-
2
-
-
0035936802
-
Atherosclerosis. The road ahead
-
Glass C.K., Witztum J.L. Atherosclerosis. The road ahead. Cell 2001, 104:503-516.
-
(2001)
Cell
, vol.104
, pp. 503-516
-
-
Glass, C.K.1
Witztum, J.L.2
-
3
-
-
0017118504
-
Familial hypercholesterolemia: a genetic defect in the low-density lipoprotein receptor
-
Brown M.S., Goldstein J.L. Familial hypercholesterolemia: a genetic defect in the low-density lipoprotein receptor. N. Engl. J. Med. 1976, 294:1386-1390.
-
(1976)
N. Engl. J. Med.
, vol.294
, pp. 1386-1390
-
-
Brown, M.S.1
Goldstein, J.L.2
-
4
-
-
33745132444
-
Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?
-
Cuchel M., Rader D.J. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?. Circulation 2006, 113:2548-2555.
-
(2006)
Circulation
, vol.113
, pp. 2548-2555
-
-
Cuchel, M.1
Rader, D.J.2
-
5
-
-
0028053907
-
Apolipoprotein A-I-containing particles and reverse cholesterol transport: evidence for connection between cholesterol efflux and atherosclerosis risk
-
Fruchart J.C., De Geteire C., Delfly B., et al. Apolipoprotein A-I-containing particles and reverse cholesterol transport: evidence for connection between cholesterol efflux and atherosclerosis risk. Atherosclerosis 1994, 110(Suppl. l):S35-S39.
-
(1994)
Atherosclerosis
, vol.110
, pp. S35-S39
-
-
Fruchart, J.C.1
De Geteire, C.2
Delfly, B.3
-
6
-
-
67649262236
-
The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes
-
Tang C., Oram J.F. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim. Biophys. Acta 2009, 1791:563-572.
-
(2009)
Biochim. Biophys. Acta
, vol.1791
, pp. 563-572
-
-
Tang, C.1
Oram, J.F.2
-
7
-
-
0019135838
-
Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth
-
Brown M.S., Goldstein J.L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 1980, 21:505-517.
-
(1980)
J. Lipid Res.
, vol.21
, pp. 505-517
-
-
Brown, M.S.1
Goldstein, J.L.2
-
9
-
-
4644309196
-
The functions of animal microRNAs
-
Ambros V. The functions of animal microRNAs. Nature 2004, 431:350-355.
-
(2004)
Nature
, vol.431
, pp. 350-355
-
-
Ambros, V.1
-
10
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
11
-
-
38349169664
-
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
-
Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat. Rev. Genet. 2008, 9:102-114.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 102-114
-
-
Filipowicz, W.1
Bhattacharyya, S.N.2
Sonenberg, N.3
-
12
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A., Grun D., Poy M.N., et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37:495-500.
-
(2005)
Nat. Genet.
, vol.37
, pp. 495-500
-
-
Krek, A.1
Grun, D.2
Poy, M.N.3
-
13
-
-
34250805982
-
MicroRNA targeting specificity in mammals: determinants beyond seed pairing
-
Grimson A., Farh K.K., Johnston W.K., et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 2007, 27:91-105.
-
(2007)
Mol. Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
Farh, K.K.2
Johnston, W.K.3
-
14
-
-
34249302620
-
Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
-
Valadi H., Ekstrom K., Bossios A., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 2007, 9:654-659.
-
(2007)
Nat. Cell. Biol.
, vol.9
, pp. 654-659
-
-
Valadi, H.1
Ekstrom, K.2
Bossios, A.3
-
15
-
-
77449127999
-
Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection
-
Zernecke A., Bidzhekov K., Noels H., et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal 2009, 2:ra81.
-
(2009)
Sci. Signal
, vol.2
, pp. ra81
-
-
Zernecke, A.1
Bidzhekov, K.2
Noels, H.3
-
16
-
-
79953301730
-
MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins
-
Vickers K.C., Palmisano B.T., Shoucri B.M., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell. Biol. 2011, 13:423-433.
