메뉴 건너뛰기




Volumn 22, Issue 2, 2016, Pages 99-114

The Living scar - cardiac fibroblasts and the injured heart

Author keywords

Cardiac; Fibrosis; Non myocyte

Indexed keywords

CAVEOLIN; MICRORNA; TRANSCRIPTION FACTOR RUNX2; CCL2 PROTEIN, HUMAN; CXCL10 PROTEIN, HUMAN; GAMMA INTERFERON INDUCIBLE PROTEIN 10; MONOCYTE CHEMOTACTIC PROTEIN 1; TRANSFORMING GROWTH FACTOR BETA;

EID: 84955558498     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2015.12.006     Document Type: Review
Times cited : (134)

References (171)
  • 1
    • 0019493690 scopus 로고
    • DNA content and cell number in heart and liver of children. Comparable biochemical, cytophotometric and histological investigations
    • Adler C.P., et al. DNA content and cell number in heart and liver of children. Comparable biochemical, cytophotometric and histological investigations. Pathol. Res. Pract. 1981, 172:25-41.
    • (1981) Pathol. Res. Pract. , vol.172 , pp. 25-41
    • Adler, C.P.1
  • 2
    • 11144346203 scopus 로고    scopus 로고
    • Structural and functional characterisation of cardiac fibroblasts
    • Camelliti P., et al. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 2005, 65:40-51.
    • (2005) Cardiovasc. Res. , vol.65 , pp. 40-51
    • Camelliti, P.1
  • 3
    • 84875069394 scopus 로고    scopus 로고
    • Fibroblasts in post-infarction inflammation and cardiac repair
    • Chen W., Frangogiannis N.G. Fibroblasts in post-infarction inflammation and cardiac repair. Biochim. Biophys. Acta 2013, 1833:945-953.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 945-953
    • Chen, W.1    Frangogiannis, N.G.2
  • 4
    • 14944362972 scopus 로고    scopus 로고
    • Healing after myocardial infarction
    • Ertl G., Frantz S. Healing after myocardial infarction. Cardiovasc. Res. 2005, 66:22-32.
    • (2005) Cardiovasc. Res. , vol.66 , pp. 22-32
    • Ertl, G.1    Frantz, S.2
  • 5
    • 1942494484 scopus 로고    scopus 로고
    • Organization of fibroblasts in the heart
    • Goldsmith E.C., et al. Organization of fibroblasts in the heart. Dev. Dyn. 2004, 230:787-794.
    • (2004) Dev. Dyn. , vol.230 , pp. 787-794
    • Goldsmith, E.C.1
  • 6
    • 73349122017 scopus 로고    scopus 로고
    • Cardiac fibroblast: the renaissance cell
    • Souders C.A., et al. Cardiac fibroblast: the renaissance cell. Circ. Res. 2009, 105:1164-1176.
    • (2009) Circ. Res. , vol.105 , pp. 1164-1176
    • Souders, C.A.1
  • 7
    • 84907477186 scopus 로고    scopus 로고
    • Targeting cardiac fibroblasts: the pressure is on
    • Moore-Morris T., et al. Targeting cardiac fibroblasts: the pressure is on. Cell Cycle 2014, 13:2647-2648.
    • (2014) Cell Cycle , vol.13 , pp. 2647-2648
    • Moore-Morris, T.1
  • 8
    • 79551502051 scopus 로고    scopus 로고
    • The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic peptide
    • Sangaralingham S.J., et al. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic peptide. Hypertension 2011, 57:201-207.
    • (2011) Hypertension , vol.57 , pp. 201-207
    • Sangaralingham, S.J.1
  • 9
    • 80855144817 scopus 로고    scopus 로고
    • Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age
    • Platonov P.G., et al. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J. Am. College Cardiol. 2011, 58:2225-2232.
    • (2011) J. Am. College Cardiol. , vol.58 , pp. 2225-2232
    • Platonov, P.G.1
  • 10
    • 36048984714 scopus 로고    scopus 로고
    • Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus
    • Zeppenfeld K., et al. Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation 2007, 116:2241-2252.
    • (2007) Circulation , vol.116 , pp. 2241-2252
    • Zeppenfeld, K.1
  • 11
    • 0028851160 scopus 로고
    • Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar
    • Desmouliere A., et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 1995, 146:56-66.
    • (1995) Am. J. Pathol. , vol.146 , pp. 56-66
    • Desmouliere, A.1
  • 12
    • 84871869933 scopus 로고    scopus 로고
    • Common threads in cardiac fibrosis, infarct scar formation, and wound healing
    • Czubryt M.P. Common threads in cardiac fibrosis, infarct scar formation, and wound healing. Fibrogenesis Tissue Repair 2012, 5:19.
    • (2012) Fibrogenesis Tissue Repair , vol.5 , pp. 19
    • Czubryt, M.P.1
  • 13
    • 1942438638 scopus 로고    scopus 로고
    • Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction
    • Camelliti P., et al. Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovasc. Res. 2004, 62:415-425.
    • (2004) Cardiovasc. Res. , vol.62 , pp. 415-425
    • Camelliti, P.1
  • 14
    • 0345275943 scopus 로고    scopus 로고
    • Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair
    • Virag J.I., Murry C.E. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am. J. Pathol. 2003, 163:2433-2440.
    • (2003) Am. J. Pathol. , vol.163 , pp. 2433-2440
    • Virag, J.I.1    Murry, C.E.2
  • 15
    • 31344477231 scopus 로고    scopus 로고
    • Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window
    • Vanhoutte D., et al. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc. Res. 2006, 69:604-613.
    • (2006) Cardiovasc. Res. , vol.69 , pp. 604-613
    • Vanhoutte, D.1
  • 16
    • 0036732775 scopus 로고    scopus 로고
    • Infarct scar as living tissue
    • Sun Y., et al. Infarct scar as living tissue. Basic Res. Cardiol. 2002, 97:343-347.
    • (2002) Basic Res. Cardiol. , vol.97 , pp. 343-347
    • Sun, Y.1
  • 17
    • 0034074371 scopus 로고    scopus 로고
    • Infarct scar: a dynamic tissue
    • Sun Y., Weber K.T. Infarct scar: a dynamic tissue. Cardiovasc. Res. 2000, 46:250-256.
    • (2000) Cardiovasc. Res. , vol.46 , pp. 250-256
    • Sun, Y.1    Weber, K.T.2
  • 18
    • 84888197131 scopus 로고    scopus 로고
    • Intramyocardial adiposity after myocardial infarction: new implications of a substrate for ventricular tachycardia
    • Pouliopoulos J., et al. Intramyocardial adiposity after myocardial infarction: new implications of a substrate for ventricular tachycardia. Circulation 2013, 128:2296-2308.
    • (2013) Circulation , vol.128 , pp. 2296-2308
    • Pouliopoulos, J.1
  • 19
    • 65549100567 scopus 로고    scopus 로고
    • Adipose tissue detected by multislice computed tomography in patients after myocardial infarction
    • Ichikawa Y., et al. Adipose tissue detected by multislice computed tomography in patients after myocardial infarction. JACC: Cardiovasc. Imaging 2009, 2:548-555.
