메뉴 건너뛰기




Volumn 93, Issue 2-3, 2013, Pages 321-356

Efficient regularized least-squares algorithms for conditional ranking on relational data

Author keywords

Kernel methods; Learning to rank; Reciprocal relations; Regularized least squares; Symmetric relations

Indexed keywords

KERNEL METHODS; LEARNING TO RANK; LEAST SQUARE; RECIPROCAL RELATIONS; SYMMETRIC RELATIONS;

EID: 84884286350     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5354-7     Document Type: Article
Times cited : (36)

References (67)
  • 1
    • 84926155626 scopus 로고    scopus 로고
    • Cambridge University Press Cambridge 10.1017/CBO9780511810800
    • Abadir, M., & Magnus, J. (2005). Matrix algebra. Cambridge: Cambridge University Press.
    • (2005) Matrix Algebra
    • Abadir, M.1    Magnus, J.2
  • 2
    • 33749266045 scopus 로고    scopus 로고
    • Ranking on graph data
    • W. W. Cohen A. Moore (eds) ACM international conference proceeding series 148 ACM New York
    • Agarwal, S. (2006). Ranking on graph data. In W. W. Cohen & A. Moore (Eds.), ACM international conference proceeding series: Vol. 148. Proceedings of the 23rd international conference on machine learning (pp. 25-32). New York: ACM.
    • (2006) Proceedings of the 23rd International Conference on Machine Learning , pp. 25-32
    • Agarwal, S.1
  • 3
    • 79751536508 scopus 로고    scopus 로고
    • On learning and cross-validation with decomposed Nyström approximation of kernel matrix
    • 10.1007/s11063-010-9159-4
    • Airola, A., Pahikkala, T., & Salakoski, T. (2011a). On learning and cross-validation with decomposed Nyström approximation of kernel matrix. Neural Processing Letters, 33(1), 17-30.
    • (2011) Neural Processing Letters , vol.33 , Issue.1 , pp. 17-30
    • Airola, A.1    Pahikkala, T.2    Salakoski, T.3
  • 4
    • 79953865926 scopus 로고    scopus 로고
    • Training linear ranking SVMs in linearithmic time using red-black trees
    • 10.1016/j.patrec.2011.03.014
    • Airola, A., Pahikkala, T., & Salakoski, T. (2011b). Training linear ranking SVMs in linearithmic time using red-black trees. Pattern Recognition Letters, 32(9), 1328-1336.
    • (2011) Pattern Recognition Letters , vol.32 , Issue.9 , pp. 1328-1336
    • Airola, A.1    Pahikkala, T.2    Salakoski, T.3
  • 6
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • 10.1093/bioinformatics/bti1016
    • Ben-Hur, A., & Noble, W. (2005). Kernel methods for predicting protein-protein interactions. Bioinformatics, 21(1), 38-46.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 38-46
    • Ben-Hur, A.1    Noble, W.2
  • 7
    • 84869189040 scopus 로고    scopus 로고
    • Pairwise support vector machines and their application to large scale problems
    • 2973602
    • Brunner, C., Fischer, A., Luig, K., & Thies, T. (2012). Pairwise support vector machines and their application to large scale problems. Journal of Machine Learning Research, 13, 2279-2292.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 2279-2292
    • Brunner, C.1    Fischer, A.2    Luig, K.3    Thies, T.4
  • 10
    • 77953642308 scopus 로고    scopus 로고
    • Efficient algorithms for ranking with SVMs
    • 10.1007/s10791-009-9109-9
    • Chapelle, O., & Keerthi, S. S. (2010). Efficient algorithms for ranking with SVMs. Information Retrieval, 13(3), 201-215.
    • (2010) Information Retrieval , vol.13 , Issue.3 , pp. 201-215
    • Chapelle, O.1    Keerthi, S.S.2
  • 11
    • 33745839339 scopus 로고    scopus 로고
    • Cyclic evaluation of transitivity of reciprocal relations
    • 2226508 10.1007/s00355-006-0093-3
    • De Baets, B., De Meyer, H., De Schuymer, B., & Jenei, S. (2006). Cyclic evaluation of transitivity of reciprocal relations. Social Choice and Welfare, 26, 217-238.