-
(2011)
Nat. Cell. Biol.
, vol.13
, pp. 423-433
-
-
Vickers, K.C.1
Palmisano, B.T.2
Shoucri, B.M.3
-
17
-
-
79953202200
-
Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
-
Arroyo J.D., Chevillet J.R., Kroh E.M., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:5003-5008.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 5003-5008
-
-
Arroyo, J.D.1
Chevillet, J.R.2
Kroh, E.M.3
-
18
-
-
84892647657
-
Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression
-
Pan S., Yang X., Jia Y., et al. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression. J. Cell. Physiol. 2014, 229:631-639.
-
(2014)
J. Cell. Physiol.
, vol.229
, pp. 631-639
-
-
Pan, S.1
Yang, X.2
Jia, Y.3
-
19
-
-
84890129748
-
Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity
-
Wang Y.C., Li Y., Wang X.Y., et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 2013, 56:2275-2285.
-
(2013)
Diabetologia
, vol.56
, pp. 2275-2285
-
-
Wang, Y.C.1
Li, Y.2
Wang, X.Y.3
-
21
-
-
0032813808
-
Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency
-
Brooks-Wilson A., Marcil M., Clee S.M., et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 1999, 22:336-345.
-
(1999)
Nat. Genet.
, vol.22
, pp. 336-345
-
-
Brooks-Wilson, A.1
Marcil, M.2
Clee, S.M.3
-
22
-
-
0032813809
-
The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease
-
Bodzioch M., Orso E., Klucken J., et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 1999, 22:347-351.
-
(1999)
Nat. Genet.
, vol.22
, pp. 347-351
-
-
Bodzioch, M.1
Orso, E.2
Klucken, J.3
-
23
-
-
0032725185
-
The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway
-
Lawn R.M., Wade D.P., Garvin M.R., et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. investig. 1999, 104:R25-R31.
-
(1999)
J. Clin. investig.
, vol.104
, pp. R25-R31
-
-
Lawn, R.M.1
Wade, D.P.2
Garvin, M.R.3
-
24
-
-
0032813660
-
Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1
-
Rust S., Rosier M., Funke H., et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet. 1999, 22:352-355.
-
(1999)
Nat. Genet.
, vol.22
, pp. 352-355
-
-
Rust, S.1
Rosier, M.2
Funke, H.3
-
26
-
-
63449107281
-
Physiology of bile secretion
-
Esteller A. Physiology of bile secretion. World J. gastroenterol. WJG 2008, 14:5641-5649.
-
(2008)
World J. gastroenterol. WJG
, vol.14
, pp. 5641-5649
-
-
Esteller, A.1
-
27
-
-
38649113883
-
ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity
-
Paulusma C.C., Folmer D.E., Ho-Mok K.S., et al. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 2008, 47:268-278.
-
(2008)
Hepatology
, vol.47
, pp. 268-278
-
-
Paulusma, C.C.1
Folmer, D.E.2
Ho-Mok, K.S.3
-
28
-
-
84858776574
-
MicroRNAs in metabolism and metabolic disorders
-
Rottiers V., Naar A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell. Biol. 2012, 13:239-250.
-
(2012)
Nat. Rev. Mol. Cell. Biol.
, vol.13
, pp. 239-250
-
-
Rottiers, V.1
Naar, A.M.2
-
29
-
-
77953787211
-
MiR-33 contributes to the regulation of cholesterol homeostasis
-
Rayner K.J., Suarez Y., Davalos A., et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570-1573.
-
(2010)
Science
, vol.328
, pp. 1570-1573
-
-
Rayner, K.J.1
Suarez, Y.2
Davalos, A.3
-
30
-
-
77953780835
-
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
-
Najafi-Shoushtari S.H., Kristo F., Li Y., et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566-1569.
