메뉴 건너뛰기




Volumn 50, Issue 3, 2016, Pages 471-485

Score-based causal learning in additive noise models

Author keywords

causal inference; hidden variables; latent variables; path diagrams; structural equation models; structure learning

Indexed keywords


EID: 84937777714     PISSN: 02331888     EISSN: 10294910     Source Type: Journal    
DOI: 10.1080/02331888.2015.1060237     Document Type: Article
Times cited : (28)

References (32)
  • 1
    • 0004213845 scopus 로고    scopus 로고
    • New York: Cambridge University Press
    • J.Pearl. Causality. New York: Cambridge University Press; 2000.
    • (2000) Causality
    • Pearl, J.1
  • 3
    • 84975120386 scopus 로고    scopus 로고
    • Equivalence and synthesis of causal models. Paper presented at the 6th Conference on Uncertainty in Artificial Intelligence (UAI). 1991 July 27–29; Cambridge, MA, USA. p. 220–227
    • T.S.Verma, J.Pearl, Equivalence and synthesis of causal models. Paper presented at the 6th Conference on Uncertainty in Artificial Intelligence (UAI). 1991 July 27–29; Cambridge, MA, USA. p. 220–227.
    • Verma, T.S.1    Pearl, J.2
  • 4
    • 84878796361 scopus 로고    scopus 로고
    • New methods for separating causes from effects in genomics data
    • A.Statnikov, M.Henaff, N.I.Lytkin, C.F.Aliferis. New methods for separating causes from effects in genomics data. BMC Genomics. 2012;13 (Suppl. 8):S22.
    • (2012) BMC Genomics , vol.13 , pp. S22
    • Statnikov, A.1    Henaff, M.2    Lytkin, N.I.3    Aliferis, C.F.4
  • 8
    • 84858789485 scopus 로고    scopus 로고
    • Nonlinear causal discovery with additive noise models. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances in neural information processing systems (NIPS) Vol. 21, 2009. p. 689–696
    • P.O.Hoyer, D.Janzing, J.Mooji, J.Peters, B.Schölkopf, Nonlinear causal discovery with additive noise models. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances in neural information processing systems (NIPS) Vol. 21, 2009. p. 689–696.
    • Hoyer, P.O.1    Janzing, D.2    Mooji, J.3    Peters, J.4    Schölkopf, B.5
  • 9
    • 84897585225 scopus 로고    scopus 로고
    • Identifiability of Gaussian structural equation models with equal error variances
    • J.Peters, P.Bühlmann. Identifiability of Gaussian structural equation models with equal error variances. Biometrika. 2014;101:219–228. doi: 10.1093/biomet/ast043
    • (2014) Biometrika , vol.101 , pp. 219-228
    • Peters, J.1    Bühlmann, P.2
  • 10
    • 80053168312 scopus 로고    scopus 로고
    • Identifiability of causal graphs using functional models. Paper presented at the 27th Conference on Uncertainty in Artificial Intelligence (UAI). 2011 July 14–17; Barcelona, Spain. p. 589–598
    • J.Peters, J.Mooji, D.Janzing, B.Schölkopf, Identifiability of causal graphs using functional models. Paper presented at the 27th Conference on Uncertainty in Artificial Intelligence (UAI). 2011 July 14–17; Barcelona, Spain. p. 589–598.
    • Peters, J.1    Mooji, J.2    Janzing, D.3    Schölkopf, B.4
  • 12
    • 80053155838 scopus 로고    scopus 로고
    • On the identifiability of the post-nonlinear causal model. Paper presented at the 25th Conference on Uncertainty in Artificial Intelligence (UAI). 2009 June 18–21; Montreal, QC, Canada. p. 647–655
    • K.Zhang, A.Hyvärinen, On the identifiability of the post-nonlinear causal model. Paper presented at the 25th Conference on Uncertainty in Artificial Intelligence (UAI). 2009 June 18–21; Montreal, QC, Canada. p. 647–655.
    • Zhang, K.1    Hyvärinen, A.2
  • 13
    • 71149096052 scopus 로고    scopus 로고
    • Regression by dependence minimization and its application to causal inference. Proceedings of the 26th International Conference on Machine Learning (ICML), 2009 June 14–18; Montreal, Canada. p. 745–752
    • J.Mooij, D.Janzing, J.Peters, B.Schölkopf, Regression by dependence minimization and its application to causal inference. Proceedings of the 26th International Conference on Machine Learning (ICML), 2009 June 14–18; Montreal, Canada. p. 745–752.
    • Mooij, J.1    Janzing, D.2    Peters, J.3    Schölkopf, B.4
  • 14
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D.M.Chickering. Optimal structure identification with greedy search. J Mach Learn Res. 2002;3:507–554.
