메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 1643-1662

Introduction to causal inference

Author keywords

Bayesian networks; Causal inference; Causation

Indexed keywords

CAUSAL MODELING; CONCEPTUAL DEVELOPMENT; EXPERIMENTAL DATA; GENERATIVE MODEL; MACHINE LEARNING CLASSIFICATION; NATURALLY OCCURRING; PREDICTION PROBLEM; SAMPLE DATA; SMALL SAMPLES;

EID: 77953492378     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (249)

References (44)
  • 1
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification, Part I: Algorithms and empirical evaluation
    • Constantin Aliferis, Alexander Statnikov, Ionnis Tsamardinos, Subramani Mani, and Xenophon Koutsoukos. Local causal and Markov blanket induction for causal discovery and feature selection for classification, Part I: Algorithms and empirical evaluation. Journal of Machine Learning Research, 11:171-234, 2010a.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, C.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.5
  • 2
    • 76749122843 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification, Part II: Analysis and extensions
    • Constantin Aliferis, Alexander Statnikov, Ionnis Tsamardinos, Subramani Mani, and Xenophon Koutsoukos. Local causal and Markov blanket induction for causal discovery and feature selection for classification, Part II: Analysis and extensions. Journal of Machine Learning Research, 11:235-284, 2010b.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 235-284
    • Aliferis, C.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.5
  • 4
    • 61749085851 scopus 로고    scopus 로고
    • Improving the reliability of causal discovery from small data sets using argumentation
    • Facundo Bromberg and Dimitris Margaritis. Improving the reliability of causal discovery from small data sets using argumentation. Journal of Machine Learning Research, 10:301-340, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 301-340
    • Bromberg, F.1    Margaritis, D.2
  • 5
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • David Maxwell Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 7
    • 0007047929 scopus 로고    scopus 로고
    • Causal discovery from a mixture of experimental and observational data
    • Kathryn Laskey and Henri Prade, editors. San Francisco, CA, Morgan Kauffman
    • Gregory Cooper and Changwon Yoo. Causal discovery from a mixture of experimental and observational data. In Kathryn Laskey and Henri Prade, editors, Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages 116-125, San Francisco, CA, 1999. Morgan Kauffman.
    • (1999) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence , pp. 116-125
    • Cooper, G.1    Yoo, C.2
  • 9
    • 38049120159 scopus 로고    scopus 로고
    • On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables
    • Fahiem Bacchus and Tommi Jaakkola, editors Arlington, VA, AUAI Press
    • Frederick Eberhardt, Richard Schemes, and Clark Glymour. On the number of experiments sufficient and in the worst case necessary to identify all causal relations among n variables. In Fahiem Bacchus and Tommi Jaakkola, editors, Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, pages 178-184, Arlington, VA, 2005. AUAI Press.
    • (2005) Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence , pp. 178-184
    • Eberhardt, F.1    Schemes, R.2    Glymour, C.3
  • 11
    • 57249084023 scopus 로고    scopus 로고
    • Active learning of causal networks with intervention experiments and optimal designs
    • Yang-Bo He and Zhi Geng. Active learning of causal networks with intervention experiments and optimal designs. Journal of Machine Learning Research, 10:2523-2547, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2523-2547
    • He, Y.-B.1    Geng, Z.2
  • 12
    • 0002594891 scopus 로고
    • Learning Bayesian networks: A unification for discrete and Gaussian domains
    • Philippe Besnard and Steve Hanks, editors Morgan Kaufman
    • David Heckerman and Dan Geiger. Learning Bayesian networks: a unification for discrete and Gaussian domains. In Philippe Besnard and Steve Hanks, editors, Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pages 274-282. Morgan Kaufman, 1995.
    • (1995) Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence , pp. 274-282
    • Heckerman, D.1    Geiger, D.2
  • 13
    • 0012315692 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • Greg Cooper and Clark Glymour, editors MIT Press, Cambridge, MA
    • David Heckerman, Chris Meek, and Gregory Cooper. A Bayesian approach to causal discovery. In Greg Cooper and Clark Glymour, editors, Computation, Causation, and Discovery, pages 141-165. MIT Press, Cambridge, MA, 1999.