-
(2010)
Science
, vol.328
, pp. 1566-1569
-
-
Najafi-Shoushtari, S.H.1
Kristo, F.2
Li, Y.3
-
31
-
-
79959326172
-
MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
-
Davalos A., Goedeke L., Smibert P., et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:9232-9237.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 9232-9237
-
-
Davalos, A.1
Goedeke, L.2
Smibert, P.3
-
32
-
-
78049295975
-
MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
-
Horie T., Ono K., Horiguchi M., et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:17321-17326.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 17321-17326
-
-
Horie, T.1
Ono, K.2
Horiguchi, M.3
-
34
-
-
77955456415
-
MiR-33 links SREBP-2 induction to repression of sterol transporters
-
Marquart T.J., Allen R.M., Ory D.S., et al. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:12228-12232.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 12228-12232
-
-
Marquart, T.J.1
Allen, R.M.2
Ory, D.S.3
-
35
-
-
84937554657
-
Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis
-
Karunakaran D., Thrush A.B., Nguyen M.A., et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ. Res. 2015, 117:266-278.
-
(2015)
Circ. Res.
, vol.117
, pp. 266-278
-
-
Karunakaran, D.1
Thrush, A.B.2
Nguyen, M.A.3
-
36
-
-
84865794377
-
MiR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity
-
Allen R.M., Marquart T.J., Albert C.J., et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol. Med. 2012, 4:882-895.
-
(2012)
EMBO Mol. Med.
, vol.4
, pp. 882-895
-
-
Allen, R.M.1
Marquart, T.J.2
Albert, C.J.3
-
37
-
-
84883237459
-
Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alpha-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice
-
Li T., Francl J.M., Boehme S., et al. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alpha-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 2013, 58:1111-1121.
-
(2013)
Hepatology
, vol.58
, pp. 1111-1121
-
-
Li, T.1
Francl, J.M.2
Boehme, S.3
-
38
-
-
84881029988
-
Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice-brief report
-
Rotllan N., Ramirez C.M., Aryal B., et al. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice-brief report. Arterioscler. Thromb. Vasc. Biol. 2013, 33:1973-1977.
-
(2013)
Arterioscler. Thromb. Vasc. Biol.
, vol.33
, pp. 1973-1977
-
-
Rotllan, N.1
Ramirez, C.M.2
Aryal, B.3
-
39
-
-
80054971110
-
Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
-
Rayner K.J., Esau C.C., Hussain F.N., et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011, 478:404-407.
-
(2011)
Nature
, vol.478
, pp. 404-407
-
-
Rayner, K.J.1
Esau, C.C.2
Hussain, F.N.3
-
40
-
-
79960015327
-
Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
-
Rayner K.J., Sheedy F.J., Esau C.C., et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Investig. 2011, 121:2921-2931.
-
(2011)
J. Clin. Investig.
, vol.121
, pp. 2921-2931
-
-
Rayner, K.J.1
Sheedy, F.J.2
Esau, C.C.3
-
41
-
-
84874393347
-
MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice
-
Horie T., Baba O., Kuwabara Y., et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc. 2012, 1:e003376.
-
(2012)
J. Am. Heart Assoc.
, vol.1
, pp. e003376
-
-
Horie, T.1
Baba, O.2
Kuwabara, Y.3
-
42
-
-
84890387599
-
Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR
-
Rottiers V., Obad S., Petri A., et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci. Transl. Med. 2013, 5(212):ra162.
-
(2013)
Sci. Transl. Med.
, vol.5
, Issue.212
, pp. ra162
-
-
Rottiers, V.1
Obad, S.2
Petri, A.3
-
43
-
-
84902513875
-
MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo
-
Horie T., Nishino T., Baba O., et al. MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Sci. Rep. 2014, 4:5312.
-
(2014)
Sci. Rep.
