메뉴 건너뛰기




Volumn 246, Issue , 2016, Pages 352-360

microRNAs in lipoprotein metabolism and cardiometabolic disorders

Author keywords

Atherosclerosis; Lipid metabolism; MicroRNAs

Indexed keywords

ABC TRANSPORTER A1; HIGH DENSITY LIPOPROTEIN CHOLESTEROL; LOW DENSITY LIPOPROTEIN CHOLESTEROL; MICRORNA; MICRORNA 122; MICRORNA 30C; MICRORNA 33A; MICRORNA 33B; UNCLASSIFIED DRUG; ABCA1 PROTEIN, HUMAN; BIOLOGICAL MARKER; LDLR PROTEIN, HUMAN; LOW DENSITY LIPOPROTEIN RECEPTOR;

EID: 84956696730     PISSN: 00219150     EISSN: 18791484     Source Type: Journal    
DOI: 10.1016/j.atherosclerosis.2016.01.025     Document Type: Review
Times cited : (86)

References (92)
  • 2
    • 0035936802 scopus 로고    scopus 로고
    • Atherosclerosis. The road ahead
    • Glass C.K., Witztum J.L. Atherosclerosis. The road ahead. Cell 2001, 104:503-516.
    • (2001) Cell , vol.104 , pp. 503-516
    • Glass, C.K.1    Witztum, J.L.2
  • 3
    • 0017118504 scopus 로고
    • Familial hypercholesterolemia: a genetic defect in the low-density lipoprotein receptor
    • Brown M.S., Goldstein J.L. Familial hypercholesterolemia: a genetic defect in the low-density lipoprotein receptor. N. Engl. J. Med. 1976, 294:1386-1390.
    • (1976) N. Engl. J. Med. , vol.294 , pp. 1386-1390
    • Brown, M.S.1    Goldstein, J.L.2
  • 4
    • 33745132444 scopus 로고    scopus 로고
    • Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?
    • Cuchel M., Rader D.J. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis?. Circulation 2006, 113:2548-2555.
    • (2006) Circulation , vol.113 , pp. 2548-2555
    • Cuchel, M.1    Rader, D.J.2
  • 5
    • 0028053907 scopus 로고
    • Apolipoprotein A-I-containing particles and reverse cholesterol transport: evidence for connection between cholesterol efflux and atherosclerosis risk
    • Fruchart J.C., De Geteire C., Delfly B., et al. Apolipoprotein A-I-containing particles and reverse cholesterol transport: evidence for connection between cholesterol efflux and atherosclerosis risk. Atherosclerosis 1994, 110(Suppl. l):S35-S39.
    • (1994) Atherosclerosis , vol.110 , pp. S35-S39
    • Fruchart, J.C.1    De Geteire, C.2    Delfly, B.3
  • 6
    • 67649262236 scopus 로고    scopus 로고
    • The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes
    • Tang C., Oram J.F. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim. Biophys. Acta 2009, 1791:563-572.
    • (2009) Biochim. Biophys. Acta , vol.1791 , pp. 563-572
    • Tang, C.1    Oram, J.F.2
  • 7
    • 0019135838 scopus 로고
    • Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth
    • Brown M.S., Goldstein J.L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 1980, 21:505-517.
    • (1980) J. Lipid Res. , vol.21 , pp. 505-517
    • Brown, M.S.1    Goldstein, J.L.2
  • 9
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • Ambros V. The functions of animal microRNAs. Nature 2004, 431:350-355.
    • (2004) Nature , vol.431 , pp. 350-355
    • Ambros, V.1
  • 10
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 11
    • 38349169664 scopus 로고    scopus 로고
    • Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
    • Filipowicz W., Bhattacharyya S.N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat. Rev. Genet. 2008, 9:102-114.
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 102-114
    • Filipowicz, W.1    Bhattacharyya, S.N.2    Sonenberg, N.3
  • 12
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A., Grun D., Poy M.N., et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37:495-500.