    • (2002) J Mach Learn Res , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 16
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific Symposium on Biocomputing. 2002 January 3–7; Lihue, Hawaii. p. 175–186
    • S.Imoto, T.Goto, S.Miyano, Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific Symposium on Biocomputing. 2002 January 3–7; Lihue, Hawaii. p. 175–186.
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 17
    • 84873446677 scopus 로고    scopus 로고
    • Pairwise likelihood ratios for estimation of non-Gaussian structural equation models
    • A.Hyvärinen, S.M.Smith. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. J Mach Learn Res. 2013;14:111–152.
    • (2013) J Mach Learn Res , vol.14 , pp. 111-152
    • Hyvärinen, A.1    Smith, S.M.2
  • 18
    • 84987997394 scopus 로고    scopus 로고
    • CAM: Causal additive models, high-dimensional order search and penalized regression
    • P.Bühlmann, J.Peters, J.Ernest. CAM: Causal additive models, high-dimensional order search and penalized regression. Ann Stat. 2014;42:2526–2556. doi: 10.1214/14-AOS1260
    • (2014) Ann Stat , vol.42 , pp. 2526-2556
    • Bühlmann, P.1    Peters, J.2    Ernest, J.3
  • 19
    • 84919880773 scopus 로고    scopus 로고
    • Consistency of causal inference under the additive noise model. Proceedings of The 31st International Conference on Machine Learning (ICML). 2014 June 21–26; Beijing, China. p. 478–486
    • S.Kpotufe, E.Sgouritsa, D.Janzig, B.Schölkopf, Consistency of causal inference under the additive noise model. Proceedings of The 31st International Conference on Machine Learning (ICML). 2014 June 21–26; Beijing, China. p. 478–486.
    • Kpotufe, S.1    Sgouritsa, E.2    Janzig, D.3    Schölkopf, B.4
  • 22
    • 84972488102 scopus 로고
    • Generalized additive models
    • T.Hastie, R.Tibshirani. Generalized additive models. Stat Sci. 1986;1:297–318. doi: 10.1214/ss/1177013604
    • (1986) Stat Sci , vol.1 , pp. 297-318
    • Hastie, T.1    Tibshirani, R.2
  • 23
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • W.S.Cleveland. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829–836. doi: 10.1080/01621459.1979.10481038
    • (1979) J Am Stat Assoc , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 24
    • 0000149518 scopus 로고
    • A study of logspline density estimation
    • C.Kooperberg, C.J.Stone. A study of logspline density estimation. Comput Stat Data Anal. 1991;12:327–347. doi: 10.1016/0167-9473(91)90115-I
    • (1991) Comput Stat Data Anal , vol.12 , pp. 327-347
    • Kooperberg, C.1    Stone, C.J.2
  • 25
    • 0027298239 scopus 로고
    • A quantitative measure of nonlinearity
    • K.Emancipator, M.H.Kroll. A quantitative measure of nonlinearity. Clin. Chem. 1993;39:766–772.
    • (1993) Clin. Chem , vol.39 , pp. 766-772
    • Emancipator, K.1    Kroll, M.H.2
  • 26
    • 84975165857 scopus 로고    scopus 로고
    • Distinguishing between cause and effect. In: Journal of Machine Learning Workshop and Conference Proceedings, 2010;6:147–156
    • J.Mooji, D.Janzing, Distinguishing between cause and effect. In: Journal of Machine Learning Workshop and Conference Proceedings, 2010;6:147–156.
    • Mooji, J.1    Janzing, D.2
  • 27
    • 84975155002 scopus 로고    scopus 로고
    • Distinguishing causes from effects using nonlinear acyclic causal models. In: Journal of Machine Learning Workshop and Conference Proceedings 2010;6:157–164
    • K.Zhang, A.Hyvärinen, Distinguishing causes from effects using nonlinear acyclic causal models. In: Journal of Machine Learning Workshop and Conference Proceedings 2010;6:157–164.
    • Zhang, K.1    Hyvärinen, A.2
  • 32
    • 34249036798 scopus 로고    scopus 로고
    • Bracketing metric entropy rates and empirical central limit theorems for function classes of besov- and sobolev-type
    • R.Nickl, B.M.Pötscher. Bracketing metric entropy rates and empirical central limit theorems for function classes of besov- and sobolev-type. J Theor Probab. 2007;20:177–199. doi: 10.1007/s10959-007-0058-1
    • (2007) J Theor Probab , vol.20 , pp. 177-199
    • Nickl, R.1    Pötscher, B.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.