, vol.4
, pp. 5312
-
-
Horie, T.1
Nishino, T.2
Baba, O.3
-
44
-
-
79960015327
-
Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
-
Rayner K.J., Sheedy F.J., Esau C.C., et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Investig. 2011, 121:2921-2931.
-
(2011)
J. Clin. Investig.
, vol.121
, pp. 2921-2931
-
-
Rayner, K.J.1
Sheedy, F.J.2
Esau, C.C.3
-
45
-
-
84874393347
-
MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice
-
Horie T., Baba O., Kuwabara Y., et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc. 2012, 1.
-
(2012)
J. Am. Heart Assoc.
, vol.1
-
-
Horie, T.1
Baba, O.2
Kuwabara, Y.3
-
46
-
-
84874361381
-
Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice
-
Marquart T.J., Wu J., Lusis A.J., et al. Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33:455-458.
-
(2013)
Arterioscler. Thromb. Vasc. Biol.
, vol.33
, pp. 455-458
-
-
Marquart, T.J.1
Wu, J.2
Lusis, A.J.3
-
47
-
-
84948799436
-
MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis
-
Ouimet M., Ediriweera H.N., Gundra U.M., et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest. 2015, 2015.
-
(2015)
J. Clin. Invest.
, pp. 2015
-
-
Ouimet, M.1
Ediriweera, H.N.2
Gundra, U.M.3
-
48
-
-
85027953543
-
Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice
-
Goedeke L., Salerno A., Ramírez C.M., et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol. Med. 2014, 6:1133-1141.
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 1133-1141
-
-
Goedeke, L.1
Salerno, A.2
Ramírez, C.M.3
-
49
-
-
84903180808
-
Control of very low-density lipoprotein secretion by N-ethylmaleimide-sensitive factor and miR-33
-
Allen R.M., Marquart T.J., Jesse J.J., et al. Control of very low-density lipoprotein secretion by N-ethylmaleimide-sensitive factor and miR-33. Circ. Res. 2014, 115:10-22.
-
(2014)
Circ. Res.
, vol.115
, pp. 10-22
-
-
Allen, R.M.1
Marquart, T.J.2
Jesse, J.J.3
-
50
-
-
84890205234
-
MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice
-
Horie T., Nishino T., Baba O., et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat. Commun. 2013, 4:2883.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2883
-
-
Horie, T.1
Nishino, T.2
Baba, O.3
-
51
-
-
84948120224
-
Therapeutic inhibition of miR-33 promotes fatty acid oxidation but does not Ameliorate metabolic dysfunction in diet-induced obesity
-
Karunakaran D., Richards L., Geoffrion M., et al. Therapeutic inhibition of miR-33 promotes fatty acid oxidation but does not Ameliorate metabolic dysfunction in diet-induced obesity. Arterioscler. Thromb. Vasc. Biol. 2015, 12:2536-2543.
-
(2015)
Arterioscler. Thromb. Vasc. Biol.
, vol.12
, pp. 2536-2543
-
-
Karunakaran, D.1
Richards, L.2
Geoffrion, M.3
-
52
-
-
80054900644
-
MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1
-
Ramirez C.M., Davalos A., Goedeke L., et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 2011, 31:2707-2714.
-
(2011)
Arterioscler. Thromb. Vasc. Biol.
, vol.31
, pp. 2707-2714
-
-
Ramirez, C.M.1
Davalos, A.2
Goedeke, L.3
-
53
-
-
84880006810
-
MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR
-
de Aguiar Vallim T., Tarling E., Kim T., et al. MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR. Circ. Res. 2013, 112:1602-1612.
-
(2013)
Circ. Res.
, vol.112
, pp. 1602-1612
-
-
de Aguiar Vallim, T.1
Tarling, E.2
Kim, T.3
-
54
-
-
84880031381
-
Control of cholesterol metabolism and plasma HDL levels by miRNA-144
-
Ramirez C.M., Rotllan N., Vlassov A.V., et al. Control of cholesterol metabolism and plasma HDL levels by miRNA-144. Circ. Res. 2013, 112:1592-1601.