    • (2009) JACC: Cardiovasc. Imaging , vol.2 , pp. 548-555
    • Ichikawa, Y.1
  • 20
    • 73549098869 scopus 로고    scopus 로고
    • Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat
    • Fomovsky G.M., Holmes J.W. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol. Heart Circ. Physiol. 2010, 298:H221-H228.
    • (2010) Am. J. Physiol. Heart Circ. Physiol. , vol.298 , pp. H221-H228
    • Fomovsky, G.M.1    Holmes, J.W.2
  • 22
    • 0028173386 scopus 로고
    • The alpha-smooth muscle actin-positive cells in healing human myocardial scars
    • Willems I.E., et al. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 1994, 145:868-875.
    • (1994) Am. J. Pathol. , vol.145 , pp. 868-875
    • Willems, I.E.1
  • 23
    • 0015321264 scopus 로고
    • Granulation tissue as a contractile organ. A study of structure and function
    • Gabbiani G., et al. Granulation tissue as a contractile organ. A study of structure and function. J. Exp. Med. 1972, 135:719-734.
    • (1972) J. Exp. Med. , vol.135 , pp. 719-734
    • Gabbiani, G.1
  • 24
    • 84886731169 scopus 로고    scopus 로고
    • Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease
    • Braitsch C.M., et al. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J. Mol. Cell. Cardiol. 2013, 65:108-119.
    • (2013) J. Mol. Cell. Cardiol. , vol.65 , pp. 108-119
    • Braitsch, C.M.1
  • 25
    • 84874958737 scopus 로고    scopus 로고
    • Function and fate of myofibroblasts after myocardial infarction
    • Turner N., Porter K. Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair 2013, 6:5.
    • (2013) Fibrogenesis Tissue Repair , vol.6 , pp. 5
    • Turner, N.1    Porter, K.2
  • 26
    • 84899113897 scopus 로고    scopus 로고
    • Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue?
    • Kohl P., Gourdie R.G. Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue?. J. Mol. Cell. Cardiol. 2014, 70:37-46.
    • (2014) J. Mol. Cell. Cardiol. , vol.70 , pp. 37-46
    • Kohl, P.1    Gourdie, R.G.2
  • 27
    • 0024325322 scopus 로고
    • Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction
    • Janse M.J., Wit A.L. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 1989, 69:1049-1169.
    • (1989) Physiol. Rev. , vol.69 , pp. 1049-1169
    • Janse, M.J.1    Wit, A.L.2
  • 28
    • 84898770430 scopus 로고    scopus 로고
    • Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils
    • Nguyen T.P., et al. Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J. Mol. Cell. Cardiol. 2014, 70:83-91.
    • (2014) J. Mol. Cell. Cardiol. , vol.70 , pp. 83-91
    • Nguyen, T.P.1
  • 29
    • 0027163367 scopus 로고
    • Slow conduction in the infarcted human heart. 'Zigzag' course of activation
    • de Bakker J.M., et al. Slow conduction in the infarcted human heart. 'Zigzag' course of activation. Circulation 1993, 88:915-926.
    • (1993) Circulation , vol.88 , pp. 915-926
    • de Bakker, J.M.1
  • 30
    • 0037167690 scopus 로고    scopus 로고
    • Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus: feasibility for guiding ventricular tachycardia ablation
    • Soejima K., et al. Electrically unexcitable scar mapping based on pacing threshold for identification of the reentry circuit isthmus: feasibility for guiding ventricular tachycardia ablation. Circulation 2002, 106:1678-1683.
    • (2002) Circulation , vol.106 , pp. 1678-1683
    • Soejima, K.1
  • 32
    • 38049161741 scopus 로고    scopus 로고
    • Radiofrequency ablation of atrial fibrillation: is the persistence of all intraprocedural targets necessary for long-term maintenance of sinus rhythm?
    • Pratola C., et al. Radiofrequency ablation of atrial fibrillation: is the persistence of all intraprocedural targets necessary for long-term maintenance of sinus rhythm?. Circulation 2008, 117:136-143.
    • (2008) Circulation , vol.117 , pp. 136-143
    • Pratola, C.1
  • 33
    • 21744455720 scopus 로고    scopus 로고
    • Congenital and surgically acquired Wolff-Parkinson-White syndrome in patients with tricuspid atresia
    • Hager A., et al. Congenital and surgically acquired Wolff-Parkinson-White syndrome in patients with tricuspid atresia. J. Thoracic Cardiovasc. Surg. 2005, 130:48-53.
    • (2005) J. Thoracic Cardiovasc. Surg. , vol.130 , pp. 48-53
    • Hager, A.1
  • 34
    • 0031845793 scopus 로고    scopus 로고
    • Recipient-to-donor atrioatrial conduction after orthotopic heart transplantation: surface electrocardiographic features and estimated prevalence
    • Lefroy D.C., et al. Recipient-to-donor atrioatrial conduction after orthotopic heart transplantation: surface electrocardiographic features and estimated prevalence. Am. J. Cardiol. 1998, 82:444-450.
    • (1998) Am. J. Cardiol. , vol.82 , pp. 444-450
    • Lefroy, D.C.1
  • 35
    • 0032893947 scopus 로고    scopus 로고
    • Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models
    • Kohl P., et al. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Progress Biophys. Mol. Biol. 1999, 71:91-138.
    • (1999) Progress Biophys. Mol. Biol. , vol.71 , pp. 91-138
    • Kohl, P.1
  • 36
    • 0026747148 scopus 로고
    • Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node
    • De Maziere A.M., et al. Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node. J. Mol. Cell. Cardiol. 1992, 24:567-578.
    • (1992) J. Mol. Cell. Cardiol. , vol.24 , pp. 567-578
    • De Maziere, A.M.1
  • 37
    • 4043182738 scopus 로고    scopus 로고
    • Fibroblasts form a body-wide cellular network
    • Langevin H.M., et al. Fibroblasts form a body-wide cellular network. Histochem. Cell Biol. 2004, 122:7-15.
    • (2004) Histochem. Cell Biol. , vol.122 , pp. 7-15
    • Langevin, H.M.1
  • 38
    • 0028086214 scopus 로고
    • Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis
    • Fries K.M., et al. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin. Immunol. Immunopathol. 1994, 72:283-292.
    • (1994) Clin. Immunol. Immunopathol. , vol.72 , pp. 283-292
    • Fries, K.M.1
  • 39
    • 0030745919 scopus 로고    scopus 로고
    • Is fibroblast heterogeneity relevant to the health, diseases, and treatments of periodontal tissues?
    • Lekic P.C., et al. Is fibroblast heterogeneity relevant to the health, diseases, and treatments of periodontal tissues?. Crit. Rev. Oral Biol. Med. 1997, 8:253-268.
    • (1997) Crit. Rev. Oral Biol. Med. , vol.8 , pp. 253-268
    • Lekic, P.C.1
  • 40
    • 41649102599 scopus 로고    scopus 로고
    • Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences
    • Burstein B., et al. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 2008, 117:1630-1641.
    • (2008) Circulation , vol.117 , pp. 1630-1641
    • Burstein, B.1
  • 41
    • 78650358123 scopus 로고    scopus 로고
    • Origins of cardiac fibroblasts
    • Zeisberg E.M., Kalluri R. Origins of cardiac fibroblasts. Circ. Res. 2010, 107:1304-1312.