    • (2005) Nat. Genet. , vol.37 , pp. 495-500
    • Krek, A.1    Grun, D.2    Poy, M.N.3
  • 13
    • 34250805982 scopus 로고    scopus 로고
    • MicroRNA targeting specificity in mammals: determinants beyond seed pairing
    • Grimson A., Farh K.K., Johnston W.K., et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 2007, 27:91-105.
    • (2007) Mol. Cell , vol.27 , pp. 91-105
    • Grimson, A.1    Farh, K.K.2    Johnston, W.K.3
  • 14
    • 34249302620 scopus 로고    scopus 로고
    • Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
    • Valadi H., Ekstrom K., Bossios A., et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 2007, 9:654-659.
    • (2007) Nat. Cell. Biol. , vol.9 , pp. 654-659
    • Valadi, H.1    Ekstrom, K.2    Bossios, A.3
  • 15
    • 77449127999 scopus 로고    scopus 로고
    • Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection
    • Zernecke A., Bidzhekov K., Noels H., et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal 2009, 2:ra81.
    • (2009) Sci. Signal , vol.2 , pp. ra81
    • Zernecke, A.1    Bidzhekov, K.2    Noels, H.3
  • 16
    • 79953301730 scopus 로고    scopus 로고
    • MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins
    • Vickers K.C., Palmisano B.T., Shoucri B.M., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell. Biol. 2011, 13:423-433.
    • (2011) Nat. Cell. Biol. , vol.13 , pp. 423-433
    • Vickers, K.C.1    Palmisano, B.T.2    Shoucri, B.M.3
  • 17
    • 79953202200 scopus 로고    scopus 로고
    • Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
    • Arroyo J.D., Chevillet J.R., Kroh E.M., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:5003-5008.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 5003-5008
    • Arroyo, J.D.1    Chevillet, J.R.2    Kroh, E.M.3
  • 18
    • 84892647657 scopus 로고    scopus 로고
    • Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression
    • Pan S., Yang X., Jia Y., et al. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression. J. Cell. Physiol. 2014, 229:631-639.
    • (2014) J. Cell. Physiol. , vol.229 , pp. 631-639
    • Pan, S.1    Yang, X.2    Jia, Y.3
  • 19
    • 84890129748 scopus 로고    scopus 로고
    • Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity
    • Wang Y.C., Li Y., Wang X.Y., et al. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 2013, 56:2275-2285.
    • (2013) Diabetologia , vol.56 , pp. 2275-2285
    • Wang, Y.C.1    Li, Y.2    Wang, X.Y.3
  • 21
    • 0032813808 scopus 로고    scopus 로고
    • Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency
    • Brooks-Wilson A., Marcil M., Clee S.M., et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 1999, 22:336-345.
    • (1999) Nat. Genet. , vol.22 , pp. 336-345
    • Brooks-Wilson, A.1    Marcil, M.2    Clee, S.M.3
  • 22
    • 0032813809 scopus 로고    scopus 로고
    • The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease
    • Bodzioch M., Orso E., Klucken J., et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 1999, 22:347-351.
    • (1999) Nat. Genet. , vol.22 , pp. 347-351
    • Bodzioch, M.1    Orso, E.2    Klucken, J.3
  • 23
    • 0032725185 scopus 로고    scopus 로고
    • The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway
    • Lawn R.M., Wade D.P., Garvin M.R., et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. investig. 1999, 104:R25-R31.
    • (1999) J. Clin. investig. , vol.104 , pp. R25-R31
    • Lawn, R.M.1    Wade, D.P.2    Garvin, M.R.3
  • 24
    • 0032813660 scopus 로고    scopus 로고
    • Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1
    • Rust S., Rosier M., Funke H., et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet. 1999, 22:352-355.