    • (2006) Social Choice and Welfare , vol.26 , pp. 217-238
    • De Baets, B.1    De Meyer, H.2    De Schuymer, B.3    Jenei, S.4
  • 13
    • 0003531188 scopus 로고    scopus 로고
    • Mathematics and its applications 375 Kluwer Academic Dordrecht 10.1007/978-94-009-1740-8
    • Engl, H., Hanke, M., & Neubauer, A. (1996). Mathematics and its applications: Vol. 375. Regularization of inverse problems. Dordrecht: Kluwer Academic.
    • (1996) Regularization of Inverse Problems
    • Engl, H.1    Hanke, M.2    Neubauer, A.3
  • 14
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • 1759187 10.1023/A:1018946025316
    • Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector machines. Advances in Computational Mathematics, 13(1), 1-50.
    • (2000) Advances in Computational Mathematics , vol.13 , Issue.1 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 18
    • 84983219752 scopus 로고    scopus 로고
    • Relational link-based ranking
    • M. A. Nascimento M. T. Özsu D. Kossmann R. J. Miller J. A. Blakeley K. B. Schiefer (eds) Morgan Kaufmann San Mateo
    • Geerts, F., Mannila, H., & Terzi, E. (2004). Relational link-based ranking. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, & K. B. Schiefer (Eds.), Proceedings of the thirtieth international conference on very large data bases (pp. 552-563). San Mateo: Morgan Kaufmann.
    • (2004) Proceedings of the Thirtieth International Conference on Very Large Data Bases , pp. 552-563
    • Geerts, F.1    Mannila, H.2    Terzi, E.3
  • 19
    • 34249855548 scopus 로고    scopus 로고
    • Inferring biological networks with output kernel trees
    • S4 10.1186/1471-2105-8-S2-S4
    • Geurts, P., Touleimat, N., Dutreix, M., & d'Alché-Buc, F. (2007). Inferring biological networks with output kernel trees. BMC Bioinformatics, 8(2), S4.
    • (2007) BMC Bioinformatics , vol.8 , Issue.2
    • Geurts, P.1    Touleimat, N.2    Dutreix, M.3    D'Alché-Buc, F.4
  • 20
    • 46149118255 scopus 로고    scopus 로고
    • A discriminative kernel-based approach to rank images from text queries
    • 10.1109/TPAMI.2007.70791
    • Grangier, D., & Bengio, S. (2008). A discriminative kernel-based approach to rank images from text queries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1371-1384.
    • (2008) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.30 , Issue.8 , pp. 1371-1384
    • Grangier, D.1    Bengio, S.2
  • 21
    • 0001890697 scopus 로고
    • On deriving the inverse of a sum of matrices
    • 605440 10.1137/1023004
    • Henderson, H. V., & Searle, S. R. (1981). On deriving the inverse of a sum of matrices. SIAM Review, 23(1), 53-60.
    • (1981) SIAM Review , vol.23 , Issue.1 , pp. 53-60
    • Henderson, H.V.1    Searle, S.R.2
  • 22
    • 0004151494 scopus 로고
    • Cambridge University Press Cambridge 10.1017/CBO9780511810817
    • Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press.
    • (1985) Matrix Analysis
    • Horn, R.A.1    Johnson, C.R.2
  • 24
    • 52949143827 scopus 로고    scopus 로고
    • Label ranking by learning pairwise preferences
    • 2459794 10.1016/j.artint.2008.08.002
    • Hüllermeier, E., Fürnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17), 1897-1916.