    • (2010) Circ. Res. , vol.107 , pp. 1304-1312
    • Zeisberg, E.M.1    Kalluri, R.2
  • 42
    • 84937935171 scopus 로고    scopus 로고
    • Cardiac fibroblasts: from development to heart failure
    • Moore-Morris T., et al. Cardiac fibroblasts: from development to heart failure. J. Mol. Med. 2015, 93:823-830.
    • (2015) J. Mol. Med. , vol.93 , pp. 823-830
    • Moore-Morris, T.1
  • 43
    • 0036277026 scopus 로고    scopus 로고
    • Myofibroblasts and mechano-regulation of connective tissue remodelling
    • Tomasek J.J., et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002, 3:349-363.
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 349-363
    • Tomasek, J.J.1
  • 44
    • 84855998104 scopus 로고    scopus 로고
    • Myofibroblasts in the infarct area: concepts and challenges
    • Daskalopoulos E.P., et al. Myofibroblasts in the infarct area: concepts and challenges. Microsc. Microanalysis 2012, 18:35-49.
    • (2012) Microsc. Microanalysis , vol.18 , pp. 35-49
    • Daskalopoulos, E.P.1
  • 45
    • 84871796377 scopus 로고    scopus 로고
    • Myofibroblast-mediated mechanisms of pathological remodelling of the heart
    • Weber K.T., et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 2013, 10:15-26.
    • (2013) Nat. Rev. Cardiol. , vol.10 , pp. 15-26
    • Weber, K.T.1
  • 46
    • 33847084614 scopus 로고    scopus 로고
    • Formation and function of the myofibroblast during tissue repair
    • Hinz B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 2007, 127:526-537.
    • (2007) J. Invest. Dermatol. , vol.127 , pp. 526-537
    • Hinz, B.1
  • 47
    • 0142027011 scopus 로고    scopus 로고
    • Mechanisms of force generation and transmission by myofibroblasts
    • Hinz B., Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts. Curr. Opin. Biotechnol. 2003, 14:538-546.
    • (2003) Curr. Opin. Biotechnol. , vol.14 , pp. 538-546
    • Hinz, B.1    Gabbiani, G.2
  • 48
    • 0027212686 scopus 로고
    • Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts
    • Desmoulière A., et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993, 122:103-111.
    • (1993) J. Cell Biol. , vol.122 , pp. 103-111
    • Desmoulière, A.1
  • 49
    • 84903762014 scopus 로고    scopus 로고
    • Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis
    • Moore-Morris T., et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Invest. 2014, 124:2921-2934.
    • (2014) J. Clin. Invest. , vol.124 , pp. 2921-2934
    • Moore-Morris, T.1
  • 50
    • 79955014340 scopus 로고    scopus 로고
    • The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts
    • Vasquez C., et al. The cardiac fibroblast: functional and electrophysiological considerations in healthy and diseased hearts. J. Cardiovasc. Pharmacol. 2011, 57:380-388.
    • (2011) J. Cardiovasc. Pharmacol. , vol.57 , pp. 380-388
    • Vasquez, C.1
  • 51
    • 84859073207 scopus 로고    scopus 로고
    • Recent developments in myofibroblast biology: paradigms for connective tissue remodeling
    • Hinz B., et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 2012, 180:1340-1355.
    • (2012) Am. J. Pathol. , vol.180 , pp. 1340-1355
    • Hinz, B.1
  • 52
    • 84927534750 scopus 로고    scopus 로고
    • TGF-β1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration
    • Negmadjanov U., et al. TGF-β1-mediated differentiation of fibroblasts is associated with increased mitochondrial content and cellular respiration. PLoS ONE 2015, 10:e0123046.
    • (2015) PLoS ONE , vol.10 , pp. e0123046
    • Negmadjanov, U.1
  • 53
    • 24944465021 scopus 로고    scopus 로고
    • Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair
    • Yano T., et al. Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc. Pathol. 2005, 14:241-246.
    • (2005) Cardiovasc. Pathol. , vol.14 , pp. 241-246
    • Yano, T.1
  • 54
    • 84864722077 scopus 로고    scopus 로고
    • + perivascular cells identify a major source of profibrotic cells during acute tissue injury
    • + perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat. Med. 2012, 18:1262-1270.
    • (2012) Nat. Med. , vol.18 , pp. 1262-1270
    • Dulauroy, S.1
  • 55
    • 33845666582 scopus 로고    scopus 로고
    • Recruitment of new cells into the postnatal heart: potential modification of phenotype by periostin
    • Visconti R.P., Markwald R.R. Recruitment of new cells into the postnatal heart: potential modification of phenotype by periostin. Ann. N. Y. Acad. Sci. 2006, 1080:19-33.
    • (2006) Ann. N. Y. Acad. Sci. , vol.1080 , pp. 19-33
    • Visconti, R.P.1    Markwald, R.R.2
  • 56
    • 84901733241 scopus 로고    scopus 로고
    • Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction
    • Zhu F., et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS ONE 2013, 8:e74535.
    • (2013) PLoS ONE , vol.8 , pp. e74535
    • Zhu, F.1
  • 57
    • 84929190546 scopus 로고    scopus 로고
    • Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar
    • Ruiz-Villalba A., et al. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar. J. Am. College Cardiol. 2015, 65:2057-2066.
    • (2015) J. Am. College Cardiol. , vol.65 , pp. 2057-2066
    • Ruiz-Villalba, A.1
  • 58
    • 77957729712 scopus 로고    scopus 로고
    • The origin of fibroblasts and mechanism of cardiac fibrosis
    • Krenning G., et al. The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 2010, 225:631-637.
    • (2010) J. Cell. Physiol. , vol.225 , pp. 631-637
    • Krenning, G.1
  • 59
    • 79955498411 scopus 로고    scopus 로고
    • Adult mouse epicardium modulates myocardial injury by secreting paracrine factors
    • Zhou B., et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Invest. 2011, 121:1894-1904.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1894-1904
    • Zhou, B.1
  • 60
    • 84863096257 scopus 로고    scopus 로고
    • The arterial and cardiac epicardium in development, disease and repair
    • Gittenberger-de Groot A.C., et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation 2012, 84:41-53.
    • (2012) Differentiation , vol.84 , pp. 41-53
    • Gittenberger-de Groot, A.C.1
  • 61
    • 0029964385 scopus 로고    scopus 로고
    • Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
    • Mikawa T., Gourdie R.G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 1996, 174:221-232.
    • (1996) Dev. Biol. , vol.174 , pp. 221-232
    • Mikawa, T.1    Gourdie, R.G.2
  • 62
    • 79251625088 scopus 로고    scopus 로고
    • A dynamic notch injury response activates epicardium and contributes to fibrosis repair
    • Russell J.L., et al. A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ. Res. 2011, 108:51-59.
    • (2011) Circ. Res. , vol.108 , pp. 51-59
    • Russell, J.L.1
  • 63
    • 84857192566 scopus 로고    scopus 로고
    • Wnt1/β-catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair
    • Duan J., et al. Wnt1/β-catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J. 2012, 31:429-442.
