메뉴 건너뛰기




Volumn 15, Issue 5, 2013, Pages 734-747

Similarity-basedmachine learning methods for predicting drug-target interactions: A brief review

Author keywords

Drug discovery; Drug similarity; Drug target interaction prediction; Machine learning; Target similarity

Indexed keywords

ARTIFICIAL INTELLIGENCE; DRUG INTERACTION; THEORETICAL MODEL;

EID: 84928196309     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbt056     Document Type: Article
Times cited : (352)

References (68)
  • 1
    • 70449673534 scopus 로고    scopus 로고
    • Drug discovery: predicting promiscuity
    • Hopkins AL. Drug discovery: predicting promiscuity. Nature 2009;462:167-8.
    • (2009) Nature , vol.462 , pp. 167-168
    • Hopkins, A.L.1
  • 2
    • 84862510972 scopus 로고    scopus 로고
    • Large-scale prediction and testing of drug activity on side-effect targets
    • Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012;486:361-7.
    • (2012) Nature , vol.486 , pp. 361-367
    • Lounkine, E.1    Keiser, M.J.2    Whitebread, S.3
  • 3
    • 79955969387 scopus 로고    scopus 로고
    • Predicting drug sideeffect profiles: a chemical fragment-based approach
    • Pauwels E, Stoven V, Yamanishi Y. Predicting drug sideeffect profiles: a chemical fragment-based approach. BMC Bioinformatics 2011;12:169.
    • (2011) BMC Bioinformatics , vol.12 , pp. 169
    • Pauwels, E.1    Stoven, V.2    Yamanishi, Y.3
  • 4
    • 79960796417 scopus 로고    scopus 로고
    • Exploiting drug-disease relationships for computational drug repositioning
    • Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 2011;12(4):303-11.
    • (2011) Brief Bioinform , vol.12 , Issue.4 , pp. 303-311
    • Dudley, J.T.1    Deshpande, T.2    Butte, A.J.3
  • 5
    • 79960799858 scopus 로고    scopus 로고
    • Mining small-molecule screens to repurpose drugs
    • Swamidass SJ. Mining small-molecule screens to repurpose drugs. Brief Bioinform 2011;12(4):327-35.
    • (2011) Brief Bioinform , vol.12 , Issue.4 , pp. 327-335
    • Swamidass, S.J.1
  • 6
    • 79960779897 scopus 로고    scopus 로고
    • Identify drug repurposing candidates by mining the Protein Data Bank
    • Moriaud F, Richard SB, Adcock SA, et al. Identify drug repurposing candidates by mining the Protein Data Bank. Brief Bioinform 2011;12(4):336-40.
    • (2011) Brief Bioinform , vol.12 , Issue.4 , pp. 336-340
    • Moriaud, F.1    Richard, S.B.2    Adcock, S.A.3
  • 8
    • 11144341956 scopus 로고    scopus 로고
    • Chemical space and biology
    • Dobson CM. Chemical space and biology. Nature 2004;432:824-8.
    • (2004) Nature , vol.432 , pp. 824-828
    • Dobson, C.M.1
  • 9
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: new developments in KEGG
    • Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006;34:D354-7.
    • (2006) Nucleic Acids Res , vol.34 , pp. D354-D357
    • Kanehisa, M.1    Goto, S.2    Hattori, M.3
  • 10
    • 0034331004 scopus 로고    scopus 로고
    • Chemical genetics: ligand-based discovery of gene function
    • Stockwell BR. Chemical genetics: ligand-based discovery of gene function. Nat RevGenet 2000;1(2):116-25.
    • (2000) Nat RevGenet , vol.1 , Issue.2 , pp. 116-125
    • Stockwell, B.R.1
  • 11
    • 84857745267 scopus 로고    scopus 로고
    • Database resources of the National Center for Biotechnology Information
    • Sayers EW, Barrett T, Benson DA, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2012;40:D13-25.