    • (2008) Artificial Intelligence , vol.172 , Issue.16-17 , pp. 1897-1916
    • Hüllermeier, E.1    Fürnkranz, J.2    Cheng, W.3    Brinker, K.4
  • 28
    • 67650705012 scopus 로고    scopus 로고
    • On pairwise kernels: An efficient alternative and generalization analysis
    • T. Theeramunkong B. Kijsirikul N. Cercone T. B. Ho (eds) Lecture notes in computer science 5476 Springer Berlin 10.1007/978-3-642-01307-2-110
    • Kashima, H., Oyama, S., Yamanishi, Y., & Tsuda, K. (2009b). On pairwise kernels: an efficient alternative and generalization analysis. In T. Theeramunkong, B. Kijsirikul, N. Cercone, & T. B. Ho (Eds.), Lecture notes in computer science: Vol. 5476. Proceedings of the 13th Pacific-Asia conference on advances in knowledge discovery and data mining (pp. 1030-1037). Berlin: Springer.
    • (2009) Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining , pp. 1030-1037
    • Kashima, H.1    Oyama, S.2    Yamanishi, Y.3    Tsuda, K.4
  • 29
    • 70350662695 scopus 로고    scopus 로고
    • Learning preferences with hidden common cause relations
    • W. L. Buntine M. Grobelnik D. Mladenic J. Shawe-Taylor (eds) Lecture notes in computer science 5781 Springer Berlin 10.1007/978-3-642-04180-8-61
    • Kersting, K., & Xu, Z. (2009). Learning preferences with hidden common cause relations. In W. L. Buntine, M. Grobelnik, D. Mladenic, & J. Shawe-Taylor (Eds.), Lecture notes in computer science: Vol. 5781. Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML/PKDD'09) (pp. 676-691). Berlin: Springer.
    • (2009) Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD'09) , pp. 676-691
    • Kersting, K.1    Xu, Z.2
  • 32
    • 69249119464 scopus 로고    scopus 로고
    • Learning to rank for information retrieval
    • 10.1561/1500000016
    • Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3), 225-331.
    • (2009) Foundations and Trends in Information Retrieval , vol.3 , Issue.3 , pp. 225-331
    • Liu, T.Y.1
  • 33
    • 0001074383 scopus 로고
    • Preference, utility and subjective probability
    • Wiley New York
    • Luce, R., & Suppes, P. (1965). Preference, utility and subjective probability. In Handbook of mathematical psychology (pp. 249-410). New York: Wiley.
    • (1965) Handbook of Mathematical Psychology , pp. 249-410
    • Luce, R.1    Suppes, P.2
  • 34
    • 77956503076 scopus 로고    scopus 로고
    • Time to automate identification
    • 10.1038/467154a
    • MacLeod, N., Benfield, M., & Culverhouse, P. (2010). Time to automate identification. Nature, 467, 154-155.
    • (2010) Nature , vol.467 , pp. 154-155
    • Macleod, N.1    Benfield, M.2    Culverhouse, P.3
  • 36
    • 77958056227 scopus 로고    scopus 로고
    • Predicting labels for dyadic data
    • 2720510 10.1007/s10618-010-0189-3
    • Menon, A., & Elkan, C. (2010). Predicting labels for dyadic data. Data Mining and Knowledge Discovery, 21(2), 327-343.
    • (2010) Data Mining and Knowledge Discovery , vol.21 , Issue.2 , pp. 327-343
    • Menon, A.1    Elkan, C.2
  • 38
    • 22944457566 scopus 로고    scopus 로고
    • Using feature conjunctions across examples for learning pairwise classifiers
    • J. F. Boulicaut F. Esposito F. Giannotti D. Pedreschi (eds) Lecture notes in computer science 3201 Springer Berlin
    • Oyama, S., & Manning, C. (2004). Using feature conjunctions across examples for learning pairwise classifiers. In J. F. Boulicaut, F. Esposito, F. Giannotti, & D. Pedreschi (Eds.), Lecture notes in computer science: Vol. 3201. Proceedings of the 15th European conference on machine learning (pp. 322-333). Berlin: Springer.
    • (2004) Proceedings of the 15th European Conference on Machine Learning , pp. 322-333
    • Oyama, S.1    Manning, C.2
  • 39
    • 60949112451 scopus 로고    scopus 로고
    • An efficient algorithm for learning to rank from preference graphs
    • 10.1007/s10994-008-5097-z
    • Pahikkala, T., Tsivtsivadze, E., Airola, A., Järvinen, J., & Boberg, J. (2009). An efficient algorithm for learning to rank from preference graphs. Machine Learning, 75(1), 129-165.
