-
1
-
-
0004213845
-
-
New York: Cambridge University Press
-
J.Pearl. Causality. New York: Cambridge University Press; 2000.
-
(2000)
Causality
-
-
Pearl, J.1
-
3
-
-
84975120386
-
-
Equivalence and synthesis of causal models. Paper presented at the 6th Conference on Uncertainty in Artificial Intelligence (UAI). 1991 July 27–29; Cambridge, MA, USA. p. 220–227
-
T.S.Verma, J.Pearl, Equivalence and synthesis of causal models. Paper presented at the 6th Conference on Uncertainty in Artificial Intelligence (UAI). 1991 July 27–29; Cambridge, MA, USA. p. 220–227.
-
-
-
Verma, T.S.1
Pearl, J.2
-
5
-
-
84868013998
-
Causal stability ranking
-
D.J.Stekhoven, I.Moraes, G.Sveinbjornsson, L.Hennig, M.H.Maathuis, P.Bühlmann. Causal stability ranking. Bioinformatics. 2012;28:2819–2823. doi: 10.1093/bioinformatics/bts523
-
(2012)
Bioinformatics
, vol.28
, pp. 2819-2823
-
-
Stekhoven, D.J.1
Moraes, I.2
Sveinbjornsson, G.3
Hennig, L.4
Maathuis, M.H.5
Bühlmann, P.6
-
6
-
-
70749096309
-
Six problems for causal inference from fMRI
-
J.D.Ramsey, S.J.Hansen, C.Hanson, Y.O.Halchenko, R.A.Poldrack, C.Glymour. Six problems for causal inference from fMRI. NeuroImage. 2010;49:1545–1558. doi: 10.1016/j.neuroimage.2009.08.065
-
(2010)
NeuroImage
, vol.49
, pp. 1545-1558
-
-
Ramsey, J.D.1
Hansen, S.J.2
Hanson, C.3
Halchenko, Y.O.4
Poldrack, R.A.5
Glymour, C.6
-
8
-
-
84858789485
-
-
Nonlinear causal discovery with additive noise models. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances in neural information processing systems (NIPS) Vol. 21, 2009. p. 689–696
-
P.O.Hoyer, D.Janzing, J.Mooji, J.Peters, B.Schölkopf, Nonlinear causal discovery with additive noise models. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances in neural information processing systems (NIPS) Vol. 21, 2009. p. 689–696.
-
-
-
Hoyer, P.O.1
Janzing, D.2
Mooji, J.3
Peters, J.4
Schölkopf, B.5
-
9
-
-
84897585225
-
Identifiability of Gaussian structural equation models with equal error variances
-
J.Peters, P.Bühlmann. Identifiability of Gaussian structural equation models with equal error variances. Biometrika. 2014;101:219–228. doi: 10.1093/biomet/ast043
-
(2014)
Biometrika
, vol.101
, pp. 219-228
-
-
Peters, J.1
Bühlmann, P.2
-
10
-
-
80053168312
-
-
Identifiability of causal graphs using functional models. Paper presented at the 27th Conference on Uncertainty in Artificial Intelligence (UAI). 2011 July 14–17; Barcelona, Spain. p. 589–598
-
J.Peters, J.Mooji, D.Janzing, B.Schölkopf, Identifiability of causal graphs using functional models. Paper presented at the 27th Conference on Uncertainty in Artificial Intelligence (UAI). 2011 July 14–17; Barcelona, Spain. p. 589–598.
-
-
-
Peters, J.1
Mooji, J.2
Janzing, D.3
Schölkopf, B.4
-
12
-
-
80053155838
-
-
On the identifiability of the post-nonlinear causal model. Paper presented at the 25th Conference on Uncertainty in Artificial Intelligence (UAI). 2009 June 18–21; Montreal, QC, Canada. p. 647–655
-
K.Zhang, A.Hyvärinen, On the identifiability of the post-nonlinear causal model. Paper presented at the 25th Conference on Uncertainty in Artificial Intelligence (UAI). 2009 June 18–21; Montreal, QC, Canada. p. 647–655.
-
-
-
Zhang, K.1
Hyvärinen, A.2
-
13
-
-
71149096052
-
-
Regression by dependence minimization and its application to causal inference. Proceedings of the 26th International Conference on Machine Learning (ICML), 2009 June 14–18; Montreal, Canada. p. 745–752
-
J.Mooij, D.Janzing, J.Peters, B.Schölkopf, Regression by dependence minimization and its application to causal inference. Proceedings of the 26th International Conference on Machine Learning (ICML), 2009 June 14–18; Montreal, Canada. p. 745–752.
-
-
-
Mooij, J.1
Janzing, D.2
Peters, J.3
Schölkopf, B.4
-
14
-
-
0042967741
-
Optimal structure identification with greedy search
-
D.M.Chickering. Optimal structure identification with greedy search. J Mach Learn Res. 2002;3:507–554.
-
(2002)
J Mach Learn Res
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
16
-
-
0036372453
-
-
Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific Symposium on Biocomputing. 2002 January 3–7; Lihue, Hawaii. p. 175–186
-
S.Imoto, T.Goto, S.Miyano, Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific Symposium on Biocomputing. 2002 January 3–7; Lihue, Hawaii. p. 175–186.