    • (2012) EMBO J. , vol.31 , pp. 429-442
    • Duan, J.1
  • 64
    • 34547676391 scopus 로고    scopus 로고
    • Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
    • Zeisberg E.M., et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 2007, 13:952-961.
    • (2007) Nat. Med. , vol.13 , pp. 952-961
    • Zeisberg, E.M.1
  • 65
    • 84910111838 scopus 로고    scopus 로고
    • Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation
    • Ali S.R., et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ. Res. 2014, 115:625-635.
    • (2014) Circ. Res. , vol.115 , pp. 625-635
    • Ali, S.R.1
  • 66
    • 84921644961 scopus 로고    scopus 로고
    • Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity
    • Chen W.C., et al. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 2015, 33:557-573.
    • (2015) Stem Cells , vol.33 , pp. 557-573
    • Chen, W.C.1
  • 67
    • 84930790056 scopus 로고    scopus 로고
    • PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity
    • Iwayama T., et al. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev. 2015, 29:1106-1119.
    • (2015) Genes Dev. , vol.29 , pp. 1106-1119
    • Iwayama, T.1
  • 68
    • 68849128539 scopus 로고    scopus 로고
    • Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche
    • Diaz-Flores L., et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol. 2009, 24:909-969.
    • (2009) Histol. Histopathol. , vol.24 , pp. 909-969
    • Diaz-Flores, L.1
  • 69
    • 38949214016 scopus 로고    scopus 로고
    • Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction
    • van Amerongen M.J., et al. Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J. Pathol. 2008, 214:377-386.
    • (2008) J. Pathol. , vol.214 , pp. 377-386
    • van Amerongen, M.J.1
  • 70
    • 20844442611 scopus 로고    scopus 로고
    • Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function
    • Leone A.M., et al. Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. Eur. Heart J. 2005, 26:1196-1204.
    • (2005) Eur. Heart J. , vol.26 , pp. 1196-1204
    • Leone, A.M.1
  • 71
    • 33751572502 scopus 로고    scopus 로고
    • Bone marrow-derived cells contribute to infarct remodelling
    • Möllmann H., et al. Bone marrow-derived cells contribute to infarct remodelling. Cardiovasc. Res. 2006, 71:661-671.
    • (2006) Cardiovasc. Res. , vol.71 , pp. 661-671
    • Möllmann, H.1
  • 72
    • 33645287075 scopus 로고    scopus 로고
    • An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells
    • Visconti R.P., et al. An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ. Res. 2006, 98:690-696.
    • (2006) Circ. Res. , vol.98 , pp. 690-696
    • Visconti, R.P.1
  • 73
    • 80055121598 scopus 로고    scopus 로고
    • Recruitment of bone marrow-derived valve interstitial cells is a normal homeostatic process
    • Hajdu Z., et al. Recruitment of bone marrow-derived valve interstitial cells is a normal homeostatic process. J. Mol. Cell. Cardiol. 2011, 51:955-965.
    • (2011) J. Mol. Cell. Cardiol. , vol.51 , pp. 955-965
    • Hajdu, Z.1
  • 74
    • 33845342873 scopus 로고    scopus 로고
    • Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice
    • Haudek S.B., et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18284-18289.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18284-18289
    • Haudek, S.B.1
  • 75
    • 64749117099 scopus 로고    scopus 로고
    • The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of fibrotic disorders
    • Keeley E.C., et al. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of fibrotic disorders. Thromb. Haemost. 2009, 101:613-618.
    • (2009) Thromb. Haemost. , vol.101 , pp. 613-618
    • Keeley, E.C.1
  • 76
    • 77953544771 scopus 로고    scopus 로고
    • Fibrocytes in health and disease
    • Herzog E.L., Bucala R. Fibrocytes in health and disease. Exp. Hematol. 2010, 38:548-556.
    • (2010) Exp. Hematol. , vol.38 , pp. 548-556
    • Herzog, E.L.1    Bucala, R.2
  • 77
    • 70449372660 scopus 로고    scopus 로고
    • Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts
    • Pilling D., et al. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 2009, 4:e7475.
    • (2009) PLoS ONE , vol.4 , pp. e7475
    • Pilling, D.1
  • 78
    • 49649122412 scopus 로고    scopus 로고
    • Transgenic tools for analysis of the haematopoietic system: knock-in CD45 reporter and deletor mice
    • Yang J., et al. Transgenic tools for analysis of the haematopoietic system: knock-in CD45 reporter and deletor mice. J. Immunol. Methods 2008, 337:81-87.
    • (2008) J. Immunol. Methods , vol.337 , pp. 81-87
    • Yang, J.1
  • 79
    • 33749655376 scopus 로고    scopus 로고
    • Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction
    • Morimoto H., et al. Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ. Res. 2006, 99:891-899.
    • (2006) Circ. Res. , vol.99 , pp. 891-899
    • Morimoto, H.1
  • 80
    • 20944449211 scopus 로고    scopus 로고
    • CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts
    • Dewald O., et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 2005, 96:881-889.
    • (2005) Circ. Res. , vol.96 , pp. 881-889
    • Dewald, O.1
  • 81
    • 0037418276 scopus 로고    scopus 로고
    • Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species
    • Dewald O., et al. Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:2700-2705.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 2700-2705
    • Dewald, O.1
  • 82
    • 72449132876 scopus 로고    scopus 로고
    • Induction of the CXC chemokine interferon-γ-inducible protein 10 regulates the reparative response following myocardial infarction
    • Bujak M., et al. Induction of the CXC chemokine interferon-γ-inducible protein 10 regulates the reparative response following myocardial infarction. Circ. Res. 2009, 105:973-983.
    • (2009) Circ. Res. , vol.105 , pp. 973-983
    • Bujak, M.1
  • 83
    • 0035379769 scopus 로고    scopus 로고
    • Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis
    • Frangogiannis N.G., et al. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J. 2001, 15:1428-1430.
    • (2001) FASEB J. , vol.15 , pp. 1428-1430
    • Frangogiannis, N.G.1
  • 84
    • 0029117124 scopus 로고
    • Myofibroblasts and the progression of experimental glomerulonephritis
    • Zhang G., et al. Myofibroblasts and the progression of experimental glomerulonephritis. Exp. Nephrol. 1995, 3:308-318.
    • (1995) Exp. Nephrol. , vol.3 , pp. 308-318
    • Zhang, G.1
  • 85
    • 4644302005 scopus 로고    scopus 로고
    • Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure
    • Li Y., et al. Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ. Res. 2004, 95:627-636.
    • (2004) Circ. Res. , vol.95 , pp. 627-636
    • Li, Y.1
  • 86
    • 84940121693 scopus 로고    scopus 로고
    • Cardiac nonmyocytes in the hub of cardiac hypertrophy
    • Kamo T., et al. Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ. Res. 2015, 117:89-98.
    • (2015) Circ. Res. , vol.117 , pp. 89-98
    • Kamo, T.1
  • 87
    • 74949131620 scopus 로고    scopus 로고
    • Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload
    • Takeda N., et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J. Clin. Invest. 2010, 120:254-265.
    • (2010) J. Clin. Invest. , vol.120 , pp. 254-265
    • Takeda, N.1
  • 88
    • 84899128394 scopus 로고    scopus 로고
    • Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy
    • Bang C., et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 2014, 124:2136-2146.