    • (1999) Computation, Causation, and Discovery , pp. 141-165
    • Heckerman, D.1    Meek, C.2    Cooper, G.3
  • 16
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high dimensional directed acyclic graphs with the PC algorithm
    • Markus Kalisch and Peter Buhlmann. Estimating high dimensional directed acyclic graphs with the PC algorithm. Journal of Machine Learning Research, 8:613-636, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Buhlmann, P.2
  • 17
    • 59449095609 scopus 로고    scopus 로고
    • Markov properties for linear causal models with correlated errors
    • Changsung Kang and Jin Tian. Markov properties for linear causal models with correlated errors. Journal of Machine Learning Research, 10:41-70, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 41-70
    • Kang, C.1    Tian, J.2
  • 18
    • 0033244552 scopus 로고    scopus 로고
    • On the validity of the markov interpretation of path diagrams of Gaussian structural equation models with correlated errors
    • Jan Koster. On the validity of the Markov interpretation of path diagrams of Gaussian structural equation models with correlated errors. Scandinavian Journal of Statistics, pages 413-431, 1999.
    • (1999) Scandinavian Journal of Statistics , pp. 413-431
    • Koster, J.1
  • 19
    • 0001926461 scopus 로고    scopus 로고
    • Causal inference from graphical models
    • D. Barnsdorf-Nielsen and C. Kluppenberg, editors Chapman and Hall, Baton Rouge, LA
    • Steffen Lauritzen. Causal inference from graphical models. In D. Barnsdorf-Nielsen and C. Kluppenberg, editors, Complex Stochastic Systems, pages 141-165. Chapman and Hall, Baton Rouge, LA, 1999.
    • (1999) Complex Stochastic Systems , pp. 141-165
    • Lauritzen, S.1
  • 20
    • 84987049628 scopus 로고
    • Independence properties of directed Markov fields
    • Steffen Lauritzen, Phil Dawid, B. Larsen, and H. Leimer. Independence properties of directed Markov fields. Networks, 20:491-505, 1990.
    • (1990) Networks , vol.20 , pp. 491-505
    • Lauritzen, S.1    Dawid, P.2    Larsen, B.3    Leimer, H.4
  • 21
    • 69949166983 scopus 로고    scopus 로고
    • Estimating high-dimensional intervention effects from observational data
    • Marloes Maathuis, Markus Kalisch, and Peter Buhlmann. Estimating high-dimensional intervention effects from observational data. Annals of Statistics, 37(6A):3133-3164, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.6 A , pp. 3133-3164
    • Maathuis, M.1    Kalisch, M.2    Buhlmann, P.3
  • 22
    • 0040086810 scopus 로고
    • Strong completeness and faithfulness in Bayesian networks
    • Phillipe Besnard and Steve Hanks, editors Montreal, Quebec, Morgan Kaufman
    • Chris Meek. Strong completeness and faithfulness in Bayesian networks. In Phillipe Besnard and Steve Hanks, editors, Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pages 411-419, Montreal, Quebec, 1995. Morgan Kaufman.
    • (1995) Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence , pp. 411-419
    • Meek, C.1
  • 24
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669-688, 1995.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 669-688
    • Pearl, J.1
  • 27
    • 80053209343 scopus 로고    scopus 로고
    • Adjacency-faithfulness and conservative causal inference
    • In Rina Dechter and Thomas Richardson, editors Cambridge, MA, AUAI Press
    • Joseph Ramsey, Peter Spirtes, and Jiji Zhang. Adjacency-faithfulness and conservative causal inference. In Rina Dechter and Thomas Richardson, editors, Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pages 401-408, Cambridge, MA, 2006. AUAI Press.
    • (2006) Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence , pp. 401-408
    • Ramsey, J.1    Spirtes, P.2    Zhang, J.3
  • 28
    • 0040630191 scopus 로고    scopus 로고
    • A discovery algorithm for directed cyclic graphs
    • Eric Horvitz and Finn Jensen, editors Cambridge, MA, Morgan Kaufmann
    • Thomas Richardson. A discovery algorithm for directed cyclic graphs. In Eric Horvitz and Finn Jensen, editors, Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, pages 454-462, Cambridge, MA, 1996. Morgan Kaufmann.
    • (1996) Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence , pp. 454-462
    • Richardson, T.1
  • 29
    • 0038107398 scopus 로고    scopus 로고
    • Markov properties for acyclic directed mixed graphs
    • Thomas Richardson. Markov properties for acyclic directed mixed graphs. Scandinavian Journal of Statistics, 30:145-157, 2003.
    • (2003) Scandinavian Journal of Statistics , vol.30 , pp. 145-157
    • Richardson, T.1
  • 30
    • 3843131653 scopus 로고    scopus 로고
    • Uniform consistency in causal inference