    • (1999) Nat. Genet. , vol.22 , pp. 352-355
    • Rust, S.1    Rosier, M.2    Funke, H.3
  • 26
    • 63449107281 scopus 로고    scopus 로고
    • Physiology of bile secretion
    • Esteller A. Physiology of bile secretion. World J. gastroenterol. WJG 2008, 14:5641-5649.
    • (2008) World J. gastroenterol. WJG , vol.14 , pp. 5641-5649
    • Esteller, A.1
  • 27
    • 38649113883 scopus 로고    scopus 로고
    • ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity
    • Paulusma C.C., Folmer D.E., Ho-Mok K.S., et al. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 2008, 47:268-278.
    • (2008) Hepatology , vol.47 , pp. 268-278
    • Paulusma, C.C.1    Folmer, D.E.2    Ho-Mok, K.S.3
  • 28
    • 84858776574 scopus 로고    scopus 로고
    • MicroRNAs in metabolism and metabolic disorders
    • Rottiers V., Naar A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell. Biol. 2012, 13:239-250.
    • (2012) Nat. Rev. Mol. Cell. Biol. , vol.13 , pp. 239-250
    • Rottiers, V.1    Naar, A.M.2
  • 29
    • 77953787211 scopus 로고    scopus 로고
    • MiR-33 contributes to the regulation of cholesterol homeostasis
    • Rayner K.J., Suarez Y., Davalos A., et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328:1570-1573.
    • (2010) Science , vol.328 , pp. 1570-1573
    • Rayner, K.J.1    Suarez, Y.2    Davalos, A.3
  • 30
    • 77953780835 scopus 로고    scopus 로고
    • MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
    • Najafi-Shoushtari S.H., Kristo F., Li Y., et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328:1566-1569.
    • (2010) Science , vol.328 , pp. 1566-1569
    • Najafi-Shoushtari, S.H.1    Kristo, F.2    Li, Y.3
  • 31
    • 79959326172 scopus 로고    scopus 로고
    • MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
    • Davalos A., Goedeke L., Smibert P., et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:9232-9237.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 9232-9237
    • Davalos, A.1    Goedeke, L.2    Smibert, P.3
  • 32
    • 78049295975 scopus 로고    scopus 로고
    • MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
    • Horie T., Ono K., Horiguchi M., et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:17321-17326.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 17321-17326
    • Horie, T.1    Ono, K.2    Horiguchi, M.3
  • 33
    • 84880656915 scopus 로고    scopus 로고
    • MicroRNA 33 regulates glucose metabolism
    • Ramirez C.M., Goedeke L., Rotllan N., et al. MicroRNA 33 regulates glucose metabolism. Mol. Cell. Biol. 2013, 33:2891-2902.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 2891-2902
    • Ramirez, C.M.1    Goedeke, L.2    Rotllan, N.3
  • 34
    • 77955456415 scopus 로고    scopus 로고
    • MiR-33 links SREBP-2 induction to repression of sterol transporters
    • Marquart T.J., Allen R.M., Ory D.S., et al. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:12228-12232.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 12228-12232
    • Marquart, T.J.1    Allen, R.M.2    Ory, D.S.3
  • 35
    • 84937554657 scopus 로고    scopus 로고
    • Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis
    • Karunakaran D., Thrush A.B., Nguyen M.A., et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ. Res. 2015, 117:266-278.
    • (2015) Circ. Res. , vol.117 , pp. 266-278
    • Karunakaran, D.1    Thrush, A.B.2    Nguyen, M.A.3
  • 36
    • 84865794377 scopus 로고    scopus 로고
    • MiR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity
    • Allen R.M., Marquart T.J., Albert C.J., et al. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol. Med. 2012, 4:882-895.
    • (2012) EMBO Mol. Med. , vol.4 , pp. 882-895
    • Allen, R.M.1    Marquart, T.J.2    Albert, C.J.3
  • 37
    • 84883237459 scopus 로고    scopus 로고
    • Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alpha-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice
    • Li T., Francl J.M., Boehme S., et al. Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alpha-hydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 2013, 58:1111-1121.