-
(2013)
Circ. Res.
, vol.112
, pp. 1592-1601
-
-
Ramirez, C.M.1
Rotllan, N.2
Vlassov, A.V.3
-
55
-
-
84876335568
-
MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells
-
Shirasaki T., Honda M., Shimakami T., et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J. Virol. 2013, 87:5270-5286.
-
(2013)
J. Virol.
, vol.87
, pp. 5270-5286
-
-
Shirasaki, T.1
Honda, M.2
Shimakami, T.3
-
56
-
-
84897944193
-
MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages
-
Zhang M., Wu J.F., Chen W.J., et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 2014, 234:54-64.
-
(2014)
Atherosclerosis
, vol.234
, pp. 54-64
-
-
Zhang, M.1
Wu, J.F.2
Chen, W.J.3
-
57
-
-
84946431159
-
MiR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice
-
Goedeke L., Rotllan N., Ramirez C.M., et al. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis 2015, 243:499-509.
-
(2015)
Atherosclerosis
, vol.243
, pp. 499-509
-
-
Goedeke, L.1
Rotllan, N.2
Ramirez, C.M.3
-
58
-
-
84861183215
-
MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7
-
Sun D., Zhang J., Xie J., et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012, 586:1472-1479.
-
(2012)
FEBS Lett.
, vol.586
, pp. 1472-1479
-
-
Sun, D.1
Zhang, J.2
Xie, J.3
-
59
-
-
84946203425
-
MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels
-
Goedeke L., Rotllan N., Canfran-Duque A., et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med. 2015, 21:1280-1289.
-
(2015)
Nat. Med.
, vol.21
, pp. 1280-1289
-
-
Goedeke, L.1
Rotllan, N.2
Canfran-Duque, A.3
-
60
-
-
84946218930
-
Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis
-
Wagschal A., Najafi-Shoushtari S.H., Wang L., et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med. 2015, 21:1290-1297.
-
(2015)
Nat. Med.
, vol.21
, pp. 1290-1297
-
-
Wagschal, A.1
Najafi-Shoushtari, S.H.2
Wang, L.3
-
61
-
-
84922009052
-
MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis
-
Meiler S., Baumer Y., Toulmin E., et al. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35:323-331.
-
(2015)
Arterioscler. Thromb. Vasc. Biol.
, vol.35
, pp. 323-331
-
-
Meiler, S.1
Baumer, Y.2
Toulmin, E.3
-
62
-
-
84878967914
-
MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition
-
Wang L., Jia X.J., Jiang H.J., et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol. Cell. Biol. 2013, 33:1956-1964.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 1956-1964
-
-
Wang, L.1
Jia, X.J.2
Jiang, H.J.3
-
63
-
-
84866973849
-
Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b
-
Wang D., Xia M., Yan X., et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 2012, 111:967-981.
-
(2012)
Circ. Res.
, vol.111
, pp. 967-981
-
-
Wang, D.1
Xia, M.2
Yan, X.3
-
64
-
-
84896894879
-
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells
-
Tabet F., Vickers K.C., Cuesta Torres L.F., et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 2014, 5:3292.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3292
-
-
Tabet, F.1
Vickers, K.C.2
Cuesta Torres, L.F.3
-
66
-
-
0030941803
-
The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
-
Brown M.S., Goldstein J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997, 89:331-340.
-
(1997)
Cell
, vol.89
, pp. 331-340
-
-
Brown, M.S.1
Goldstein, J.L.2
-
67
-
-
0036251153
-
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton J.D., Goldstein J.L., Brown M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest 2002, 109:1125-1131.
-
(2002)
J. Clin. Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
68
-
-
0032892175
-
Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis
-
Horton J.D., Shimomura I. Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr. Opin. Lipidol. 1999, 10:143-150.
