메뉴 건너뛰기




Volumn 35, Issue 6, 2011, Pages 353-362

Kernel-based data fusion improves the drug-protein interaction prediction

Author keywords

Chemical space; Drug target interaction; Genomic space; Kernel function; Pharmacological space; Support vector machine; Therapeutic space

Indexed keywords

CHEMICAL SPACE; DRUG-TARGET INTERACTION; GENOMIC SPACE; KERNEL FUNCTION; PHARMACOLOGICAL SPACE; THERAPEUTIC SPACE;

EID: 80155156908     PISSN: 14769271     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiolchem.2011.10.003     Document Type: Article
Times cited : (70)

References (24)
  • 1
    • 36349010717 scopus 로고    scopus 로고
    • Prediction of potential drug targets based on simple sequence properties
    • Li Q.L., and Lai L.H. Prediction of potential drug targets based on simple sequence properties BMC Bioinformatics 8 2007 353 364
    • (2007) BMC Bioinformatics , vol.8 , pp. 353-364
    • Li, Q.L.1    Lai, L.H.2
  • 2
    • 0038522853 scopus 로고    scopus 로고
    • Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays
    • DOI 10.1016/S1074-5521(03)00095-4
    • Haggarty S.J., Koeller K.M., Wong J.C., Butcher R.A., and Schreiber S.L. Multidimensional chemical genetic analysis of diversityoriented synthesis-derived deacetylase inhibitors using cell-based assays Chemistry and Biology 10 2003 383 396 (Pubitemid 36610312)
    • (2003) Chemistry and Biology , vol.10 , Issue.5 , pp. 383-396
    • Haggarty, S.J.1    Koeller, K.M.2    Wong, J.C.3    Butcher, R.A.4    Schreiber, S.L.5
  • 3
    • 0037061492 scopus 로고    scopus 로고
    • Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays
    • DOI 10.1038/416653a
    • Kuruvilla F.G., Shamji A.F., Sternson S.M., Hergenrother P.J., and Schreiber S.L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays Nature 416 2002 653 657 (Pubitemid 34406768)
    • (2002) Nature , vol.416 , Issue.6881 , pp. 653-657
    • Kuruvilla, F.G.1    Shamji, A.F.2    Sternson, S.M.3    Hergenrother, P.J.4    Schreiber, S.L.5
  • 4
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi Y., Araki M., Gutteridge A., Honda W., and Kanehisa M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces Bioinformatics 24 2008 i232 i240
    • (2008) Bioinformatics , vol.24
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3    Honda, W.4    Kanehisa, M.5
  • 5
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi Y., Kotera M., Kanehisa M., and Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework Bioinformatics 26 2010 i246 i254
    • (2010) Bioinformatics , vol.26
    • Yamanishi, Y.1    Kotera, M.2    Kanehisa, M.3    Goto, S.4
  • 6
    • 77955628292 scopus 로고    scopus 로고
    • Network-based relating pharmacological and genomic spaces for drug target identification
    • Zhao S.W., and Li S. Network-based relating pharmacological and genomic spaces for drug target identification PLoS ONE 5 7 2010 e11764
    • (2010) PLoS ONE , vol.5 , Issue.7 , pp. 11764
    • Zhao, S.W.1    Li, S.2
  • 9
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • (Proceedings of the Intelligent Systems for Molecular Biology Conference)
    • Ben-Hur A., and Noble W.S. Kernel methods for predicting protein-protein interactions Bioinformatics 21 Suppl. 1 2005 i38 i46 (Proceedings of the Intelligent Systems for Molecular Biology Conference)
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 11
    • 0141843591 scopus 로고    scopus 로고
    • Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways
    • DOI 10.1021/ja036030u
    • Hattori M., Okuno Y., Goto S., and Kanehisa M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways Journal of the American Chemical Society 125 2003 11853 11865 (Pubitemid 37175419)
    • (2003) Journal of the American Chemical Society , vol.125 , Issue.39 , pp. 11853-11865
    • Hattori, M.1    Okuno, Y.2    Goto, S.3    Kanehisa, M.4
  • 13
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith T.F., and Waterman M. Identification of common molecular subsequences Journal of Molecular Biology 147 1981 195 197
    • (1981) Journal of Molecular Biology , vol.147 , pp. 195-197
    • Smith, T.F.1    Waterman, M.2
  • 15
    • 33947328242 scopus 로고    scopus 로고
    • Choosing negative examples for the prediction of protein-protein interactions
    • Ben-Hur A., and Noble W.S. Choosing negative examples for the prediction of protein-protein interactions BMC Bioinformatics 7 Suppl 1 2006 S2
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1 , pp. 2
    • Ben-Hur, A.1    Noble, W.S.2
  • 22
    • 0001969211 scopus 로고    scopus 로고
    • Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching
    • Gribskov M., and Robinson N.L. Use of receiver operating characteristic (roc) analysis to evaluate sequence matching Computers and Chemistry 20 1996 25 33 (Pubitemid 126405349)
    • (1996) Computers and Chemistry , vol.20 , Issue.1 , pp. 25-33
    • Gribskov, M.1    Robinson, N.L.2
  • 23
    • 69849094133 scopus 로고    scopus 로고
    • Supervised prediction of drug-target interactions using bipartite local models
    • Bleakley K., and Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models Bioinformatics 25 2009 2397 2403
    • (2009) Bioinformatics , vol.25 , pp. 2397-2403
    • Bleakley, K.1    Yamanishi, Y.2
  • 24


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.