    • (2013) Hepatology , vol.58 , pp. 1111-1121
    • Li, T.1    Francl, J.M.2    Boehme, S.3
  • 38
    • 84881029988 scopus 로고    scopus 로고
    • Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice-brief report
    • Rotllan N., Ramirez C.M., Aryal B., et al. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice-brief report. Arterioscler. Thromb. Vasc. Biol. 2013, 33:1973-1977.
    • (2013) Arterioscler. Thromb. Vasc. Biol. , vol.33 , pp. 1973-1977
    • Rotllan, N.1    Ramirez, C.M.2    Aryal, B.3
  • 39
    • 80054971110 scopus 로고    scopus 로고
    • Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
    • Rayner K.J., Esau C.C., Hussain F.N., et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011, 478:404-407.
    • (2011) Nature , vol.478 , pp. 404-407
    • Rayner, K.J.1    Esau, C.C.2    Hussain, F.N.3
  • 40
    • 79960015327 scopus 로고    scopus 로고
    • Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
    • Rayner K.J., Sheedy F.J., Esau C.C., et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Investig. 2011, 121:2921-2931.
    • (2011) J. Clin. Investig. , vol.121 , pp. 2921-2931
    • Rayner, K.J.1    Sheedy, F.J.2    Esau, C.C.3
  • 41
    • 84874393347 scopus 로고    scopus 로고
    • MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice
    • Horie T., Baba O., Kuwabara Y., et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc. 2012, 1:e003376.
    • (2012) J. Am. Heart Assoc. , vol.1 , pp. e003376
    • Horie, T.1    Baba, O.2    Kuwabara, Y.3
  • 42
    • 84890387599 scopus 로고    scopus 로고
    • Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR
    • Rottiers V., Obad S., Petri A., et al. Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci. Transl. Med. 2013, 5(212):ra162.
    • (2013) Sci. Transl. Med. , vol.5 , Issue.212 , pp. ra162
    • Rottiers, V.1    Obad, S.2    Petri, A.3
  • 43
    • 84902513875 scopus 로고    scopus 로고
    • MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo
    • Horie T., Nishino T., Baba O., et al. MicroRNA-33b knock-in mice for an intron of sterol regulatory element-binding factor 1 (Srebf1) exhibit reduced HDL-C in vivo. Sci. Rep. 2014, 4:5312.
    • (2014) Sci. Rep. , vol.4 , pp. 5312
    • Horie, T.1    Nishino, T.2    Baba, O.3
  • 44
    • 79960015327 scopus 로고    scopus 로고
    • Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
    • Rayner K.J., Sheedy F.J., Esau C.C., et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Investig. 2011, 121:2921-2931.
    • (2011) J. Clin. Investig. , vol.121 , pp. 2921-2931
    • Rayner, K.J.1    Sheedy, F.J.2    Esau, C.C.3
  • 45
    • 84874393347 scopus 로고    scopus 로고
    • MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice
    • Horie T., Baba O., Kuwabara Y., et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J. Am. Heart Assoc. 2012, 1.
    • (2012) J. Am. Heart Assoc. , vol.1
    • Horie, T.1    Baba, O.2    Kuwabara, Y.3
  • 46
    • 84874361381 scopus 로고    scopus 로고
    • Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice
    • Marquart T.J., Wu J., Lusis A.J., et al. Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2013, 33:455-458.
    • (2013) Arterioscler. Thromb. Vasc. Biol. , vol.33 , pp. 455-458
    • Marquart, T.J.1    Wu, J.2    Lusis, A.J.3
  • 47
    • 84948799436 scopus 로고    scopus 로고
    • MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis
    • Ouimet M., Ediriweera H.N., Gundra U.M., et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest. 2015, 2015.