-
(1999)
Curr. Opin. Lipidol.
, vol.10
, pp. 143-150
-
-
Horton, J.D.1
Shimomura, I.2
-
69
-
-
0034693259
-
Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action
-
Osborne T.F. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J. Biol. Chem. 2000, 275:32379-32382.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 32379-32382
-
-
Osborne, T.F.1
-
70
-
-
0037197803
-
Identification of tissue-specific microRNAs from mouse
-
Lagos-Quintana M., Rauhut R., Yalcin A., et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 2002, 12:735-739.
-
(2002)
Curr. Biol.
, vol.12
, pp. 735-739
-
-
Lagos-Quintana, M.1
Rauhut, R.2
Yalcin, A.3
-
71
-
-
23844523406
-
MiR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1
-
Chang J., Nicolas E., Marks D., et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004, 1:106-113.
-
(2004)
RNA Biol.
, vol.1
, pp. 106-113
-
-
Chang, J.1
Nicolas, E.2
Marks, D.3
-
72
-
-
33645075443
-
MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
-
Esau C., Davis S., Murray S.F., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3:87-98.
-
(2006)
Cell Metab.
, vol.3
, pp. 87-98
-
-
Esau, C.1
Davis, S.2
Murray, S.F.3
-
73
-
-
40249106014
-
Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver
-
Elmen J., Lindow M., Silahtaroglu A., et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008, 36:1153-1162.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 1153-1162
-
-
Elmen, J.1
Lindow, M.2
Silahtaroglu, A.3
-
74
-
-
84864773072
-
MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis
-
Tsai W.C., Hsu S.D., Hsu C.S., et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. investig. 2012, 122:2884-2897.
-
(2012)
J. Clin. investig.
, vol.122
, pp. 2884-2897
-
-
Tsai, W.C.1
Hsu, S.D.2
Hsu, C.S.3
-
75
-
-
84864761391
-
Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver
-
Hsu S.H., Wang B., Kota J., et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. investig. 2012, 122:2871-2883.
-
(2012)
J. Clin. investig.
, vol.122
, pp. 2871-2883
-
-
Hsu, S.H.1
Wang, B.2
Kota, J.3
-
76
-
-
33645075443
-
MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
-
Esau C., Davis S., Murray S.F., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3:87-98.
-
(2006)
Cell Metab.
, vol.3
, pp. 87-98
-
-
Esau, C.1
Davis, S.2
Murray, S.F.3
-
77
-
-
84864761391
-
Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver
-
Hsu S.H., Wang B., Kota J., et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest. 2012, 122:2871-2883.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2871-2883
-
-
Hsu, S.H.1
Wang, B.2
Kota, J.3
-
78
-
-
84864773072
-
MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis
-
Tsai W.C., Hsu S.D., Hsu C.S., et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 2012, 122:2884-2897.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 2884-2897
-
-
Tsai, W.C.1
Hsu, S.D.2
Hsu, C.S.3
-
79
-
-
84880288761
-
MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion
-
Soh J., Iqbal J., Queiroz J., et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat. Med. 2013, 19:892-900.
-
(2013)
Nat. Med.
, vol.19
, pp. 892-900
-
-
Soh, J.1
Iqbal, J.2
Queiroz, J.3
-
80
-
-
84940094557
-
MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis
-
Alvarez M.L., Khosroheidari M., Eddy E., et al. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis 2015, 242:595-604.
-
(2015)
Atherosclerosis
, vol.242
, pp. 595-604
-
-
Alvarez, M.L.1
Khosroheidari, M.2
Eddy, E.3
-
81
-
-
84879852051
-
An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis
-
Jeon T.I., Esquejo R.M., Roqueta-Rivera M., et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 2013, 18:51-61.
-
(2013)
Cell Metab.