    • (2014) J. Clin. Invest. , vol.124 , pp. 2136-2146
    • Bang, C.1
  • 89
    • 84939865125 scopus 로고    scopus 로고
    • Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells
    • Soares A.R., et al. Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci. Rep. 2015, 5:13243.
    • (2015) Sci. Rep. , vol.5 , pp. 13243
    • Soares, A.R.1
  • 90
    • 79951938038 scopus 로고    scopus 로고
    • Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation
    • Yue L., et al. Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc. Res. 2011, 89:744-753.
    • (2011) Cardiovasc. Res. , vol.89 , pp. 744-753
    • Yue, L.1
  • 91
    • 84960362020 scopus 로고    scopus 로고
    • Ion channels in cardiac fibroblasts: link to mechanically gated channels and their regulation
    • Springer Netherlands, A. Kamkin, I. Lozinsky (Eds.)
    • Abramochkin D., et al. Ion channels in cardiac fibroblasts: link to mechanically gated channels and their regulation. Mechanically Gated Channels and their Regulation 2012, 215-244. Springer Netherlands. A. Kamkin, I. Lozinsky (Eds.).
    • (2012) Mechanically Gated Channels and their Regulation , pp. 215-244
    • Abramochkin, D.1
  • 92
    • 70350244437 scopus 로고    scopus 로고
    • Characterization of multiple ion channels in cultured human cardiac fibroblasts
    • Li G.R., et al. Characterization of multiple ion channels in cultured human cardiac fibroblasts. PLoS ONE 2009, 4:e7307.
    • (2009) PLoS ONE , vol.4 , pp. e7307
    • Li, G.R.1
  • 93
    • 84870156808 scopus 로고    scopus 로고
    • TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals
    • Adapala R.K., et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J. Mol. Cell. Cardiol. 2013, 54:45-52.
    • (2013) J. Mol. Cell. Cardiol. , vol.54 , pp. 45-52
    • Adapala, R.K.1
  • 94
    • 84867732495 scopus 로고    scopus 로고
    • A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo
    • Davis J., et al. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev. Cell 2012, 23:705-715.
    • (2012) Dev. Cell , vol.23 , pp. 705-715
    • Davis, J.1
  • 95
    • 84924758598 scopus 로고    scopus 로고
    • Molecular candidates for cardiac stretch-activated ion channels
    • Reed A., et al. Molecular candidates for cardiac stretch-activated ion channels. Global Cardiol. Sci. Pract. 2014, 2014:9-25.
    • (2014) Global Cardiol. Sci. Pract. , vol.2014 , pp. 9-25
    • Reed, A.1
  • 96
    • 84955311191 scopus 로고    scopus 로고
    • Cardiac mechano-gated ion channels and arrhythmias
    • Peyronnet R., et al. Cardiac mechano-gated ion channels and arrhythmias. Circ. Res. 2016, 118:311-329.
    • (2016) Circ. Res. , vol.118 , pp. 311-329
    • Peyronnet, R.1
  • 97
    • 0024384098 scopus 로고
    • Single channel currents of homo- and heterologous gap junctions between cardiac fibroblasts and myocytes
    • Rook M.B., et al. Single channel currents of homo- and heterologous gap junctions between cardiac fibroblasts and myocytes. Pflugers Arch. Eur. J. Physiol. 1989, 414:95-98.
    • (1989) Pflugers Arch. Eur. J. Physiol. , vol.414 , pp. 95-98
    • Rook, M.B.1
  • 98
    • 0026475576 scopus 로고
    • Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs
    • Rook M.B., et al. Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. Am. J. Physiol. 1992, 263:C959-C977.
    • (1992) Am. J. Physiol. , vol.263 , pp. C959-C977
    • Rook, M.B.1
  • 99
    • 0042232510 scopus 로고    scopus 로고
    • Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin
    • Gaudesius G., et al. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ. Res. 2003, 93:421-428.
    • (2003) Circ. Res. , vol.93 , pp. 421-428
    • Gaudesius, G.1
  • 100
    • 65649095952 scopus 로고    scopus 로고
    • Myofibroblasts in diseased hearts: new players in cardiac arrhythmias?
    • Rohr S. Myofibroblasts in diseased hearts: new players in cardiac arrhythmias?. Heart Rhythm 2009, 6:848-856.
    • (2009) Heart Rhythm , vol.6 , pp. 848-856
    • Rohr, S.1
  • 101
    • 0041414320 scopus 로고    scopus 로고
    • Heterogeneous cell coupling in the heart: an electrophysiological role for fibroblasts
    • Kohl P. Heterogeneous cell coupling in the heart: an electrophysiological role for fibroblasts. Circ. Res. 2003, 93:381-383.
    • (2003) Circ. Res. , vol.93 , pp. 381-383
    • Kohl, P.1
  • 102
    • 84857533145 scopus 로고    scopus 로고
    • Fibroblast-myocyte connections in the heart
    • Kohl P., Camelliti P. Fibroblast-myocyte connections in the heart. Heart Rhythm 2012, 9:461-464.
    • (2012) Heart Rhythm , vol.9 , pp. 461-464
    • Kohl, P.1    Camelliti, P.2
  • 103
    • 78249241534 scopus 로고    scopus 로고
    • Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication
    • Zhang Y., et al. Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovasc. Pathol. 2010, 19:e233-e240.
    • (2010) Cardiovasc. Pathol. , vol.19 , pp. e233-e240
    • Zhang, Y.1
  • 104
    • 77958451496 scopus 로고    scopus 로고
    • Enhanced fibroblast-myocyte interactions in response to cardiac injury
    • Vasquez C., et al. Enhanced fibroblast-myocyte interactions in response to cardiac injury. Circ. Res. 2010, 107:1011-1020.
    • (2010) Circ. Res. , vol.107 , pp. 1011-1020
    • Vasquez, C.1
  • 105
    • 1842507518 scopus 로고    scopus 로고
    • Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling
    • Camelliti P., et al. Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res. 2004, 94:828-835.
    • (2004) Circ. Res. , vol.94 , pp. 828-835
    • Camelliti, P.1
  • 106
    • 33744457045 scopus 로고    scopus 로고
    • Structural and functional coupling of cardiac myocytes and fibroblasts
    • Camelliti P., et al. Structural and functional coupling of cardiac myocytes and fibroblasts. Adv. Cardiol. 2006, 42:132-149.
    • (2006) Adv. Cardiol. , vol.42 , pp. 132-149
    • Camelliti, P.1
  • 107
    • 84880038524 scopus 로고    scopus 로고
    • The perinexus: sign-post on the path to a new model of cardiac conduction?
    • Rhett J.M., et al. The perinexus: sign-post on the path to a new model of cardiac conduction?. Trends Cardiovasc. Med. 2013, 23:222-228.
    • (2013) Trends Cardiovasc. Med. , vol.23 , pp. 222-228
    • Rhett, J.M.1
  • 108
    • 84901408539 scopus 로고    scopus 로고
    • Intercellular electrical communication in the heart: a new, active role for the intercalated disk
    • Veeraraghavan R., et al. Intercellular electrical communication in the heart: a new, active role for the intercalated disk. Cell Commun. Adhes. 2014, 21:161-167.