    • (2015) J. Clin. Invest. , pp. 2015
    • Ouimet, M.1    Ediriweera, H.N.2    Gundra, U.M.3
  • 48
    • 85027953543 scopus 로고    scopus 로고
    • Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice
    • Goedeke L., Salerno A., Ramírez C.M., et al. Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol. Med. 2014, 6:1133-1141.
    • (2014) EMBO Mol. Med. , vol.6 , pp. 1133-1141
    • Goedeke, L.1    Salerno, A.2    Ramírez, C.M.3
  • 49
    • 84903180808 scopus 로고    scopus 로고
    • Control of very low-density lipoprotein secretion by N-ethylmaleimide-sensitive factor and miR-33
    • Allen R.M., Marquart T.J., Jesse J.J., et al. Control of very low-density lipoprotein secretion by N-ethylmaleimide-sensitive factor and miR-33. Circ. Res. 2014, 115:10-22.
    • (2014) Circ. Res. , vol.115 , pp. 10-22
    • Allen, R.M.1    Marquart, T.J.2    Jesse, J.J.3
  • 50
    • 84890205234 scopus 로고    scopus 로고
    • MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice
    • Horie T., Nishino T., Baba O., et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat. Commun. 2013, 4:2883.
    • (2013) Nat. Commun. , vol.4 , pp. 2883
    • Horie, T.1    Nishino, T.2    Baba, O.3
  • 51
    • 84948120224 scopus 로고    scopus 로고
    • Therapeutic inhibition of miR-33 promotes fatty acid oxidation but does not Ameliorate metabolic dysfunction in diet-induced obesity
    • Karunakaran D., Richards L., Geoffrion M., et al. Therapeutic inhibition of miR-33 promotes fatty acid oxidation but does not Ameliorate metabolic dysfunction in diet-induced obesity. Arterioscler. Thromb. Vasc. Biol. 2015, 12:2536-2543.
    • (2015) Arterioscler. Thromb. Vasc. Biol. , vol.12 , pp. 2536-2543
    • Karunakaran, D.1    Richards, L.2    Geoffrion, M.3
  • 52
    • 80054900644 scopus 로고    scopus 로고
    • MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1
    • Ramirez C.M., Davalos A., Goedeke L., et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 2011, 31:2707-2714.
    • (2011) Arterioscler. Thromb. Vasc. Biol. , vol.31 , pp. 2707-2714
    • Ramirez, C.M.1    Davalos, A.2    Goedeke, L.3
  • 53
    • 84880006810 scopus 로고    scopus 로고
    • MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR
    • de Aguiar Vallim T., Tarling E., Kim T., et al. MicroRNA-144 regulates hepatic ABCA1 and plasma HDL following activation of the nuclear receptor FXR. Circ. Res. 2013, 112:1602-1612.
    • (2013) Circ. Res. , vol.112 , pp. 1602-1612
    • de Aguiar Vallim, T.1    Tarling, E.2    Kim, T.3
  • 54
    • 84880031381 scopus 로고    scopus 로고
    • Control of cholesterol metabolism and plasma HDL levels by miRNA-144
    • Ramirez C.M., Rotllan N., Vlassov A.V., et al. Control of cholesterol metabolism and plasma HDL levels by miRNA-144. Circ. Res. 2013, 112:1592-1601.
    • (2013) Circ. Res. , vol.112 , pp. 1592-1601
    • Ramirez, C.M.1    Rotllan, N.2    Vlassov, A.V.3
  • 55
    • 84876335568 scopus 로고    scopus 로고
    • MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells
    • Shirasaki T., Honda M., Shimakami T., et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J. Virol. 2013, 87:5270-5286.
    • (2013) J. Virol. , vol.87 , pp. 5270-5286
    • Shirasaki, T.1    Honda, M.2    Shimakami, T.3
  • 56
    • 84897944193 scopus 로고    scopus 로고
    • MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages
    • Zhang M., Wu J.F., Chen W.J., et al. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 2014, 234:54-64.
