador: resources for exploring drug-target relationships
    • Günther S, Kuhn M, Dunkel M, et al. SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res 2008;36:D919-22.
    • (2008) Nucleic Acids Res , vol.36 , pp. D919-D922
    • Günther, S.1    Kuhn, M.2    Dunkel, M.3
  • 45
    • 84891781052 scopus 로고    scopus 로고
    • STITCH 4: integration of protein-chemical interactions with user data
    • Kuhn M, Szklarczyk D, Pletscher-Frankild S, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 2014;42:D401-7.
    • (2014) Nucleic Acids Res , vol.42 , pp. D401-D407
    • Kuhn, M.1    Szklarczyk, D.2    Pletscher-Frankild, S.3
  • 46
    • 84862208610 scopus 로고    scopus 로고
    • TDR Targets: a chemogenomics resource for neglected diseases
    • Magariñ os MP, Carmona SJ, Crowther GJ, et al. TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res 2012;40:D1118-27.
    • (2012) Nucleic Acids Res , vol.40 , pp. D1118-D1127
    • Magariños, M.P.1    Carmona, S.J.2    Crowther, G.J.3
  • 47
    • 40549130652 scopus 로고    scopus 로고
    • PDTD: a web-accessible protein database for drug target identification
    • Gao Z, Li H, Zhang H, et al. PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 2008;9:104.
    • (2008) BMC Bioinformatics , vol.9 , pp. 104
    • Gao, Z.1    Li, H.2    Zhang, H.3
  • 48
    • 84862192766 scopus 로고    scopus 로고
    • ChEMBL: a large-scale bioactivity database for drug discovery
    • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012;40:D1100-7.
    • (2012) Nucleic Acids Res , vol.40 , pp. D1100-D1107
    • Gaulton, A.1    Bellis, L.J.2    Bento, A.P.3
  • 49
    • 84875963165 scopus 로고    scopus 로고
    • Drug target prediction and repositioning using an integrated network-based approach
    • Emig D, Ivliev A, Pustovalova O, et al. Drug target prediction and repositioning using an integrated network-based approach. PLoS One 2013;8:e60618.
    • (2013) PLoS One , vol.8
    • Emig, D.1    Ivliev, A.2    Pustovalova, O.3
  • 50
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs
    • Kuhn M, Campillos M, Letunic I, et al. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 2010;6:343.
    • (2010) Mol Syst Biol , vol.6 , pp. 343
    • Kuhn, M.1    Campillos, M.2    Letunic, I.3
  • 51
    • 38549121773 scopus 로고    scopus 로고
    • ChemBank: a smallmolecule screening and cheminformatics resource database
    • Seiler KP, George GA, Happ MP, et al. ChemBank: a smallmolecule screening and cheminformatics resource database. Nucleic Acids Res 2008;36:D351-9.
    • (2008) Nucleic Acids Res , vol.36 , pp. D351-D359
    • Seiler, K.P.1    George, G.A.2    Happ, M.P.3
  • 52
    • 84891791940 scopus 로고    scopus 로고
    • The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands
    • Pawson AJ, Sharman JL, Benson HE, et al. The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 2014;42:D1098-106.
    • (2014) Nucleic Acids Res , vol.42 , pp. D1098-D1106
    • Pawson, A.J.1    Sharman, J.L.2    Benson, H.E.3
  • 53
    • 84875176019 scopus 로고    scopus 로고
    • CancerDR: cancer drug resistance database
    • Kumar R, Chaudhary K, Gupta S, et al. CancerDR: cancer drug resistance database. Sci Rep 2013;3:1445.
    • (2013) Sci Rep , vol.3 , pp. 1445
    • Kumar, R.1    Chaudhary, K.2    Gupta, S.3
  • 54
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
    • Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007;35:D198-201.
    • (2007) Nucleic Acids Res , vol.35 , pp. D198-D201
    • Liu, T.1    Lin, Y.2    Wen, X.3
  • 55
    • 84864199587 scopus 로고    scopus 로고
    • ZINC: a free tool to discover chemistry for biology
    • Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 2012;52:1757-68.
    • (2012) J Chem Inf Model , vol.52 , pp. 1757-1768
    • Irwin, J.J.1    Sterling, T.2    Mysinger, M.M.3
  • 56
    • 84860492047 scopus 로고    scopus 로고
    • canSAR: an integrated cancer public translational research and drug discovery resource
    • Halling-Brown MD, Bulusu KC, Patel M, et al. canSAR: an integrated cancer public translational research and drug discovery resource. Nucleic Acids Res 2012;40:D947-56.
    • (2012) Nucleic Acids Res , vol.40 , pp. D947-D956
    • Halling-Brown, M.D.1    Bulusu, K.C.2    Patel, M.3
  • 57
    • 84872655117 scopus 로고    scopus 로고
    • Contract No. HHSN-271-2008-00025-C (NIMH PDSP)
    • Roth BL. Psychoactive Drug Screening Program, Contract No. HHSN-271-2008-00025-C (NIMH PDSP) 2008. http://pdsp.med. unc.edu/.