    • (2009) Machine Learning , vol.75 , Issue.1 , pp. 129-165
    • Pahikkala, T.1    Tsivtsivadze, E.2    Airola, A.3    Järvinen, J.4    Boberg, J.5
  • 42
    • 84870805181 scopus 로고    scopus 로고
    • Flaws in evaluation schemes for pair-input computational predictions
    • 10.1038/nmeth.2259
    • Park, Y., & Marcotte, E. M. (2012). Flaws in evaluation schemes for pair-input computational predictions. Nature Methods, 9(12), 1134-1136.
    • (2012) Nature Methods , vol.9 , Issue.12 , pp. 1134-1136
    • Park, Y.1    Marcotte, E.M.2
  • 43
    • 57349173530 scopus 로고    scopus 로고
    • Learning to rank relational objects and its application to web search
    • J. Huai R. Chen H. W. Hon Y. Liu W. Y. Ma A. Tomkins X. Zhang (eds) ACM New York 10.1145/1367497.1367553
    • Qin, T., Liu, T. Y., Zhang, X. D., Wang, D. S., Xiong, W. Y., & Li, H. (2008). Learning to rank relational objects and its application to web search. In J. Huai, R. Chen, H. W. Hon, Y. Liu, W. Y. Ma, A. Tomkins, & X. Zhang (Eds.), Proceedings of the 17th international conference on world wide web (pp. 407-416). New York: ACM.
    • (2008) Proceedings of the 17th International Conference on World Wide Web , pp. 407-416
    • Qin, T.1    Liu, T.Y.2    Zhang, X.D.3    Wang, D.S.4    Xiong, W.Y.5    Li, H.6
  • 44
    • 77958033406 scopus 로고    scopus 로고
    • Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs
    • J. L. Balcázar F. Bonchi A. Gionis M. Sebag (eds) Lecture notes in computer science 6323 Springer Berlin
    • Raymond, R., & Kashima, H. (2010). Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In J. L. Balcázar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), Lecture notes in computer science: Vol. 6323. Proceedings of the 2010 European conference on machine learning and knowledge discovery in databases: part III (pp. 131-147). Berlin: Springer.
    • (2010) Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases: Part III , pp. 131-147
    • Raymond, R.1    Kashima, H.2
  • 45
    • 0004057553 scopus 로고
    • 2 International series in pure and applied mathematics McGraw-Hill New York
    • Rudin, W. (1991). International series in pure and applied mathematics: Functional analysis (2nd ed.). New York: McGraw-Hill
    • (1991) Functional Analysis
    • Rudin, W.1
  • 48
    • 77649112166 scopus 로고    scopus 로고
    • From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification
    • 10.1186/1471-2105-11-69
    • Slabbinck, B., Waegeman, W., Dawyndt, P., De Vos, P., & De Baets, B. (2010). From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification. BMC Bioinformatics, 11(1), 69.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 69
    • Slabbinck, B.1    Waegeman, W.2    Dawyndt, P.3    De Vos, P.4    De Baets, B.5
  • 49
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • L. K. Saul Y. Weiss L. Bottou (eds) 17 MIT Press Cambridge
    • Srebro, N., Rennie, J. D. M., & Jaakkola, T. S. (2005). Maximum-margin matrix factorization. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (Vol. 17, pp. 1433-1440). Cambridge: MIT Press.
    • (2005) Advances in Neural Information Processing Systems , pp. 1433-1440
    • Srebro, N.1    Rennie, J.D.M.2    Jaakkola, T.S.3
  • 50
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • 1883281
    • Steinwart, I. (2002). On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2, 67-93.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 55
    • 0000005482 scopus 로고
    • BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems
    • 10.1137/0913035
    • van der Vorst, H. A. (1992). BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 631-644.