    • (2014) Atherosclerosis , vol.234 , pp. 54-64
    • Zhang, M.1    Wu, J.F.2    Chen, W.J.3
  • 57
    • 84946431159 scopus 로고    scopus 로고
    • MiR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice
    • Goedeke L., Rotllan N., Ramirez C.M., et al. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice. Atherosclerosis 2015, 243:499-509.
    • (2015) Atherosclerosis , vol.243 , pp. 499-509
    • Goedeke, L.1    Rotllan, N.2    Ramirez, C.M.3
  • 58
    • 84861183215 scopus 로고    scopus 로고
    • MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7
    • Sun D., Zhang J., Xie J., et al. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012, 586:1472-1479.
    • (2012) FEBS Lett. , vol.586 , pp. 1472-1479
    • Sun, D.1    Zhang, J.2    Xie, J.3
  • 59
    • 84946203425 scopus 로고    scopus 로고
    • MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels
    • Goedeke L., Rotllan N., Canfran-Duque A., et al. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med. 2015, 21:1280-1289.
    • (2015) Nat. Med. , vol.21 , pp. 1280-1289
    • Goedeke, L.1    Rotllan, N.2    Canfran-Duque, A.3
  • 60
    • 84946218930 scopus 로고    scopus 로고
    • Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis
    • Wagschal A., Najafi-Shoushtari S.H., Wang L., et al. Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med. 2015, 21:1290-1297.
    • (2015) Nat. Med. , vol.21 , pp. 1290-1297
    • Wagschal, A.1    Najafi-Shoushtari, S.H.2    Wang, L.3
  • 61
    • 84922009052 scopus 로고    scopus 로고
    • MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis
    • Meiler S., Baumer Y., Toulmin E., et al. MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35:323-331.
    • (2015) Arterioscler. Thromb. Vasc. Biol. , vol.35 , pp. 323-331
    • Meiler, S.1    Baumer, Y.2    Toulmin, E.3
  • 62
    • 84878967914 scopus 로고    scopus 로고
    • MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition
    • Wang L., Jia X.J., Jiang H.J., et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol. Cell. Biol. 2013, 33:1956-1964.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 1956-1964
    • Wang, L.1    Jia, X.J.2    Jiang, H.J.3
  • 63
    • 84866973849 scopus 로고    scopus 로고
    • Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b
    • Wang D., Xia M., Yan X., et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 2012, 111:967-981.
    • (2012) Circ. Res. , vol.111 , pp. 967-981
    • Wang, D.1    Xia, M.2    Yan, X.3
  • 64
    • 84896894879 scopus 로고    scopus 로고
    • HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells
    • Tabet F., Vickers K.C., Cuesta Torres L.F., et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 2014, 5:3292.
    • (2014) Nat. Commun. , vol.5 , pp. 3292
    • Tabet, F.1    Vickers, K.C.2    Cuesta Torres, L.F.3
  • 66
    • 0030941803 scopus 로고    scopus 로고
    • The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
    • Brown M.S., Goldstein J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997, 89:331-340.
    • (1997) Cell , vol.89 , pp. 331-340
    • Brown, M.S.1    Goldstein, J.L.2
  • 67
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton J.D., Goldstein J.L., Brown M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest 2002, 109:1125-1131.
    • (2002) J. Clin. Invest , vol.109 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 68
    • 0032892175 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis
    • Horton J.D., Shimomura I. Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis. Curr. Opin. Lipidol. 1999, 10:143-150.
    • (1999) Curr. Opin. Lipidol. , vol.10 , pp. 143-150
    • Horton, J.D.1    Shimomura, I.2
  • 69
    • 0034693259 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action
    • Osborne T.F. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J. Biol. Chem. 2000, 275:32379-32382.
    • (2000) J. Biol. Chem. , vol.275 , pp. 32379-32382
    • Osborne, T.F.1
  • 70
    • 0037197803 scopus 로고    scopus 로고
    • Identification of tissue-specific microRNAs from mouse
    • Lagos-Quintana M., Rauhut R., Yalcin A., et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 2002, 12:735-739.