    • James Robins, Richard Scheines, Peter Spirtes, and Larry Wasserman. Uniform consistency in causal inference. Biometrika, 90(3):491-515, 2003.
    • (2003) Biometrika , vol.90 , Issue.3 , pp. 491-515
    • Robins, J.1    Scheines, R.2    Spirtes, P.3    Wasserman, L.4
  • 31
    • 0000739292 scopus 로고
    • Causal-models of publishing productivity in psychology
    • R. Rodgers and C. Maranto. Causal-models of publishing productivity in psychology. J Appl Psychol, 74(4):636-649, 1989.
    • (1989) J Appl Psychol , vol.74 , Issue.4 , pp. 636-649
    • Rodgers, R.1    Maranto, C.2
  • 32
    • 33646554850 scopus 로고    scopus 로고
    • Finding a causal ordering via independent component analysis
    • Shohei Shimizu, Aapo Hyvarinen, Patrick Hoyer, and Yutaku Kano. Finding a causal ordering via independent component analysis. Comput Stat Data An, 50(11):3278-3293, 2006.
    • (2006) Comput Stat Data An , vol.50 , Issue.11 , pp. 3278-3293
    • Shimizu, S.1    Hyvarinen, A.2    Hoyer, P.3    Kano, Y.4
  • 33
    • 46149083633 scopus 로고    scopus 로고
    • Identification of conditional intervention distributions
    • Rina Dechter and Thomas Richardson, editors Cambridge, MA, AUAI Press
    • Ilya Shpitser and Judea Pearl. Identification of conditional intervention distributions. In Rina Dechter and Thomas Richardson, editors, Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, pages 437-444, Cambridge, MA, 2006a. AUAI Press.
    • (2006) Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence , pp. 437-444
    • Shpitser, I.1    Pearl, J.2
  • 34
    • 33750742436 scopus 로고    scopus 로고
    • Identification of joint interventional distributions in recursive semi markovian causal models
    • Menlo Park, California, AAAI Press
    • Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semiMarkovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence, pages 1219-1226, Menlo Park, California, 2006b. AAAI Press.
    • (2006) Proceedings of the Twenty-First National Conference on Artificial Intelligence , pp. 1219-1226
    • Shpitser, I.1    Pearl, J.2
  • 35
    • 54249144090 scopus 로고    scopus 로고
    • Complete identification methods for the causal hierarchy
    • Ilya Shpitser and Judea Pearl. Complete identification methods for the causal hierarchy. Journal of Machine Learning Research, 9:1941-1979, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1941-1979
    • Shpitser, I.1    Pearl, J.2
  • 38
    • 0003263637 scopus 로고
    • Directed cyclic graphical representations of feedback models
    • Phillipe Besnard and Steve Hanks, editors Montreal, Canada, Morgan Kaufmann
    • Peter Spirtes. Directed cyclic graphical representations of feedback models. In Phillipe Besnard and Steve Hanks, editors, Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, pages 491-499, Montreal, Canada, 1995. Morgan Kaufmann.
    • (1995) Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence , pp. 491-499
    • Spirtes, P.1
  • 39
    • 0002979137 scopus 로고
    • An algorithm for fast recovery of sparse causal graphs
    • Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review, 9(1):67-72, 1991.
    • (1991) Social Science Computer Review , vol.9 , Issue.1 , pp. 67-72
    • Spirtes, P.1    Glymour, C.2
  • 42
    • 79955877490 scopus 로고    scopus 로고
    • Nonlinear directed acyclic structure learning with weakly additive noise models
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors Vancouver, BC, Curran Associates, Inc.
    • Robert Tillman, Arthur Gretton, and Peter Spirtes. Nonlinear directed acyclic structure learning with weakly additive noise models. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Proceedings of Advances in Neural Processing Information Systems 22, pages 1847-1855, Vancouver, BC, 2009. Curran Associates, Inc.
    • (2009) Proceedings of Advances in Neural Processing Information Systems , vol.22 , pp. 1847-1855
    • Tillman, R.1    Gretton, A.2    Spirtes, P.3
  • 43
    • 3042632570 scopus 로고    scopus 로고
    • An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways
    • Changwon Yoo and Gregory Cooper. An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways. Artificial Intelligence in Medicine, 31(2): 169-182, 2004.
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.2 , pp. 169-182
    • Yoo, C.1    Cooper, G.2
  • 44
    • 48849090548 scopus 로고    scopus 로고
    • Causal reasoning with ancestral graphs
    • Jiji Zhang. Causal reasoning with ancestral graphs. Journal of Machine Learning Research, 9: 1437-1474, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1437-1474
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.