    • (2014) Cell Commun. Adhes. , vol.21 , pp. 161-167
    • Veeraraghavan, R.1
  • 109
    • 1142286348 scopus 로고    scopus 로고
    • Nanotubular highways for intercellular organelle transport
    • Rustom A., et al. Nanotubular highways for intercellular organelle transport. Science 2004, 303:1007-1010.
    • (2004) Science , vol.303 , pp. 1007-1010
    • Rustom, A.1
  • 110
    • 44449108230 scopus 로고    scopus 로고
    • Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea
    • Chinnery H.R., et al. Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J. Immunol. 2008, 180:5779-5783.
    • (2008) J. Immunol. , vol.180 , pp. 5779-5783
    • Chinnery, H.R.1
  • 111
    • 44349098785 scopus 로고    scopus 로고
    • Membrane nanotubes: dynamic long-distance connections between animal cells
    • Davis D.M., Sowinski S. Membrane nanotubes: dynamic long-distance connections between animal cells. Nat. Rev. Mol. Cell Biol. 2008, 9:431-436.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 431-436
    • Davis, D.M.1    Sowinski, S.2
  • 112
    • 84866327994 scopus 로고    scopus 로고
    • Multifaceted roles of tunneling nanotubes in intercellular communication
    • Marzo L., et al. Multifaceted roles of tunneling nanotubes in intercellular communication. Front. Physiol. 2012, 3:72.
    • (2012) Front. Physiol. , vol.3 , pp. 72
    • Marzo, L.1
  • 113
    • 80052899396 scopus 로고    scopus 로고
    • Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes
    • He K., et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc. Res. 2011, 92:39-47.
    • (2011) Cardiovasc. Res. , vol.92 , pp. 39-47
    • He, K.1
  • 114
    • 24344431670 scopus 로고    scopus 로고
    • Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts
    • Driesen R.B., et al. Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts. Cardiovasc. Res. 2005, 68:37-46.
    • (2005) Cardiovasc. Res. , vol.68 , pp. 37-46
    • Driesen, R.B.1
  • 115
    • 24944582967 scopus 로고    scopus 로고
    • Functional connectivity between immune cells mediated by tunneling nanotubules
    • Watkins S.C., Salter R.D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 2005, 23:309-318.
    • (2005) Immunity , vol.23 , pp. 309-318
    • Watkins, S.C.1    Salter, R.D.2
  • 116
    • 78049255782 scopus 로고    scopus 로고
    • Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels
    • Wang X., et al. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:17194-17199.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 17194-17199
    • Wang, X.1
  • 117
    • 41949092558 scopus 로고    scopus 로고
    • Fibroblast growth factor regulation of neovascularization
    • Murakami M., Simons M. Fibroblast growth factor regulation of neovascularization. Curr. Opin. Hematol. 2008, 15:215-220.
    • (2008) Curr. Opin. Hematol. , vol.15 , pp. 215-220
    • Murakami, M.1    Simons, M.2
  • 118
    • 77951665667 scopus 로고    scopus 로고
    • Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study)
    • Abbate A., et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am. J. Cardiol. 2010, 105:1371-1377.
    • (2010) Am. J. Cardiol. , vol.105 , pp. 1371-1377
    • Abbate, A.1
  • 119
    • 16944366396 scopus 로고    scopus 로고
    • A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart
    • Blankesteijn W.M., et al. A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat. Med. 1997, 3:541-544.
    • (1997) Nat. Med. , vol.3 , pp. 541-544
    • Blankesteijn, W.M.1
  • 120
    • 34047148354 scopus 로고    scopus 로고
    • The role of TGF-beta signaling in myocardial infarction and cardiac remodeling
    • Bujak M., Frangogiannis N.G. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 2007, 74:184-195.
    • (2007) Cardiovasc. Res. , vol.74 , pp. 184-195
    • Bujak, M.1    Frangogiannis, N.G.2
  • 121
    • 34249008096 scopus 로고    scopus 로고
    • Chemokines in ischemia and reperfusion
    • Frangogiannis N.G. Chemokines in ischemia and reperfusion. Thromb. Haemost. 2007, 97:738-747.
    • (2007) Thromb. Haemost. , vol.97 , pp. 738-747
    • Frangogiannis, N.G.1
  • 122
    • 77955270565 scopus 로고    scopus 로고
    • Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy
    • Haudek S.B., et al. Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J. Mol. Cell. Cardiol. 2010, 49:499-507.
    • (2010) J. Mol. Cell. Cardiol. , vol.49 , pp. 499-507
    • Haudek, S.B.1
  • 123
    • 0032526370 scopus 로고    scopus 로고
    • Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction
    • Takemura G., et al. Role of apoptosis in the disappearance of infiltrated and proliferated interstitial cells after myocardial infarction. Circ. Res. 1998, 82:1130-1138.
    • (1998) Circ. Res. , vol.82 , pp. 1130-1138
    • Takemura, G.1
  • 124
    • 84857111170 scopus 로고    scopus 로고
    • Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT
    • Ghosh A.K., et al. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell. Signal. 2012, 24:1031-1036.
    • (2012) Cell. Signal. , vol.24 , pp. 1031-1036
    • Ghosh, A.K.1
  • 125
    • 84955693617 scopus 로고    scopus 로고
    • MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis
    • Published online November 19, 2015
    • Nagpal V., et al. MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation 2015, Published online November 19, 2015. 10.1161/CIRCULATIONAHA.115.018174.
    • (2015) Circulation
    • Nagpal, V.1
  • 126
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
    • van Rooij E., et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:13027-13032.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 13027-13032
    • van Rooij, E.1
  • 127
    • 62349141343 scopus 로고    scopus 로고
    • MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue
    • Roy S., et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 2009, 82:21-29.
    • (2009) Cardiovasc. Res. , vol.82 , pp. 21-29
    • Roy, S.1
  • 128
    • 57749168828 scopus 로고    scopus 로고
    • MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
    • Thum T., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008, 456:980-984.
    • (2008) Nature , vol.456 , pp. 980-984
    • Thum, T.1
  • 129
    • 84889069477 scopus 로고    scopus 로고
    • Role of miR-145 in cardiac myofibroblast differentiation
    • Wang Y.S., et al. Role of miR-145 in cardiac myofibroblast differentiation. J. Mol. Cell. Cardiol. 2014, 66:94-105.
    • (2014) J. Mol. Cell. Cardiol. , vol.66 , pp. 94-105
    • Wang, Y.S.1
  • 130
    • 59849128881 scopus 로고    scopus 로고
    • MiR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling
    • Duisters R.F., et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 2009, 104:170-178.
    • (2009) Circ. Res. , vol.104 , pp. 170-178
    • Duisters, R.F.1
  • 131
    • 34247882685 scopus 로고    scopus 로고
    • Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues
    • Norris R.A., et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J. Cell. Biochem. 2007, 101:695-711.
    • (2007) J. Cell. Biochem. , vol.101 , pp. 695-711
    • Norris, R.A.1
  • 132
    • 39549107343 scopus 로고    scopus 로고
    • Periostin is essential for cardiac healing after acute myocardial infarction
    • Shimazaki M., et al. Periostin is essential for cardiac healing after acute myocardial infarction. J. Exp. Med. 2008, 205:295-303.