    • (2002) Curr. Biol. , vol.12 , pp. 735-739
    • Lagos-Quintana, M.1    Rauhut, R.2    Yalcin, A.3
  • 71
    • 23844523406 scopus 로고    scopus 로고
    • MiR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1
    • Chang J., Nicolas E., Marks D., et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004, 1:106-113.
    • (2004) RNA Biol. , vol.1 , pp. 106-113
    • Chang, J.1    Nicolas, E.2    Marks, D.3
  • 72
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C., Davis S., Murray S.F., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3:87-98.
    • (2006) Cell Metab. , vol.3 , pp. 87-98
    • Esau, C.1    Davis, S.2    Murray, S.F.3
  • 73
    • 40249106014 scopus 로고    scopus 로고
    • Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver
    • Elmen J., Lindow M., Silahtaroglu A., et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008, 36:1153-1162.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 1153-1162
    • Elmen, J.1    Lindow, M.2    Silahtaroglu, A.3
  • 74
    • 84864773072 scopus 로고    scopus 로고
    • MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis
    • Tsai W.C., Hsu S.D., Hsu C.S., et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. investig. 2012, 122:2884-2897.
    • (2012) J. Clin. investig. , vol.122 , pp. 2884-2897
    • Tsai, W.C.1    Hsu, S.D.2    Hsu, C.S.3
  • 75
    • 84864761391 scopus 로고    scopus 로고
    • Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver
    • Hsu S.H., Wang B., Kota J., et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. investig. 2012, 122:2871-2883.
    • (2012) J. Clin. investig. , vol.122 , pp. 2871-2883
    • Hsu, S.H.1    Wang, B.2    Kota, J.3
  • 76
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C., Davis S., Murray S.F., et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3:87-98.
    • (2006) Cell Metab. , vol.3 , pp. 87-98
    • Esau, C.1    Davis, S.2    Murray, S.F.3
  • 77
    • 84864761391 scopus 로고    scopus 로고
    • Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver
    • Hsu S.H., Wang B., Kota J., et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest. 2012, 122:2871-2883.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2871-2883
    • Hsu, S.H.1    Wang, B.2    Kota, J.3
  • 78
    • 84864773072 scopus 로고    scopus 로고
    • MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis
    • Tsai W.C., Hsu S.D., Hsu C.S., et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 2012, 122:2884-2897.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2884-2897
    • Tsai, W.C.1    Hsu, S.D.2    Hsu, C.S.3
  • 79
    • 84880288761 scopus 로고    scopus 로고
    • MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion
    • Soh J., Iqbal J., Queiroz J., et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat. Med. 2013, 19:892-900.
    • (2013) Nat. Med. , vol.19 , pp. 892-900
    • Soh, J.1    Iqbal, J.2    Queiroz, J.3
  • 80
    • 84940094557 scopus 로고    scopus 로고
    • MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis
    • Alvarez M.L., Khosroheidari M., Eddy E., et al. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis 2015, 242:595-604.
    • (2015) Atherosclerosis , vol.242 , pp. 595-604
    • Alvarez, M.L.1    Khosroheidari, M.2    Eddy, E.3
  • 81
    • 84879852051 scopus 로고    scopus 로고
    • An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis
    • Jeon T.I., Esquejo R.M., Roqueta-Rivera M., et al. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 2013, 18:51-61.
    • (2013) Cell Metab. , vol.18 , pp. 51-61
    • Jeon, T.I.1    Esquejo, R.M.2    Roqueta-Rivera, M.3
  • 82
    • 84893357948 scopus 로고    scopus 로고
    • Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake
    • Yang M., Liu W., Pellicane C., et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 2014, 55:226-238.