, vol.18
, pp. 51-61
-
-
Jeon, T.I.1
Esquejo, R.M.2
Roqueta-Rivera, M.3
-
82
-
-
84893357948
-
Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake
-
Yang M., Liu W., Pellicane C., et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 2014, 55:226-238.
-
(2014)
J. Lipid Res.
, vol.55
, pp. 226-238
-
-
Yang, M.1
Liu, W.2
Pellicane, C.3
-
83
-
-
84945339933
-
MicroRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator
-
Jiang H., Zhang J., Du Y., et al. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 2015, 243:523-532.
-
(2015)
Atherosclerosis
, vol.243
, pp. 523-532
-
-
Jiang, H.1
Zhang, J.2
Du, Y.3
-
84
-
-
79953301730
-
MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins
-
Vickers K.C., Palmisano B.T., Shoucri B.M., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell. Biol. 2011, 13:423-433.
-
(2011)
Nat. Cell. Biol.
, vol.13
, pp. 423-433
-
-
Vickers, K.C.1
Palmisano, B.T.2
Shoucri, B.M.3
-
85
-
-
84879109514
-
Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs
-
Wagner J., Riwanto M., Besler C., et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler. Thromb. Vasc. Biol. 2013, 33:1392-1400.
-
(2013)
Arterioscler. Thromb. Vasc. Biol.
, vol.33
, pp. 1392-1400
-
-
Wagner, J.1
Riwanto, M.2
Besler, C.3
-
86
-
-
38049175023
-
Statins: a new insight into their mechanisms of action and consequent pleiotropic effects
-
Jasinska M., Owczarek J., Orszulak-Michalak D. Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol. Rep. 2007, 59:483-499.
-
(2007)
Pharmacol. Rep.
, vol.59
, pp. 483-499
-
-
Jasinska, M.1
Owczarek, J.2
Orszulak-Michalak, D.3
-
87
-
-
79955481506
-
Pharmacological strategies for lowering LDL cholesterol: statins and beyond
-
Brautbar A., Ballantyne C.M. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat. Rev. Cardiol. 2011, 8:253-265.
-
(2011)
Nat. Rev. Cardiol.
, vol.8
, pp. 253-265
-
-
Brautbar, A.1
Ballantyne, C.M.2
-
88
-
-
84880288761
-
MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion
-
Soh J., Iqbal J., Queiroz J., et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat. Med. 2013, 19:892-900.
-
(2013)
Nat. Med.
, vol.19
, pp. 892-900
-
-
Soh, J.1
Iqbal, J.2
Queiroz, J.3
-
89
-
-
36348975228
-
Effects of torcetrapib in patients at high risk for coronary events
-
Barter P.J., Caulfield M., Eriksson M., et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 2007, 357:2109-2122.
-
(2007)
N. Engl. J. Med.
, vol.357
, pp. 2109-2122
-
-
Barter, P.J.1
Caulfield, M.2
Eriksson, M.3
-
90
-
-
79955476272
-
Novel HDL-directed pharmacotherapeutic strategies
-
Degoma E.M., Rader D.J. Novel HDL-directed pharmacotherapeutic strategies. Nat. Rev. Cardiol. 2011, 8:266-277.
-
(2011)
Nat. Rev. Cardiol.
, vol.8
, pp. 266-277
-
-
Degoma, E.M.1
Rader, D.J.2
-
91
-
-
84877258007
-
Treatment of HCV infection by targeting microRNA
-
Janssen H.L., Reesink H.W., Lawitz E.J., et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013, 368:1685-1694.
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 1685-1694
-
-
Janssen, H.L.1
Reesink, H.W.2
Lawitz, E.J.3
-
92
-
-
79251581020
-
The art of microRNA research
-
van Rooij E. The art of microRNA research. Circ. Res. 2011, 108:219-234.
-
(2011)
Circ. Res.
, vol.108
, pp. 219-234
-
-
van Rooij, E.1
|