    • (2008) Psychoactive Drug Screening Program
    • Roth, B.L.1
  • 58
    • 77949497071 scopus 로고    scopus 로고
    • DCDB: drug combination database
    • Liu Y, Hu B, Fu C, et al. DCDB: drug combination database. Bioinformatics 2010;26:587-8.
    • (2010) Bioinformatics , vol.26 , pp. 587-588
    • Liu, Y.1    Hu, B.2    Fu, C.3
  • 59
    • 41549108420 scopus 로고    scopus 로고
    • From single-to multi-target drugs in cancer therapy: when aspecificity becomes an advantage
    • Giordano S, Petrelli A. From single-to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 2008;15:422-32.
    • (2008) Curr Med Chem , vol.15 , pp. 422-432
    • Giordano, S.1    Petrelli, A.2
  • 60
    • 84898487066 scopus 로고    scopus 로고
    • ASDCD: antifungal synergistic drug combination database
    • Chen X, Ren B, Chen M, et al. ASDCD: antifungal synergistic drug combination database. PLoS One 2014;9:e86499.
    • (2014) PLoS One , vol.9
    • Chen, X.1    Ren, B.2    Chen, M.3
  • 61
    • 84904805614 scopus 로고    scopus 로고
    • DINIES: drug-target interaction network inference engine based on supervised analysis
    • Yamanishi Y, Kotera M, Moriya Y, et al. DINIES: drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res 2014;42:W39-45.
    • (2014) Nucleic Acids Res , vol.42 , pp. W39-W45
    • Yamanishi, Y.1    Kotera, M.2    Moriya, Y.3
  • 62
    • 84904821175 scopus 로고    scopus 로고
    • SuperPred: update on drug classification and target prediction
    • Nickel J, Gohlke B-O, Erehman J, et al. SuperPred: update on drug classification and target prediction. Nucleic Acids Res 2014;42:W26-31.
    • (2014) Nucleic Acids Res , vol.42 , pp. W26-W31
    • Nickel, J.1    Gohlke, B.-O.2    Erehman, J.3
  • 63
    • 84904793576 scopus 로고    scopus 로고
    • SwissTargetPrediction: a web server for target prediction of bioactive small molecules
    • Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014;42:W32-8.
    • (2014) Nucleic Acids Res , vol.42 , pp. W32-W38
    • Gfeller, D.1    Grosdidier, A.2    Wirth, M.3
  • 64
    • 26944446576 scopus 로고    scopus 로고
    • Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development
    • Whitebread S, Hamon J, Bojanic D, et al. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov Today 2005;10:1421-33.
    • (2005) Drug Discov Today , vol.10 , pp. 1421-1433
    • Whitebread, S.1    Hamon, J.2    Bojanic, D.3
  • 65
    • 33846155913 scopus 로고    scopus 로고
    • Structure-based maximal affinity model predicts small-molecule druggability
    • Cheng AC, Coleman RG, Smyth KT, et al. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 2007;25:71-5.
    • (2007) Nat Biotechnol , vol.25 , pp. 71-75
    • Cheng, A.C.1    Coleman, R.G.2    Smyth, K.T.3
  • 67
    • 70349932423 scopus 로고    scopus 로고
    • AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
    • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785-91.
    • (2009) J Comput Chem , vol.30 , pp. 2785-2791
    • Morris, G.M.1    Huey, R.2    Lindstrom, W.3
  • 68
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos M, Kuhn M, Gavin A-C, et al. Drug target identification using side-effect similarity. Science 2008;321:263-6.
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1    Kuhn, M.2    Gavin, A.-C.3
  • 69
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 2012;8:e1002503.
    • (2012) PLoS Comput Biol , vol.8
    • Cheng, F.1    Liu, C.2    Jiang, J.3
  • 70
    • 0141843591 scopus 로고    scopus 로고
    • Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways
    • Hattori M, Okuno Y, Goto S, et al. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 2003;125:11853-65.
    • (2003) J Am Chem Soc , vol.125 , pp. 11853-11865
    • Hattori, M.1    Okuno, Y.2    Goto, S.3
  • 71
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981;147:195-7.
    • (1981) J Mol Biol , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 72
    • 84945958119 scopus 로고    scopus 로고
    • Predicting drug-target interactions via within-score and between-score
    • Shi J-Y, Liu Z, Yu H, et al. Predicting drug-target interactions via within-score and between-score. BioMed Res Int 2015;2015:350983.
    • (2015) BioMed Res Int , vol.2015
    • Shi, J.-Y.1    Liu, Z.2    Yu, H.3
  • 73
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 2009;25:2397-403.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 74
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi Y, Kotera M, Kanehisa M, et al. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010;26:i246-54.
    • (2010) Bioinformatics , vol.26 , pp. i246-i254
    • Yamanishi, Y.1    Kotera, M.2    Kanehisa, M.3
  • 75
    • 84872509876 scopus 로고    scopus 로고
    • Drug-target interaction prediction by learning from local information and neighbors
    • Mei J-P, Kwoh C-K, Yang P, et al. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 2013;29:238-45.