    • (2014) J. Lipid Res. , vol.55 , pp. 226-238
    • Yang, M.1    Liu, W.2    Pellicane, C.3
  • 83
    • 84945339933 scopus 로고    scopus 로고
    • MicroRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator
    • Jiang H., Zhang J., Du Y., et al. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 2015, 243:523-532.
    • (2015) Atherosclerosis , vol.243 , pp. 523-532
    • Jiang, H.1    Zhang, J.2    Du, Y.3
  • 84
    • 79953301730 scopus 로고    scopus 로고
    • MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins
    • Vickers K.C., Palmisano B.T., Shoucri B.M., et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell. Biol. 2011, 13:423-433.
    • (2011) Nat. Cell. Biol. , vol.13 , pp. 423-433
    • Vickers, K.C.1    Palmisano, B.T.2    Shoucri, B.M.3
  • 85
    • 84879109514 scopus 로고    scopus 로고
    • Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs
    • Wagner J., Riwanto M., Besler C., et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler. Thromb. Vasc. Biol. 2013, 33:1392-1400.
    • (2013) Arterioscler. Thromb. Vasc. Biol. , vol.33 , pp. 1392-1400
    • Wagner, J.1    Riwanto, M.2    Besler, C.3
  • 86
    • 38049175023 scopus 로고    scopus 로고
    • Statins: a new insight into their mechanisms of action and consequent pleiotropic effects
    • Jasinska M., Owczarek J., Orszulak-Michalak D. Statins: a new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol. Rep. 2007, 59:483-499.
    • (2007) Pharmacol. Rep. , vol.59 , pp. 483-499
    • Jasinska, M.1    Owczarek, J.2    Orszulak-Michalak, D.3
  • 87
    • 79955481506 scopus 로고    scopus 로고
    • Pharmacological strategies for lowering LDL cholesterol: statins and beyond
    • Brautbar A., Ballantyne C.M. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat. Rev. Cardiol. 2011, 8:253-265.
    • (2011) Nat. Rev. Cardiol. , vol.8 , pp. 253-265
    • Brautbar, A.1    Ballantyne, C.M.2
  • 88
    • 84880288761 scopus 로고    scopus 로고
    • MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion
    • Soh J., Iqbal J., Queiroz J., et al. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat. Med. 2013, 19:892-900.
    • (2013) Nat. Med. , vol.19 , pp. 892-900
    • Soh, J.1    Iqbal, J.2    Queiroz, J.3
  • 89
    • 36348975228 scopus 로고    scopus 로고
    • Effects of torcetrapib in patients at high risk for coronary events
    • Barter P.J., Caulfield M., Eriksson M., et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 2007, 357:2109-2122.
    • (2007) N. Engl. J. Med. , vol.357 , pp. 2109-2122
    • Barter, P.J.1    Caulfield, M.2    Eriksson, M.3
  • 90
    • 79955476272 scopus 로고    scopus 로고
    • Novel HDL-directed pharmacotherapeutic strategies
    • Degoma E.M., Rader D.J. Novel HDL-directed pharmacotherapeutic strategies. Nat. Rev. Cardiol. 2011, 8:266-277.
    • (2011) Nat. Rev. Cardiol. , vol.8 , pp. 266-277
    • Degoma, E.M.1    Rader, D.J.2
  • 91
    • 84877258007 scopus 로고    scopus 로고
    • Treatment of HCV infection by targeting microRNA
    • Janssen H.L., Reesink H.W., Lawitz E.J., et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013, 368:1685-1694.
    • (2013) N. Engl. J. Med. , vol.368 , pp. 1685-1694
    • Janssen, H.L.1    Reesink, H.W.2    Lawitz, E.J.3
  • 92
    • 79251581020 scopus 로고    scopus 로고
    • The art of microRNA research
    • van Rooij E. The art of microRNA research. Circ. Res. 2011, 108:219-234.
    • (2011) Circ. Res. , vol.108 , pp. 219-234
    • van Rooij, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.