    • (2012) Nucleic Acids Res , vol.40 , pp. D13-D25
    • Sayers, E.W.1    Barrett, T.2    Benson, D.A.3
  • 12
    • 26944446576 scopus 로고    scopus 로고
    • Keynote review:in vitro safety pharmacology profiling: an essential tool for successful drug development
    • Whitebread S, Hamon J, Bojanic D, et al. Keynote review:in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug DiscovToday 2005;10(21):1421-33.
    • (2005) Drug DiscovToday , vol.10 , Issue.21 , pp. 1421-1433
    • Whitebread, S.1    Hamon, J.2    Bojanic, D.3
  • 13
    • 0038522853 scopus 로고    scopus 로고
    • Multidimensional chemical genetic analysis of diversity-oriented synthesisderived deacetylase inhibitors using cell-based assays
    • Haggarty SJ, Koeller KM, Wong JC, et al. Multidimensional chemical genetic analysis of diversity-oriented synthesisderived deacetylase inhibitors using cell-based assays. Chem Biol 2003;10(5):383-96.
    • (2003) Chem Biol , vol.10 , Issue.5 , pp. 383-396
    • Haggarty, S.J.1    Koeller, K.M.2    Wong, J.C.3
  • 14
    • 0037061492 scopus 로고    scopus 로고
    • Dissecting glucose signaling with diversity-oriented synthesis and small-molecule microarrays
    • Kuruvilla FG, Shamji AF, Sternson SM, et al. Dissecting glucose signaling with diversity-oriented synthesis and small-molecule microarrays. Nature 2002;416:653-7.
    • (2002) Nature , vol.416 , pp. 653-657
    • Kuruvilla, F.G.1    Shamji, A.F.2    Sternson, S.M.3
  • 15
    • 0035498999 scopus 로고    scopus 로고
    • The impact of informatics and computational chemistry on synthesis and screening
    • Manly CJ, Louise-May S, Hammer JD. The impact of informatics and computational chemistry on synthesis and screening. Drug DiscovToday 2001;6(21):1101-10.
    • (2001) Drug DiscovToday , vol.6 , Issue.21 , pp. 1101-1110
    • Manly, C.J.1    Louise-May, S.2    Hammer, J.D.3
  • 16
    • 84986518987 scopus 로고
    • Molecular docking using shape descriptors
    • Shoichet BK, Bodian DL, Kuntz ID. Molecular docking using shape descriptors. J Comput Chem 1992; 13(3):380-97.
    • (1992) J Comput Chem , vol.13 , Issue.3 , pp. 380-397
    • Shoichet, B.K.1    Bodian, D.L.2    Kuntz, I.D.3
  • 17
    • 0030599010 scopus 로고    scopus 로고
    • A fast flexible docking method using an incremental construction algorithm
    • Rarey M, Kramer B, Lengauer T, et al. A fast flexible docking method using an incremental construction algorithm. JMol Biol 1996;261(3):470-89.
    • (1996) JMol Biol , vol.261 , Issue.3 , pp. 470-489
    • Rarey, M.1    Kramer, B.2    Lengauer, T.3
  • 18
    • 0036606483 scopus 로고    scopus 로고
    • Principles of docking:an overview of search algorithms and a guide to scoring functions
    • Halperin I, Ma B, Wolfson H, et al. Principles of docking:an overview of search algorithms and a guide to scoring functions. Proteins 2002;47(4):409-43.
    • (2002) Proteins , vol.47 , Issue.4 , pp. 409-443
    • Halperin, I.1    Ma, B.2    Wolfson, H.3
  • 20
    • 33846155913 scopus 로고    scopus 로고
    • Structure-based maximal affinity model predicts small-molecule druggability
    • Cheng AC, Coleman RG, Smyth KT, et al. Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 2007;25(1):71-5.
    • (2007) Nat Biotechnol , vol.25 , Issue.1 , pp. 71-75
    • Cheng, A.C.1    Coleman, R.G.2    Smyth, K.T.3
  • 21
    • 0034801665 scopus 로고    scopus 로고
    • G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin
    • Ballesteros J, Palczewski K. G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin. Curr OpinDrugDiscov Devel 2001;4(5):561-74.
