메뉴 건너뛰기




Volumn 9, Issue 2, 2015, Pages 3155-3194

Marginal integration for nonparametric causal inference

Author keywords

Backdoor adjustment; Causal inference; Intervention calculus; Marginal integration; Model misspecification; Nonparametric inference; Robustness; Structural equation model

Indexed keywords


EID: 84955464784     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/15-EJS1075     Document Type: Article
Times cited : (8)

References (63)
  • 1
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang, H. and Robins, J. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics, 61:962–972.
    • (2005) Biometrics , vol.61 , pp. 962-972
    • Bang, H.1    Robins, J.2
  • 4
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting (with discussion)
    • Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting (with discussion). Statistical Science, 22:477–505.
    • (2007) Statistical Science , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 5
    • 84987997394 scopus 로고    scopus 로고
    • CAM: Causal additive models, high-dimensional order search and penalized regression
    • Bühlmann, P., Peters, J., and Ernest, J. (2014). CAM: Causal additive models, high-dimensional order search and penalized regression. Annals of Statistics, 42:2526–2556.
    • (2014) Annals of Statistics , vol.42 , pp. 2526-2556
    • Bühlmann, P.1    Peters, J.2    Ernest, J.3
  • 7
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D. (2002). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507–554.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.1
  • 8
    • 84867677322 scopus 로고    scopus 로고
    • Learning high-dimensional directed acyclic graphs with latent and selection variables
    • Colombo, D., Maathuis, M., Kalisch, M., and Richardson, T. (2012). Learning high-dimensional directed acyclic graphs with latent and selection variables. Annals of Statistics, 40:294–321.
    • (2012) Annals of Statistics , vol.40 , pp. 294-321
    • Colombo, D.1    Maathuis, M.2    Kalisch, M.3    Richardson, T.4
  • 10
    • 77951643877 scopus 로고    scopus 로고
    • Cause and effect
    • Editorial
    • Editorial (2010). Cause and effect. Nature Methods, 7:243.
    • (2010) Nature Methods , vol.7 , pp. 243
  • 12
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29:1189–1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 13
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303:799–805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 14
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland, S., Pearl, J., and Robins, J. M. (1999). Causal diagrams for epidemiologic research. Epidemiology, 10:37–48.
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 15
    • 38249035197 scopus 로고
    • Estimation of integrated squared density derivatives
    • Hall, P. and Marron, J. (1987). Estimation of integrated squared density derivatives. Statistics & Probability Letters, 6:109–115.
    • (1987) Statistics & Probability Letters , vol.6 , pp. 109-115
    • Hall, P.1    Marron, J.2
  • 17
    • 84869152656 scopus 로고    scopus 로고
    • Characterization and greedy learning of interventional markov equivalence classes of directed acyclic graphs
    • Hauser, A. and Bühlmann, P. (2012). Characterization and greedy learning of interventional markov equivalence classes of directed acyclic graphs. The Journal of Machine Learning Research, 13:2409–2464.
    • (2012) The Journal of Machine Learning Research , vol.13 , pp. 2409-2464
    • Hauser, A.1    Bühlmann, P.2
  • 18
    • 84896548173 scopus 로고    scopus 로고
    • Two optimal strategies for active learning of causal models from interventional data
    • Hauser, A. and Bühlmann, P. (2014). Two optimal strategies for active learning of causal models from interventional data. International Journal of Approximate Reasoning, 55:926–939.
    • (2014) International Journal of Approximate Reasoning , vol.55 , pp. 926-939
    • Hauser, A.1    Bühlmann, P.2
  • 19
    • 84917733558 scopus 로고    scopus 로고
    • Jointly interventional and observational data: Estimation of interventional markov equivalence classes of directed acyclic graphs
    • Hauser, A. and Bühlmann, P. (2015). Jointly interventional and observational data: estimation of interventional markov equivalence classes of directed acyclic graphs. Journal of the Royal Statistical Society, Series B, 77:291–318.
    • (2015) Journal of the Royal Statistical Society, Series B , vol.77 , pp. 291-318
    • Hauser, A.1    Bühlmann, P.2
  • 20
    • 57249084023 scopus 로고    scopus 로고
    • Active learning of causal networks with intervention experiments and optimal designs
    • He, Y.-B. and Geng, Z. (2008). Active learning of causal networks with intervention experiments and optimal designs. Journal of Machine Learning Research, 9:2523–2547.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2523-2547
    • He, Y.-B.1    Geng, Z.2
  • 21
    • 33847398253 scopus 로고    scopus 로고
    • Optimal estimation in additive regression models
    • Horowitz, J., Klemelä, J., and Mammen, E. (2006). Optimal estimation in additive regression models. Bernoulli, 12:271–298.
    • (2006) Bernoulli , vol.12 , pp. 271-298
    • Horowitz, J.1    Klemelä, J.2    Mammen, E.3
  • 23
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks
    • Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks. Bioinformatics, 19:2271–2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 24
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression
    • Imoto, S., Goto, T., and Miyano, S. (2002). Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. In Proceedings of the Pacific Symposium on Biocomputing (PSB-2002), volume 7, pages 175–186.
    • (2002) Proceedings of the Pacific Symposium on Biocomputing (PSB-2002) , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 25
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research, 8:613–636.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 27
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen, S. and Spiegelhalter, D. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50:157–224.
    • (1988) Journal of the Royal Statistical Society, Series B , vol.50 , pp. 157-224