    • (2008) J. Exp. Med. , vol.205 , pp. 295-303
    • Shimazaki, M.1
  • 133
    • 34548371401 scopus 로고    scopus 로고
    • Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling
    • Oka T., et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ. Res. 2007, 101:313-321.
    • (2007) Circ. Res. , vol.101 , pp. 313-321
    • Oka, T.1
  • 134
    • 84877890765 scopus 로고    scopus 로고
    • Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis
    • Ladage D., et al. Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS ONE 2013, 8:e59656.
    • (2013) PLoS ONE , vol.8 , pp. e59656
    • Ladage, D.1
  • 135
    • 17144407933 scopus 로고    scopus 로고
    • Opposing effects of protein kinase Calpha and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling
    • Tourkina E., et al. Opposing effects of protein kinase Calpha and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J. Biol. Chem. 2005, 280:13879-13887.
    • (2005) J. Biol. Chem. , vol.280 , pp. 13879-13887
    • Tourkina, E.1
  • 136
    • 0035794218 scopus 로고    scopus 로고
    • Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor
    • Razani B., et al. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J. Biol. Chem. 2001, 276:6727-6738.
    • (2001) J. Biol. Chem. , vol.276 , pp. 6727-6738
    • Razani, B.1
  • 137
    • 84904737300 scopus 로고    scopus 로고
    • Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis
    • Lee R., et al. Caveolin-1 regulates chemokine receptor 5-mediated contribution of bone marrow-derived cells to dermal fibrosis. Front. Pharmacol. 2014, 5:140.
    • (2014) Front. Pharmacol. , vol.5 , pp. 140
    • Lee, R.1
  • 138
    • 51849169053 scopus 로고    scopus 로고
    • Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis
    • Del Galdo F., et al. Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum. 2008, 58:2854-2865.
    • (2008) Arthritis Rheum. , vol.58 , pp. 2854-2865
    • Del Galdo, F.1
  • 139
    • 84900560078 scopus 로고    scopus 로고
    • Bleomycin delivery by osmotic minipump: similarity to human scleroderma interstitial lung disease
    • Lee R., et al. Bleomycin delivery by osmotic minipump: similarity to human scleroderma interstitial lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306:L736-L748.
    • (2014) Am. J. Physiol. Lung Cell. Mol. Physiol. , vol.306 , pp. L736-L748
    • Lee, R.1
  • 140
    • 84903442145 scopus 로고    scopus 로고
    • Caveolin-1 deficiency may predispose African Americans to systemic sclerosis-related interstitial lung disease
    • Reese C., et al. Caveolin-1 deficiency may predispose African Americans to systemic sclerosis-related interstitial lung disease. Arthritis Rheumatol. 2014, 66:1909-1919.
    • (2014) Arthritis Rheumatol. , vol.66 , pp. 1909-1919
    • Reese, C.1
  • 141
    • 80051600437 scopus 로고    scopus 로고
    • Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide
    • Tourkina E., et al. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair 2011, 4:15.
    • (2011) Fibrogenesis Tissue Repair , vol.4 , pp. 15
    • Tourkina, E.1
  • 142
    • 0037303007 scopus 로고    scopus 로고
    • Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts
    • Cohen A.W., et al. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 2003, 284:C457-C474.
    • (2003) Am. J. Physiol. Cell Physiol. , vol.284 , pp. C457-C474
    • Cohen, A.W.1
  • 143
    • 84907485564 scopus 로고    scopus 로고
    • Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction
    • Shivshankar P., et al. Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. J. Mol. Cell. Cardiol. 2014, 76:84-93.
    • (2014) J. Mol. Cell. Cardiol. , vol.76 , pp. 84-93
    • Shivshankar, P.1
  • 144
    • 79960561895 scopus 로고    scopus 로고
    • Caveolin-1 modulates TGF-β1 signaling in cardiac remodeling
    • Miyasato S.K., et al. Caveolin-1 modulates TGF-β1 signaling in cardiac remodeling. Matrix Biol. 2011, 30:318-329.
    • (2011) Matrix Biol. , vol.30 , pp. 318-329
    • Miyasato, S.K.1
  • 145
    • 45849084990 scopus 로고    scopus 로고
    • Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo
    • Tourkina E., et al. Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294:L843-L861.
    • (2008) Am. J. Physiol. Lung Cell. Mol. Physiol. , vol.294 , pp. L843-L861
    • Tourkina, E.1
  • 146
    • 0034529950 scopus 로고    scopus 로고
    • In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation
    • Bucci M., et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat. Med. 2000, 6:1362-1367.
    • (2000) Nat. Med. , vol.6 , pp. 1362-1367
    • Bucci, M.1
  • 147
    • 0031008379 scopus 로고    scopus 로고
    • Functional implications of myocardial scar structure
    • Holmes J.W., et al. Functional implications of myocardial scar structure. Am. J. Physiol. 1997, 272:H2123-H2130.
    • (1997) Am. J. Physiol. , vol.272 , pp. H2123-H2130
    • Holmes, J.W.1
  • 148
    • 0033952362 scopus 로고    scopus 로고
    • Structural and mechanical factors influencing infarct scar collagen organization
    • Zimmerman S.D., et al. Structural and mechanical factors influencing infarct scar collagen organization. Am. J. Physiol. Heart Circ. Physiol. 2000, 278:H194-H200.
    • (2000) Am. J. Physiol. Heart Circ. Physiol. , vol.278 , pp. H194-H200
    • Zimmerman, S.D.1
  • 149
    • 0031893071 scopus 로고    scopus 로고
    • Lysyl oxidase: properties, regulation and multiple functions in biology
    • Smith-Mungo L.I., Kagan H.M. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 1998, 16:387-398.
    • (1998) Matrix Biol. , vol.16 , pp. 387-398
    • Smith-Mungo, L.I.1    Kagan, H.M.2
  • 150
    • 84959344753 scopus 로고    scopus 로고
    • Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction
    • Gonzalez-Santamaria J., et al. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction. Cardiovasc. Res. 2016, 109:67-78.
    • (2016) Cardiovasc. Res. , vol.109 , pp. 67-78
    • Gonzalez-Santamaria, J.1
  • 151
    • 77953734186 scopus 로고    scopus 로고
    • Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects
    • Lopez B., et al. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am. J. Physiol. Heart Circ. Physiol. 2010, 299:H1-H9.
    • (2010) Am. J. Physiol. Heart Circ. Physiol. , vol.299 , pp. H1-H9
    • Lopez, B.1
  • 152
    • 79251625669 scopus 로고    scopus 로고
    • Model-based design of mechanical therapies for myocardial infarction
    • Fomovsky G.M., et al. Model-based design of mechanical therapies for myocardial infarction. J. Cardiovasc. Transl. Res. 2011, 4:82-91.
    • (2011) J. Cardiovasc. Transl. Res. , vol.4 , pp. 82-91
    • Fomovsky, G.M.1
  • 153
    • 0018732845 scopus 로고
    • Expansion of transmural myocardial infarction: a pathophysiologic factor in cardiac rupture
    • Schuster E.H., Bulkley B.H. Expansion of transmural myocardial infarction: a pathophysiologic factor in cardiac rupture. Circulation 1979, 60:1532-1538.