    • (2001) Curr OpinDrugDiscov Devel , vol.4 , Issue.5 , pp. 561-574
    • Ballesteros, J.1    Palczewski, K.2
  • 22
    • 0037020329 scopus 로고    scopus 로고
    • Drug design strategies for targeting G-protein-coupled receptors
    • Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem 2002; 3(10):928-44.
    • (2002) Chembiochem , vol.3 , Issue.10 , pp. 928-944
    • Klabunde, T.1    Hessler, G.2
  • 23
    • 34548128437 scopus 로고    scopus 로고
    • Statistical prediction of protein chemical interactions based on chemical structure and mass spectrometry data
    • Nagamine N, Sakakibara Y. Statistical prediction of protein chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics 2007;23(15):2004-12.
    • (2007) Bioinformatics , vol.23 , Issue.15 , pp. 2004-2012
    • Nagamine, N.1    Sakakibara, Y.2
  • 24
    • 67650895854 scopus 로고    scopus 로고
    • Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening
    • Nagamine N, Shirakawa T, Minato Y, et al. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. PLoSComput Biol 2009;5(6):e1000397.
    • (2009) PLoSComput Biol , vol.5 , Issue.6 , pp. e1000397
    • Nagamine, N.1    Shirakawa, T.2    Minato, Y.3
  • 25
    • 79952345084 scopus 로고    scopus 로고
    • Analysis of multiple compound-protein interactions reveals novel bioactive molecules
    • Yabuuchi H, Niijima S, Takematsu H, et al. Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol Syst Biol 2011;7:472.
    • (2011) Mol Syst Biol , vol.7 , pp. 472
    • Yabuuchi, H.1    Niijima, S.2    Takematsu, H.3
  • 26
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008;24(13):i232-40.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. i232-i240
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3
  • 27
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drugtarget interactions using bipartite local models
    • Bleakley K, Yamanishi Y. Supervised prediction of drugtarget interactions using bipartite local models. Bioinformatics 2009;25(18):2397-403.
    • (2009) Bioinformatics , vol.25 , Issue.18 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 28
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: an improved chemogenomics approach
    • Jacob L, Vert JP. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 2008; 24(19):2149-56.
    • (2008) Bioinformatics , vol.24 , Issue.19 , pp. 2149-2156
    • Jacob, L.1    Vert, J.P.2
  • 29
    • 77956953029 scopus 로고    scopus 로고
    • Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
    • Xia Z, Wu LY, Zhou X, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMCSyst Biol 2010; 4(Suppl 2):S6.
    • (2010) BMCSyst Biol , vol.4 , pp. S6
    • Xia, Z.1    Wu, L.Y.2    Zhou, X.3
  • 30
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug-target interaction
    • Van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 2011;27(21):3036-43.
    • (2011) Bioinformatics , vol.27 , Issue.21 , pp. 3036-3043
    • Van Laarhoven, T.1    Nabuurs, S.B.2    Marchiori, E.3
  • 31
    • 84866459051 scopus 로고    scopus 로고
    • Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
    • Gonen M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 2012;28(18):2304-10.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 2304-2310
    • Gonen, M.1
  • 32
    • 79951729882 scopus 로고    scopus 로고
    • Combining drug and gene similarity measures for drug-target elucidation
    • Perlman L, Gottlieb A, Atias N, et al. Combining drug and gene similarity measures for drug-target elucidation. JComputBiol 2011;18(2):133-45.
    • (2011) JComputBiol , vol.18 , Issue.2 , pp. 133-145
    • Perlman, L.1    Gottlieb, A.2    Atias, N.3
  • 33
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi Y, Kotera M, Kanehisa M, et al. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010;26(12):i246-54.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i246-i254
    • Yamanishi, Y.1    Kotera, M.2    Kanehisa, M.3
  • 34
    • 27544507236 scopus 로고    scopus 로고
    • A probabilistic model for mining implicit 'chemical compound-gene' relations from literature
    • Zhu S, Okuno Y, Tsujimoto G, et al. A probabilistic model for mining implicit 'chemical compound-gene' relations from literature. Bioinformatics 2005; 21(Suppl 2):ii245-51.