-
-
-
Imoto, S.1
Goto, T.2
Miyano, S.3
-
17
-
-
84873446677
-
Pairwise likelihood ratios for estimation of non-Gaussian structural equation models
-
A.Hyvärinen, S.M.Smith. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. J Mach Learn Res. 2013;14:111–152.
-
(2013)
J Mach Learn Res
, vol.14
, pp. 111-152
-
-
Hyvärinen, A.1
Smith, S.M.2
-
18
-
-
84987997394
-
CAM: Causal additive models, high-dimensional order search and penalized regression
-
P.Bühlmann, J.Peters, J.Ernest. CAM: Causal additive models, high-dimensional order search and penalized regression. Ann Stat. 2014;42:2526–2556. doi: 10.1214/14-AOS1260
-
(2014)
Ann Stat
, vol.42
, pp. 2526-2556
-
-
Bühlmann, P.1
Peters, J.2
Ernest, J.3
-
19
-
-
84919880773
-
-
Consistency of causal inference under the additive noise model. Proceedings of The 31st International Conference on Machine Learning (ICML). 2014 June 21–26; Beijing, China. p. 478–486
-
S.Kpotufe, E.Sgouritsa, D.Janzig, B.Schölkopf, Consistency of causal inference under the additive noise model. Proceedings of The 31st International Conference on Machine Learning (ICML). 2014 June 21–26; Beijing, China. p. 478–486.
-
-
-
Kpotufe, S.1
Sgouritsa, E.2
Janzig, D.3
Schölkopf, B.4
-
22
-
-
84972488102
-
Generalized additive models
-
T.Hastie, R.Tibshirani. Generalized additive models. Stat Sci. 1986;1:297–318. doi: 10.1214/ss/1177013604
-
(1986)
Stat Sci
, vol.1
, pp. 297-318
-
-
Hastie, T.1
Tibshirani, R.2
-
23
-
-
84936916896
-
Robust locally weighted regression and smoothing scatterplots
-
W.S.Cleveland. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829–836. doi: 10.1080/01621459.1979.10481038
-
(1979)
J Am Stat Assoc
, vol.74
, pp. 829-836
-
-
Cleveland, W.S.1
-
24
-
-
0000149518
-
A study of logspline density estimation
-
C.Kooperberg, C.J.Stone. A study of logspline density estimation. Comput Stat Data Anal. 1991;12:327–347. doi: 10.1016/0167-9473(91)90115-I
-
(1991)
Comput Stat Data Anal
, vol.12
, pp. 327-347
-
-
Kooperberg, C.1
Stone, C.J.2
-
25
-
-
0027298239
-
A quantitative measure of nonlinearity
-
K.Emancipator, M.H.Kroll. A quantitative measure of nonlinearity. Clin. Chem. 1993;39:766–772.
-
(1993)
Clin. Chem
, vol.39
, pp. 766-772
-
-
Emancipator, K.1
Kroll, M.H.2
-
26
-
-
84975165857
-
-
Distinguishing between cause and effect. In: Journal of Machine Learning Workshop and Conference Proceedings, 2010;6:147–156
-
J.Mooji, D.Janzing, Distinguishing between cause and effect. In: Journal of Machine Learning Workshop and Conference Proceedings, 2010;6:147–156.
-
-
-
Mooji, J.1
Janzing, D.2
-
27
-
-
84975155002
-
-
Distinguishing causes from effects using nonlinear acyclic causal models. In: Journal of Machine Learning Workshop and Conference Proceedings 2010;6:157–164
-
K.Zhang, A.Hyvärinen, Distinguishing causes from effects using nonlinear acyclic causal models. In: Journal of Machine Learning Workshop and Conference Proceedings 2010;6:157–164.
-
-
-
Zhang, K.1
Hyvärinen, A.2
-
28
-
-
84857129458
-
Information-geometric approach to inferring causal directions
-
D.Janzing, J.Mooji, K.Zhang, J.Lemeire, J.Zscheischler, P.Daniusis, B.Steudel, B.Schölkopf. Information-geometric approach to inferring causal directions. Artificial Intelligence. 2012;182–183:1–31. doi: 10.1016/j.artint.2012.01.002
-
(2012)
Artificial Intelligence
, vol.182-183
, pp. 1-31
-
-
Janzing, D.1
Mooji, J.2
Zhang, K.3
Lemeire, J.4
Zscheischler, J.5
Daniusis, P.6
Steudel, B.7
Schölkopf, B.8
-
32
-
-
34249036798
-
Bracketing metric entropy rates and empirical central limit theorems for function classes of besov- and sobolev-type
-
R.Nickl, B.M.Pötscher. Bracketing metric entropy rates and empirical central limit theorems for function classes of besov- and sobolev-type. J Theor Probab. 2007;20:177–199. doi: 10.1007/s10959-007-0058-1
-
(2007)
J Theor Probab
, vol.20
, pp. 177-199
-
-
Nickl, R.1
Pötscher, B.M.2
|