    • (1992) SIAM Journal on Scientific and Statistical Computing , vol.13 , Issue.2 , pp. 631-644
    • Van Der Vorst, H.A.1
  • 56
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drug-target interaction
    • 10.1093/bioinformatics/btr500
    • van Laarhoven, T., Nabuurs, S. B., & Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27(21), 3036-3043.
    • (2011) Bioinformatics , vol.27 , Issue.21 , pp. 3036-3043
    • Van Laarhoven, T.1    Nabuurs, S.B.2    Marchiori, E.3
  • 57
  • 58
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • 2386325
    • Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. Bioinformatics, 7(1), 91.
    • (2006) Bioinformatics , vol.7 , Issue.1 , pp. 91
    • Varma, S.1    Simon, R.2
  • 59
    • 42149134851 scopus 로고    scopus 로고
    • A new pairwise kernel for biological network inference with support vector machines
    • S8 10.1186/1471-2105-8-S10-S8
    • Vert, J., Qiu, J., & Noble, W. S. (2007). A new pairwise kernel for biological network inference with support vector machines. BMC Bioinformatics, 8, S8.
    • (2007) BMC Bioinformatics , vol.8
    • Vert, J.1    Qiu, J.2    Noble, W.S.3
  • 62
    • 84858723616 scopus 로고    scopus 로고
    • Joint kernel maps
    • G. Bakir T. Hofmann B. Schölkopf A. Smola B. Taskar S. Vishwanathan (eds) Neural information processing series MIT Press Cambridge
    • Weston, J., Schölkopf, B., Bousquet, O., Mann, T., & Noble, W. (2007). Joint kernel maps. In G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, & S. Vishwanathan (Eds.), Neural information processing series: Predicting structured data (pp. 67-83). Cambridge: MIT Press.
    • (2007) Predicting Structured Data , pp. 67-83
    • Weston, J.1    Schölkopf, B.2    Bousquet, O.3    Mann, T.4    Noble, W.5
  • 63
    • 56449094442 scopus 로고    scopus 로고
    • Listwise approach to learning to rank: Theory and algorithm
    • W. W. Cohen A. McCallum S. T. Roweis (eds) ACM international conference proceeding series 307 ACM New York 10.1145/1390156.1390306
    • Xia, F., Liu, T. Y., Wang, J., Zhang, W., & Li, H. (2008). Listwise approach to learning to rank: theory and algorithm. In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.), ACM international conference proceeding series: Vol. 307. Proceedings of the 25th international conference on machine learning (pp. 1192-1199). New York: ACM.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 1192-1199
    • Xia, F.1    Liu, T.Y.2    Wang, J.3    Zhang, W.4    Li, H.5
  • 64
    • 77958058026 scopus 로고    scopus 로고
    • Fast active exploration for link-based preference learning using Gaussian processes
    • J. L. Balcázar F. Bonchi A. Gionis M. Sebag (eds) Lecture notes in computer science 6323 Springer Berlin 10.1007/978-3-642-15939-8-32
    • Xu, Z., Kersting, K., & Joachims, T. (2010). Fast active exploration for link-based preference learning using Gaussian processes. In J. L. Balcázar, F. Bonchi, A. Gionis, & M. Sebag (Eds.), Lecture notes in computer science: Vol. 6323. Proceedings of the European conference on machine learning and knowledge discovery in databases (ECML/PKDD'10), part III (pp. 499-514). Berlin: Springer.
    • (2010) Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD'10), Part III , pp. 499-514
    • Xu, Z.1    Kersting, K.2    Joachims, T.3
  • 65
    • 19544389868 scopus 로고    scopus 로고
    • Protein network inference from multiple genomic data: A supervised approach
    • 10.1093/bioinformatics/bth910
    • Yamanishi, Y., Vert, J. P., & Kanehisa, M. (2004). Protein network inference from multiple genomic data: a supervised approach. Bioinformatics, 20(1), i363-i370.
    • (2004) Bioinformatics , vol.20 , Issue.1
    • Yamanishi, Y.1    Vert, J.P.2    Kanehisa, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.