    • (2005) Bioinformatics , vol.21 , pp. ii245-ii251
    • Zhu, S.1    Okuno, Y.2    Tsujimoto, G.3
  • 35
    • 41149096945 scopus 로고    scopus 로고
    • Large-scale prediction of drug-target relationships
    • Kuhn M, Campillos M, Gonzalez P, et al. Large-scale prediction of drug-target relationships. FEBS Lett 2008;582(8):1283-90.
    • (2008) FEBS Lett , vol.582 , Issue.8 , pp. 1283-1290
    • Kuhn, M.1    Campillos, M.2    Gonzalez, P.3
  • 36
    • 84864801155 scopus 로고    scopus 로고
    • Drug discovery in the age of systems biology: the rise of computational approaches for data integration
    • Iskar M, Zeller G, Zhao XM, et al. Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Curr Opin Biotechnol 2012; 23(4):609-16.
    • (2012) Curr Opin Biotechnol , vol.23 , Issue.4 , pp. 609-616
    • Iskar, M.1    Zeller, G.2    Zhao, X.M.3
  • 37
    • 81055140589 scopus 로고    scopus 로고
    • From in silico target prediction to multi-target drug design: current databases, methods and applications
    • Koutsoukas A, Simms B, Kirchmair J, et al. From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteomics 2011; 74(12):2554-74.
    • (2011) J Proteomics , vol.74 , Issue.12 , pp. 2554-2574
    • Koutsoukas, A.1    Simms, B.2    Kirchmair, J.3
  • 38
    • 79960797592 scopus 로고    scopus 로고
    • Editorial: computational methods for drug repurposing
    • Sanseau P, Koehler J. Editorial: computational methods for drug repurposing. Brief Bioinform 2011;12(4):301-2.
    • (2011) Brief Bioinform , vol.12 , Issue.4 , pp. 301-302
    • Sanseau, P.1    Koehler, J.2
  • 39
    • 0345863907 scopus 로고    scopus 로고
    • BRENDA, the enzyme database: updates and major new developments
    • Schomburg I, Chang A, Ebeling C, et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 2004;32:D431-3.
    • (2004) Nucleic Acids Res , vol.32 , pp. D431-D433
    • Schomburg, I.1    Chang, A.2    Ebeling, C.3
  • 40
    • 38549182474 scopus 로고    scopus 로고
    • SuperTarget and matador: resources for exploring drug-target relationships
    • Gunther S, Kuhn M, Dunkel M, et al. SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res 2008;36:D919-22.
    • (2008) Nucleic Acids Res , vol.36 , pp. D919-D922
    • Gunther, S.1    Kuhn, M.2    Dunkel, M.3
  • 41
    • 38549151817 scopus 로고    scopus 로고
    • DrugBank: a knowledgebase for drugs, drug actions and drug targets
    • Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008;36:D901-6.
    • (2008) Nucleic Acids Res , vol.36 , pp. D901-D906
    • Wishart, D.S.1    Knox, C.2    Guo, A.C.3
  • 42
    • 77949497071 scopus 로고    scopus 로고
    • DCDB: drug combination database
    • Liu Y, Hu B, Fu C, et al. DCDB: drug combination database. Bioinformatics 2010;26(4):587-8.
    • (2010) Bioinformatics , vol.26 , Issue.4 , pp. 587-588
    • Liu, Y.1    Hu, B.2    Fu, C.3
  • 43
    • 75549091157 scopus 로고    scopus 로고
    • The European Bioinformatics Institute's data resources
    • Brooksbank C, Cameron G, Thornton J. The European Bioinformatics Institute's data resources. Nucleic Acids Res 2010;38:D17-25.
    • (2010) Nucleic Acids Res , vol.38 , pp. D17-D25
    • Brooksbank, C.1    Cameron, G.2    Thornton, J.3
  • 44
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs
    • Kuhn M, Campillos M, Letunic I, et al. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 2010;6:343.