    • Lauritzen, S.1    Spiegelhalter, D.2
  • 28
  • 29
    • 77956888636 scopus 로고
    • A kernel method of estimating structured nonparametric regression based on marginal integration
    • Linton, O. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika, 82:93–100.
    • (1995) Biometrika , vol.82 , pp. 93-100
    • Linton, O.1    Nielsen, J.P.2
  • 30
    • 84919742315 scopus 로고    scopus 로고
    • High-dimensional learning of linear causal networks via inverse covariance estimation
    • Loh, P. and Bühlmann, P. (2014). High-dimensional learning of linear causal networks via inverse covariance estimation. Journal of Machine Learning Research, 15:3065–3105.
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 3065-3105
    • Loh, P.1    Bühlmann, P.2
  • 31
    • 77951641247 scopus 로고    scopus 로고
    • Predicting causal effects in large-scale systems from observational data
    • Maathuis, M., Colombo, D., Kalisch, M., and Bühlmann, P. (2010). Predicting causal effects in large-scale systems from observational data. Nature Methods, 7:247–248.
    • (2010) Nature Methods , vol.7 , pp. 247-248
    • Maathuis, M.1    Colombo, D.2    Kalisch, M.3    Bühlmann, P.4
  • 32
    • 69949166983 scopus 로고    scopus 로고
    • Estimating highdimensional intervention effects from observational data
    • Maathuis, M., Kalisch, M., and Bühlmann, P. (2009). Estimating highdimensional intervention effects from observational data. Annals of Statistics, 37:3133–3164.
    • (2009) Annals of Statistics , vol.37 , pp. 3133-3164
    • Maathuis, M.1    Kalisch, M.2    Bühlmann, P.3
  • 35
    • 84937777714 scopus 로고    scopus 로고
    • Score-based causal learning in additive noise models
    • Nowzohour, C. and Bühlmann, P. (2015). Score-based causal learning in additive noise models. Statistics. Published online, doi:10.1080/02331888.2015.1060237.
    • (2015) Statistics
    • Nowzohour, C.1    Bühlmann, P.2
  • 37
    • 84897585225 scopus 로고    scopus 로고
    • Identifiability of Gaussian struc tural equation models with equal error variances
    • Peters, J. and Bühlmann, P. (2014). Identifiability of Gaussian struc tural equation models with equal error variances. Biometrika, 101:219–228.
    • (2014) Biometrika , vol.101 , pp. 219-228
    • Peters, J.1    Bühlmann, P.2
  • 40
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some of the regressors are not always observed
    • Robins, J., Rotnitzky, A., and Zhao, L. (1994). Estimation of regression coefficients when some of the regressors are not always observed. Journal of the American Statistical Association, 89:846–866.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 846-866
    • Robins, J.1    Rotnitzky, A.2    Zhao, L.3
  • 42
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. and Rubin, D. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70:41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.2
  • 44
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models (With discussion)
    • Scharfstein, D., Rotnitzky, A., and Robins, J. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). Journal of the American Statistical Association, 94:1096–1146.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1096-1146
    • Scharfstein, D.1    Rotnitzky, A.2    Robins, J.3
  • 45
    • 36348990694 scopus 로고    scopus 로고
    • Learning graphical model structure using l1-regularization paths
    • Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press
    • Schmidt, M., Niculescu-Mizil, A., and Murphy, K. (2007). Learning graphical model structure using l1-regularization paths. In Proceedings of the National Conference on Artificial Intelligence, volume 22, page 1278. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
    • (2007) Proceedings of the National Conference on Artificial Intelligence , vol.22
    • Schmidt, M.1    Niculescu-Mizil, A.2    Murphy, K.3
  • 47
    • 77953107844 scopus 로고    scopus 로고
    • Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs
    • Shojaie, A. and Michailidis, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika, 97:519–538.
    • (2010) Biometrika , vol.97 , pp. 519-538
    • Shojaie, A.1    Michailidis, G.2
  • 49
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • Smith, V. A., Jarvis, E. D., and Hartemink, A. J. (2002). Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18(suppl 1):S216–S224.
    • (2002) Bioinformatics , vol.18 , pp. S216-S224
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 50
    • 85032751252 scopus 로고    scopus 로고
    • Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models
    • Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models. Signal Processing Magazine, IEEE, 30:98–111.
    • (2013) Signal Processing Magazine, IEEE , vol.30 , pp. 98-111
    • Song, L.1    Fukumizu, K.2    Gretton, A.3
  • 55
    • 84902481901 scopus 로고    scopus 로고
    • On the uniform convergence of empirical norms and inner products, with application to causal inference
    • van de Geer, S. (2014). On the uniform convergence of empirical norms and inner products, with application to causal inference. Electronic Journal of Statistics, 8:543–574.
    • (2014) Electronic Journal of Statistics , vol.8 , pp. 543-574
    • Van De Geer, S.1
  • 56
    • 84879140981 scopus 로고    scopus 로고
    • ℓ0-penalized maximum likelihood for sparse directed acyclic graphs
    • 0-penalized maximum likelihood for sparse directed acyclic graphs. Annals of Statistics, 41:536–567.
    • (2013) Annals of Statistics , vol.41 , pp. 536-567
    • Van De Geer, S.1    Bühlmann, P.2
  • 62
    • 12344259602 scopus 로고    scopus 로고
    • Advances to bayesian network inference for generating causal networks from observational biological data
    • Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J., and Jarvis, E. D. (2004). Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20:3594–3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 63
    • 52949097616 scopus 로고    scopus 로고
    • On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
    • Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172:1873–1896.
    • (2008) Artificial Intelligence , vol.172 , pp. 1873-1896
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.