메뉴 건너뛰기




Volumn 31, Issue 15, 2015, Pages 2574-2576

KeBABS: An R package for kernel-based analysis of biological sequences

Author keywords

[No Author keywords available]

Indexed keywords

HLA A2 ANTIGEN; HLA-A*02:01 ANTIGEN; PEPTIDE FRAGMENT;

EID: 84943638759     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btv176     Document Type: Article
Times cited : (32)

References (14)
  • 1
    • 4944225083 scopus 로고    scopus 로고
    • Remote homology detection: A motif based approach
    • Ben-Hur, A. and Brutlag, D. L. (2003) Remote homology detection: a motif based approach. Bioinformatics, 19, 26-33.
    • (2003) Bioinformatics , vol.19 , pp. 26-33
    • Ben-Hur, A.1    Brutlag, D.L.2
  • 2
    • 79955772578 scopus 로고    scopus 로고
    • Modeling position specificity in sequence kernels by fuzzy equivalence relations
    • Carvalho, J. P. et al. eds, Lisbon, Portugal
    • Bodenhofer, U. et al. (2009) Modeling position specificity in sequence kernels by fuzzy equivalence relations. In: Carvalho, J. P. et al. (eds), Proceedings of the Joint 13th IFSAWorld Congress and 6th EUSFLAT Conference, Lisbon, Portugal, pp. 1376-1381.
    • (2009) Proceedings of the Joint 13th IFSAWorld Congress and 6th EUSFLAT Conference , pp. 1376-1381
    • Bodenhofer, U.1
  • 4
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • Fan, R.-E. et al. (2008) LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res., 9, 1871-1874.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1871-1874
    • Fan, R.-E.1
  • 5
    • 11244352554 scopus 로고    scopus 로고
    • Kernlab-an S4 package for kernel methods in R
    • Karatzoglou, A. et al. (2004) Kernlab-an S4 package for kernel methods in R. J. Stat. Softw., 11, 1-20.
    • (2004) J. Stat. Softw. , vol.11 , pp. 1-20
    • Karatzoglou, A.1
  • 6
    • 85018093682 scopus 로고    scopus 로고
    • A fast, large-scale learning method for protein sequence classification
    • Las Vegas, NV, USA, Chapman & Hall/CRC Press
    • Kuksa, P. et al. (2008) A fast, large-scale learning method for protein sequence classification. In: 8th International Workshop on Data Mining in Bioinformatics, Las Vegas, NV, USA, Chapman & Hall/CRC Press, pp. 29-37.
    • (2008) 8th International Workshop on Data Mining in Bioinformatics , pp. 29-37
    • Kuksa, P.1
  • 7
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for SVM protein classification
    • Altman, R. B. et al. eds, World Scientific, Lihue, HI, USA
    • Leslie, C. S. et al. (2002) The spectrum kernel: a string kernel for SVM protein classification. In: Altman, R. B. et al. (eds). Pacific Symposium on Biocomputing, World Scientific, Lihue, HI, USA, pp. 564-575.
    • (2002) Pacific Symposium on Biocomputing , pp. 564-575
    • Leslie, C.S.1
  • 8
    • 25144516978 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • Leslie, C. S. et al. (2003) Mismatch string kernels for discriminative protein classification. Bioinformatics, 1, 1-10.
    • (2003) Bioinformatics , vol.1 , pp. 1-10
    • Leslie, C.S.1
  • 9
    • 0027525106 scopus 로고
    • The antigenic identity of peptide-MHC complexes: A comparison of five viral peptides presented by HLA-A2
    • Madden, D. R. et al. (1993) The antigenic identity of peptide-MHC complexes: a comparison of five viral peptides presented by HLA-A2. Cell, 75, 693-708.
    • (1993) Cell , vol.75 , pp. 693-708
    • Madden, D.R.1
  • 10
    • 79955766198 scopus 로고    scopus 로고
    • Complex networks govern coiled-coil oligo-merizations-predicting and profiling by means of a machine learning approach
    • Mahrenholz, C. C. et al. (2011) Complex networks govern coiled-coil oligo-merizations-predicting and profiling by means of a machine learning approach. Mol. Cell Proteomics, 10, M110.004994.
    • (2011) Mol. Cell Proteomics , vol.10 , pp. M110004994
    • Mahrenholz, C.C.1
  • 11
    • 13244260800 scopus 로고    scopus 로고
    • Oligo kernels for datamining on biological sequences: A case study on prokaryotic translation initiation sites
    • Meinicke, P. et al. (2004) Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites. BMC Bioinformatics, 5, 169.
    • (2004) BMC Bioinformatics , vol.5 , pp. 169
    • Meinicke, P.1
  • 12
    • 29144512262 scopus 로고    scopus 로고
    • RASE: Recognition of alternatively spliced exons in C
    • Rätsch, G. et al. (2005) RASE: recognition of alternatively spliced exons in C. elegans. Bioinformatics, 21(Suppl. 1), i369-i377.
    • (2005) Elegans. Bioinformatics , vol.21 , pp. i369-i377
    • Rätsch, G.1
  • 13
    • 77949448493 scopus 로고    scopus 로고
    • Predicting MHC class I epitopes in large datasets
    • Roomp, K. et al. (2010) Predicting MHC class I epitopes in large datasets. BMC Bioinformatics, 11, 90.
    • (2010) BMC Bioinformatics , vol.11 , pp. 90
    • Roomp, K.1
  • 14
    • 77954666305 scopus 로고    scopus 로고
    • The SHOGUN machine learning toolbox
    • Sonnenburg, S. et al. (2010) The SHOGUN machine learning toolbox. J. Mach. Learn. Res., 11, 1799-1802.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1799-1802
    • Sonnenburg, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.