메뉴 건너뛰기




Volumn 28, Issue 18, 2012, Pages 2304-2310

Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

CELL RECEPTOR; DRUG; ENZYME; G PROTEIN COUPLED RECEPTOR; ION CHANNEL; PROTEIN;

EID: 84866459051     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts360     Document Type: Article
Times cited : (360)

References (33)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert,J.H. and Chib,S. (1993) Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc., 88, 669-679.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 3
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley,K. and Yamanishi,Y. (2009) Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 25, 2397-2403.
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 4
    • 0036606241 scopus 로고    scopus 로고
    • Predicting ADME properties in silico: methods and models
    • Butina,D. et al. (2002) Predicting ADME properties in silico: methods and models. Drug Discov. Today, 7, S83-S88.
    • (2002) Drug Discov. Today , vol.7
    • Butina, D.1
  • 5
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • Byvatov,E. et al. (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J. Chem. Inf. Comput. Sci., 43, 1882-1889.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1882-1889
    • Byvatov, E.1
  • 6
    • 33846155913 scopus 로고    scopus 로고
    • Structure-based maximal affinity model predicts small-molecule druggability
    • Cheng,A.C. et al. (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol., 25, 71-75.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 71-75
    • Cheng, A.C.1
  • 7
    • 84862192766 scopus 로고    scopus 로고
    • ChEMBL: a large-scale bioactivity database for drug discovery
    • Gaulton,A. et al. (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res., 40, D1100-D1107.
    • (2012) Nucleic Acids Res. , vol.40
    • Gaulton, A.1
  • 8
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand,A.E. and Smith,A.F.M. (1990) Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc., 85, 398-409.
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 9
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen,M. and Alpaydin,E. (2008) Multiple kernel learning algorithms. J. Mach. Learn. Res., 12, 2211-2268.
    • (2008) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 10
    • 38549182474 scopus 로고    scopus 로고
    • SuperTarget and Matador: resources for exploring drug-target relationships
    • Günther,S. et al. (2008) SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res., 36, D919-D922.
    • (2008) Nucleic Acids Res. , vol.36
    • Günther, S.1
  • 11
    • 0141843591 scopus 로고    scopus 로고
    • Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways
    • Hattori,M. et al. (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc., 125, 11853-11865.
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 11853-11865
    • Hattori, M.1
  • 12
    • 84857840354 scopus 로고    scopus 로고
    • SuperTarget goes quantitative: update on drug-target interactions
    • Hecker,N. et al. (2012) SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids Res., 40, D1113-D1117.
    • (2012) Nucleic Acids Res. , vol.40
    • Hecker, N.1
  • 13
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: an improved chemogenomics approach
    • Jacob,L. and Vert,J.-P. (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics, 24, 2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.-P.2
  • 14
    • 33644874819 scopus 로고    scopus 로고
    • From genomics to chemical genomics: new developments in KEGG
    • Kanehisa,M. et al. (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res., 34, D354-D357.
    • (2006) Nucleic Acids Res. , vol.34
    • Kanehisa, M.1
  • 15
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa,M. et al. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 40, D109-D114.
    • (2012) Nucleic Acids Res , vol.40
    • Kanehisa, M.1
  • 16
    • 33846876695 scopus 로고    scopus 로고
    • Relating protein pharmacology by ligand chemistry
    • Keiser,M.J. et al. (2007) Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 25, 197-206.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 197-206
    • Keiser, M.J.1
  • 17
    • 78651287426 scopus 로고    scopus 로고
    • DrugBank 3.0: a comprehensive resource for 'omics' research on drugs
    • Knox,C. et al. (2011) DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res., 39, D1035-D1041.
    • (2011) Nucleic Acids Res. , vol.39
    • Knox, C.1
  • 20
    • 0030599010 scopus 로고    scopus 로고
    • Afast flexible docking method using an incremental construction algorithm
    • Rarey,M. et al. (1996)Afast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 261, 470-489.
    • (1996) J. Mol. Biol. , vol.261 , pp. 470-489
    • Rarey, M.1
  • 25
    • 0345863907 scopus 로고    scopus 로고
    • BRENDA, the enzyme database: updates and major new developments
    • Schomburg,I. et al. (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res., 32, D431-D433.
    • (2004) Nucleic Acids Res. , vol.32
    • Schomburg, I.1
  • 26
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subsequences. J. Mol. Biol., 147, 195-197.
    • (1981) J. Mol. Biol. , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.S.2
  • 28
    • 80054881553 scopus 로고    scopus 로고
    • Gaussian interaction profile kernels for predicting drugtarget interaction
    • van Laarhoven,T. et al. (2011) Gaussian interaction profile kernels for predicting drugtarget interaction. Bioinformatics, 27, 3036-3043.
    • (2011) Bioinformatics , vol.27 , pp. 3036-3043
    • van Laarhoven, T.1
  • 29
    • 70350495651 scopus 로고    scopus 로고
    • Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
    • Wassermann,A.M. et al. (2009) Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J. Chem. Inf. Model., 49, 2155-2167.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2155-2167
    • Wassermann, A.M.1
  • 30
    • 38549151817 scopus 로고    scopus 로고
    • DrugBank: a knowledgebase for drugs, drug actions and drug targets
    • Wishart,D.S. et al. (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 36, D901-D906.
    • (2008) Nucleic Acids Res. , vol.36
    • Wishart, D.S.1
  • 31
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi,Y. et al. (2008) Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24, i232-i240.
    • (2008) Bioinformatics , vol.24
    • Yamanishi, Y.1
  • 32
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi,Y. et al. (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 26, i246-i254.
    • (2010) Bioinformatics , vol.26
    • Yamanishi, Y.1
  • 33
    • 27544507236 scopus 로고    scopus 로고
    • A probabilistic model for mining implicit 'chemical compoundgene' relations from literature
    • Zhu,S. et al. (2005) A probabilistic model for mining implicit 'chemical compoundgene' relations from literature. Bioinformatics, 21 (Suppl 2), ii245-ii251.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Zhu, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.