    • (2010) Mol Syst Biol , vol.6 , pp. 343
    • Kuhn, M.1    Campillos, M.2    Letunic, I.3
  • 45
    • 33749335282 scopus 로고    scopus 로고
    • The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease
    • Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006;313:1929-35.
    • (2006) Science , vol.313 , pp. 1929-1935
    • Lamb, J.1    Crawford, E.D.2    Peck, D.3
  • 46
    • 38549173606 scopus 로고    scopus 로고
    • The BioGRID interaction database: 2008 update
    • Breitkreutz BJ, Stark C, Reguly T, et al. The BioGRID interaction database: 2008 update. Nucleic Acids Res 2008; 36:D637-40.
    • (2008) Nucleic Acids Res , vol.36 , pp. D637-D640
    • Breitkreutz, B.J.1    Stark, C.2    Reguly, T.3
  • 47
    • 33947219266 scopus 로고    scopus 로고
    • Large-scale mapping of human protein-protein interactions by mass spectrometry
    • Ewing RM, Chu P, Elisma F, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 2007;3:89.
    • (2007) Mol Syst Biol , vol.3 , pp. 89
    • Ewing, R.M.1    Chu, P.2    Elisma, F.3
  • 48
    • 27144530248 scopus 로고    scopus 로고
    • Towards a proteomescale map of the human protein-protein interaction network
    • Rual JF, Venkatesan K, Hao T, et al. Towards a proteomescale map of the human protein-protein interaction network. Nature 2005;437:1173-8.
    • (2005) Nature , vol.437 , pp. 1173-1178
    • Rual, J.F.1    Venkatesan, K.2    Hao, T.3
  • 49
    • 25144498379 scopus 로고    scopus 로고
    • A human proteinprotein interaction network: a resource for annotating the proteome
    • Stelzl U, Worm U, Lalowski M, et al. A human proteinprotein interaction network: a resource for annotating the proteome. Cell 2005;122(6):957-68.
    • (2005) Cell , vol.122 , Issue.6 , pp. 957-968
    • Stelzl, U.1    Worm, U.2    Lalowski, M.3
  • 50
    • 0036088133 scopus 로고    scopus 로고
    • DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions
    • Xenarios I, Salwinski L, Duan XJ, et al. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002; 30(1):303-5.
    • (2002) Nucleic Acids Res , vol.30 , Issue.1 , pp. 303-305
    • Xenarios, I.1    Salwinski, L.2    Duan, X.J.3
  • 51
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
    • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25(1):25-9.
    • (2000) Nat Genet , vol.25 , Issue.1 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 52
    • 66449084442 scopus 로고    scopus 로고
    • Infrastructure for the life sciences: design and implementation of the UniProt website
    • Jain E, Bairoch A, Duvaud S, et al. Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 2009;10:136.
    • (2009) BMC Bioinformatics , vol.10 , pp. 136
    • Jain, E.1    Bairoch, A.2    Duvaud, S.3
  • 53
    • 79952031520 scopus 로고    scopus 로고
    • Mining significant substructure pairs for interpreting polypharmacology in drug-target network
    • Takigawa I, Tsuda K, Mamitsuka H. Mining significant substructure pairs for interpreting polypharmacology in drug-target network. PLoS One 2011;6(2):e16999.
    • (2011) PLoS One , vol.6 , Issue.2 , pp. e16999
    • Takigawa, I.1    Tsuda, K.2    Mamitsuka, H.3
  • 54
    • 0035498342 scopus 로고    scopus 로고
    • The relationship between the sequence identities of alpha helical proteins in the PDB and the molecular similarities of their ligands
    • Mitchell JB. The relationship between the sequence identities of alpha helical proteins in the PDB and the molecular similarities of their ligands. JChemInfComputSci 2001;41(6):1617-22.
    • (2001) JChemInfComputSci , vol.41 , Issue.6 , pp. 1617-1622
    • Mitchell, J.B.1
  • 55
    • 0038170311 scopus 로고    scopus 로고
    • Similarity metrics for ligands reflecting the similarity of the target proteins
    • Schuffenhauer A, Floersheim P, Acklin P, et al. Similarity metrics for ligands reflecting the similarity of the target proteins. J Chem Inf Comput Sci 2003;43(2):391-405.