    • (2013) Bioinformatics , vol.29 , pp. 238-245
    • Mei, J.-P.1    Kwoh, C.-K.2    Yang, P.3
  • 76
    • 84957561485 scopus 로고    scopus 로고
    • Computational prediction of drugtarget interactions using chemical, biological, and network features
    • Cao DS, Zhang LX, Tan GS, et al. Computational prediction of drugtarget interactions using chemical, biological, and network features. Mol Inform 2014;33:669-81.
    • (2014) Mol Inform , vol.33 , pp. 669-681
    • Cao, D.S.1    Zhang, L.X.2    Tan, G.S.3
  • 77
    • 84902553384 scopus 로고    scopus 로고
    • Screening drug target proteins based on sequence information
    • Wang JT, Liu W, Tang H, et al. Screening drug target proteins based on sequence information. J Biomed Inform 2014;49:269-74.
    • (2014) J Biomed Inform , vol.49 , pp. 269-274
    • Wang, J.T.1    Liu, W.2    Tang, H.3
  • 78
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • Xia Z, Wu L-Y, Zhou X, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 2010;4:S6.
    • (2010) BMC Syst Biol , vol.4 , pp. S6
    • Xia, Z.1    Wu, L.-Y.2    Zhou, X.3
  • 79
    • 84925383120 scopus 로고    scopus 로고
    • Toward more realistic drug-target interaction predictions
    • Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Brief Bioinform 2015;16:325-37.
    • (2015) Brief Bioinform , vol.16 , pp. 325-337
    • Pahikkala, T.1    Airola, A.2    Pietilä, S.3
  • 80
    • 70449634957 scopus 로고    scopus 로고
    • Predicting new molecular targets for known drugs
    • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature 2009;462:175-81.
    • (2009) Nature , vol.462 , pp. 175-181
    • Keiser, M.J.1    Setola, V.2    Irwin, J.J.3
  • 81
    • 84896508914 scopus 로고    scopus 로고
    • Predicting drug-target interactions using probabilistic matrix factorization
    • Cobanoglu MC, Liu C, Hu F, et al. Predicting drug-target interactions using probabilistic matrix factorization. J Chem Inform Model 2013;53:3399-409.
    • (2013) J Chem Inform Model , vol.53 , pp. 3399-3409
    • Cobanoglu, M.C.1    Liu, C.2    Hu, F.3
  • 82
    • 84881088550 scopus 로고    scopus 로고
    • Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance
    • Wang E, Zou J, Zaman N, et al. Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance. Semin Cancer Biol 2013;23:286-92.
    • (2013) Semin Cancer Biol , vol.23 , pp. 286-292
    • Wang, E.1    Zou, J.2    Zaman, N.3
  • 83
    • 84919626787 scopus 로고    scopus 로고
    • Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data
    • Wang E, Zaman N, Mcgee S, et al. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin Cancer Biol 2015;30:4-12.
    • (2015) Semin Cancer Biol , vol.30 , pp. 4-12
    • Wang, E.1    Zaman, N.2    Mcgee, S.3
  • 84
    • 84881110695 scopus 로고    scopus 로고
    • Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks
    • Wang E, Zou J, Zaman N, et al. Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks. Semin Cancer Biol 2013;23:279-85.
    • (2013) Semin Cancer Biol , vol.23 , pp. 279-285
    • Wang, E.1    Zou, J.2    Zaman, N.3
  • 86
    • 80755125575 scopus 로고    scopus 로고
    • Comprehensive analysis of kinase inhibitor selectivity
    • Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 2011;29:1046-51.
    • (2011) Nat Biotechnol , vol.29 , pp. 1046-1051
    • Davis, M.I.1    Hunt, J.P.2    Herrgard, S.3
  • 87
    • 84870805181 scopus 로고    scopus 로고
    • Flaws in evaluation schemes for pair-input computational predictions
    • Park Y, Marcotte EM. Flaws in evaluation schemes for pair-input computational predictions. Nat Methods 2012;9:1134-36.
    • (2012) Nat Methods , vol.9 , pp. 1134-1136
    • Park, Y.1    Marcotte, E.M.2
  • 88
    • 84885644151 scopus 로고    scopus 로고
    • Novel human lncRNA-disease association inference based on lncRNA expression profiles
    • Chen X, Yan G-Y. Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 2013;29:2617-24.
    • (2013) Bioinformatics , vol.29 , pp. 2617-2624
    • Chen, X.1    Yan, G.-Y.2
  • 89
    • 84928196309 scopus 로고    scopus 로고
    • Similarity-based machine learning methods for predicting drug-target interactions: a brief review
    • Ding H, Takigawa I, Mamitsuka H, et al. Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 2014;15:734-47.
    • (2014) Brief Bioinform , vol.15 , pp. 734-747
    • Ding, H.1    Takigawa, I.2    Mamitsuka, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.