    • (1979) Circulation , vol.60 , pp. 1532-1538
    • Schuster, E.H.1    Bulkley, B.H.2
  • 154
    • 84856191694 scopus 로고    scopus 로고
    • Arrhythmogenic consequences of myofibroblast-myocyte coupling
    • Nguyen T.P., et al. Arrhythmogenic consequences of myofibroblast-myocyte coupling. Cardiovasc. Res. 2012, 93:242-251.
    • (2012) Cardiovasc. Res. , vol.93 , pp. 242-251
    • Nguyen, T.P.1
  • 155
    • 84862262717 scopus 로고    scopus 로고
    • Arrhythmogenic implications of fibroblast-myocyte interactions
    • Rohr S. Arrhythmogenic implications of fibroblast-myocyte interactions. Circ. Arrhythmia Electrophysiol. 2012, 5:442-452.
    • (2012) Circ. Arrhythmia Electrophysiol. , vol.5 , pp. 442-452
    • Rohr, S.1
  • 156
    • 79958259758 scopus 로고    scopus 로고
    • Fibrosis and cardiac arrhythmias
    • de Jong S., et al. Fibrosis and cardiac arrhythmias. J. Cardiovasc. Pharmacol. 2011, 57:630-638.
    • (2011) J. Cardiovasc. Pharmacol. , vol.57 , pp. 630-638
    • de Jong, S.1
  • 157
    • 84878189263 scopus 로고    scopus 로고
    • The origin and arrhythmogenic potential of fibroblasts in cardiac disease
    • Vasquez C., Morley G.E. The origin and arrhythmogenic potential of fibroblasts in cardiac disease. J. Cardiovasc. Transl. Res. 2012, 5:760-767.
    • (2012) J. Cardiovasc. Transl. Res. , vol.5 , pp. 760-767
    • Vasquez, C.1    Morley, G.E.2
  • 158
    • 80053110376 scopus 로고    scopus 로고
    • Susceptibility to arrhythmia in the Infarcted heart depends on myofibroblast density
    • McDowell, Kathleen S., et al. Susceptibility to arrhythmia in the Infarcted heart depends on myofibroblast density. Biophys. J. 2011, 101:1307-1315.
    • (2011) Biophys. J. , vol.101 , pp. 1307-1315
    • McDowell1    Kathleen, S.2
  • 159
    • 0028533619 scopus 로고
    • Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role
    • Kohl P., et al. Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role. Exp. Physiol. 1994, 79:943-956.
    • (1994) Exp. Physiol. , vol.79 , pp. 943-956
    • Kohl, P.1
  • 160
    • 70350484963 scopus 로고    scopus 로고
    • Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study
    • Xie Y., et al. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study. Heart Rhythm 2009, 6:1641-1649.
    • (2009) Heart Rhythm , vol.6 , pp. 1641-1649
    • Xie, Y.1
  • 161
    • 84873501839 scopus 로고    scopus 로고
    • Genetically engineered excitable cardiac myofibroblasts coupled to cardiomyocytes rescue normal propagation and reduce arrhythmia complexity in heterocellular monolayers
    • Hou L., et al. Genetically engineered excitable cardiac myofibroblasts coupled to cardiomyocytes rescue normal propagation and reduce arrhythmia complexity in heterocellular monolayers. PLoS ONE 2013, 8:e55400.
    • (2013) PLoS ONE , vol.8 , pp. e55400
    • Hou, L.1
  • 162
    • 39549093147 scopus 로고    scopus 로고
    • Cell therapy for modification of the myocardial electrophysiological substrate
    • Yankelson L., et al. Cell therapy for modification of the myocardial electrophysiological substrate. Circulation 2008, 117:720-731.
    • (2008) Circulation , vol.117 , pp. 720-731
    • Yankelson, L.1
  • 163
    • 0347418930 scopus 로고    scopus 로고
    • Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy
    • Eloff B.C., et al. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy. Circulation 2003, 108:3157-3163.
    • (2003) Circulation , vol.108 , pp. 3157-3163
    • Eloff, B.C.1
  • 164
    • 79953059185 scopus 로고    scopus 로고
    • A peptide mimetic of the connexin43 carboxyl-terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury
    • O'Quinn M.P., et al. A peptide mimetic of the connexin43 carboxyl-terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury. Circ. Res. 2011, 108:704-715.
    • (2011) Circ. Res. , vol.108 , pp. 704-715
    • O'Quinn, M.P.1
  • 165
    • 77449118231 scopus 로고    scopus 로고
    • Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias
    • Fernandes S., et al. Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias. J. Cell. Mol. Med. 2009, 13:3703-3712.
    • (2009) J. Cell. Mol. Med. , vol.13 , pp. 3703-3712
    • Fernandes, S.1
  • 166
    • 36949035990 scopus 로고    scopus 로고
    • Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia
    • Roell W., et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 2007, 450:819-824.
    • (2007) Nature , vol.450 , pp. 819-824
    • Roell, W.1
  • 167
    • 33846466226 scopus 로고    scopus 로고
    • Mapping of epicardial activation in a rabbit model of chronic myocardial infarction
    • Walker N.L., et al. Mapping of epicardial activation in a rabbit model of chronic myocardial infarction. J. Cardiovasc. Electrophysiol. 2007, 18:862-868.
    • (2007) J. Cardiovasc. Electrophysiol. , vol.18 , pp. 862-868
    • Walker, N.L.1
  • 168
    • 38849126110 scopus 로고    scopus 로고
    • Dual-dye optical mapping after myocardial infarction: does the site of ventricular stimulation alter the properties of electrical propagation?
    • Saba S., et al. Dual-dye optical mapping after myocardial infarction: does the site of ventricular stimulation alter the properties of electrical propagation?. J. Cardiovasc. Electrophysiol. 2008, 19:197-202.
    • (2008) J. Cardiovasc. Electrophysiol. , vol.19 , pp. 197-202
    • Saba, S.1
  • 169
    • 58049190516 scopus 로고    scopus 로고
    • Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: implications for low-voltage cardioversion
    • Ripplinger C.M., et al. Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: implications for low-voltage cardioversion. Heart Rhythm 2009, 6:87-97.
    • (2009) Heart Rhythm , vol.6 , pp. 87-97
    • Ripplinger, C.M.1
  • 170
    • 26444609054 scopus 로고    scopus 로고
    • Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation
    • Kohl P., et al. Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J. Electrocardiol. 2005, 38:45-50.
    • (2005) J. Electrocardiol. , vol.38 , pp. 45-50
    • Kohl, P.1
  • 171
    • 84923294507 scopus 로고    scopus 로고
    • Cell-specific expression of voltage-sensitive protein confirms cardiac myocyte to non-myocyte electrotonic coupling in healed murine infarct border tissue
    • Quinn T.A., et al. Cell-specific expression of voltage-sensitive protein confirms cardiac myocyte to non-myocyte electrotonic coupling in healed murine infarct border tissue. Circulation 2014, 130:A11749.
    • (2014) Circulation , vol.130 , pp. A11749
    • Quinn, T.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.