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.2 , pp. 391-405
    • Schuffenhauer, A.1    Floersheim, P.2    Acklin, P.3
  • 56
    • 34548319109 scopus 로고    scopus 로고
    • Chemogenomic approaches to drug discovery:similar receptors bind similar ligands
    • Klabunde T. Chemogenomic approaches to drug discovery:similar receptors bind similar ligands. Br J Pharmacol 2007; 152(1):5-7.
    • (2007) Br J Pharmacol , vol.152 , Issue.1 , pp. 5-7
    • Klabunde, T.1
  • 57
    • 34547844158 scopus 로고    scopus 로고
    • Supervised reconstruction of biological networks with local models
    • Bleakley K, Biau G, Vert JP. Supervised reconstruction of biological networks with local models. Bioinformatics 2007; 23(13):i57-65.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. i57-i65
    • Bleakley, K.1    Biau, G.2    Vert, J.P.3
  • 58
    • 49549104230 scopus 로고    scopus 로고
    • SIRENE: supervised inference of regulatory networks
    • Mordelet F, Vert JP. SIRENE: supervised inference of regulatory networks. Bioinformatics 2008;24(16):i76-82.
    • (2008) Bioinformatics , vol.24 , Issue.16 , pp. i76-i82
    • Mordelet, F.1    Vert, J.P.2
  • 60
    • 84863695210 scopus 로고    scopus 로고
    • Prediction of drug-target interactions and drug repositioning via network-based inference
    • Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoSComput Biol 2012;8(5):e1002503.
    • (2012) PLoSComput Biol , vol.8 , Issue.5 , pp. e1002503
    • Cheng, F.1    Liu, C.2    Jiang, J.3
  • 61
    • 0141843591 scopus 로고    scopus 로고
    • Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways
    • Hattori M, Okuno Y, Goto S, et al. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. JAmChemSoc 2003;125(39):11853-65.
    • (2003) JAmChemSoc , vol.125 , Issue.39 , pp. 11853-11865
    • Hattori, M.1    Okuno, Y.2    Goto, S.3
  • 62
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith TF, Waterman MS. Identification of common molecular subsequences. JMol Biol 1981;147(1):195-7.
    • (1981) JMol Biol , vol.147 , Issue.1 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 64
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2011;2(3):Article 27.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.3
    • Chang, C.C.1    Lin, C.J.2
  • 65
    • 84861508376 scopus 로고    scopus 로고
    • STITCH 3:zooming in on protein-chemical interactions
    • Kuhn M, Szklarczyk D, Franceschini A, et al. STITCH 3:zooming in on protein-chemical interactions. Nucleic Acids Res 2012;40:D876-80.
    • (2012) Nucleic Acids Res , vol.40 , pp. D876-D880
    • Kuhn, M.1    Szklarczyk, D.2    Franceschini, A.3
  • 66
    • 70449634957 scopus 로고    scopus 로고
    • Predicting new molecular targets for known drugs
    • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature 2009;462:175-81.
    • (2009) Nature , vol.462 , pp. 175-181
    • Keiser, M.J.1    Setola, V.2    Irwin, J.J.3
  • 67
    • 0031473381 scopus 로고    scopus 로고
    • Are me-too drugs justified?
    • Garattini S. Are me-too drugs justified? J Nephrol 1997; 10(6):283-94.
    • (1997) J Nephrol , vol.10 , Issue.6 , pp. 283-294
    • Garattini, S.1
  • 68
    • 47249146126 scopus 로고    scopus 로고
    • Drug target identification using side-effect similarity
    • Campillos M, Kuhn M, Gavin AC. Drug target identification using side-effect similarity. Science 2008;321:263-6.
    • (2008) Science , vol.321 , pp. 263-266
    • Campillos, M.1    Kuhn, M.2    Gavin, A.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.