메뉴 건너뛰기




Volumn 121, Issue , 2008, Pages 399-433

Neural nets and genetic algorithms in marketing

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84955064618     PISSN: 08848289     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-0-387-78213-3_12     Document Type: Chapter
Times cited : (3)

References (111)
  • 1
    • 0033430574 scopus 로고    scopus 로고
    • A Generalized Additive Model for Discrete Choice Data
    • Abe, M. 1999. A Generalized Additive Model for Discrete Choice Data. Journal of Business and Economics. 17 271-284.
    • (1999) Journal of Business and Economics , vol.17 , pp. 271-284
    • Abe, M.1
  • 2
    • 0030525101 scopus 로고    scopus 로고
    • Market Share Forecasting: An Empirical Comparison of Artificial Neural Networks and Multinomial Logit Model
    • Agrawal, D., C. Schorling. 1996. Market Share Forecasting: An Empirical Comparison of Artificial Neural Networks and Multinomial Logit Model. Journal of Retailing 72 383-407.
    • (1996) Journal of Retailing , vol.72 , pp. 383-407
    • Agrawal, D.1    Schorling, C.2
  • 4
    • 0035480442 scopus 로고    scopus 로고
    • A Genetic Algorithm Approach to the Product Line Design Problem Using the Seller’s Return Criterion: An Extensive Comparative Computational Study
    • Alexouda, G., K. Paparrizos. 2001. A Genetic Algorithm Approach to the Product Line Design Problem Using the Seller’s Return Criterion: An Extensive Comparative Computational Study. European Journal of Operational Research 134 165-178.
    • (2001) European Journal of Operational Research , vol.134 , pp. 165-178
    • Alexouda, G.1    Paparrizos, K.2
  • 7
    • 0742324901 scopus 로고    scopus 로고
    • Development of Hybrid Genetic Algorithms for Product Line Designs. IEEE Transactions on Systems
    • Balakrishnan, P.V., R. Gupta, V.S. Jacob. 2004. Development of Hybrid Genetic Algorithms for Product Line Designs. IEEE Transactions on Systems, Man and Cybernetics - Part B 33 468-483.
    • (2004) Man and Cybernetics - Part B , vol.33 , pp. 468-483
    • Balakrishnan, P.V.1    Gupta, R.2    Jacob, V.S.3
  • 8
    • 23344453366 scopus 로고    scopus 로고
    • An Investigation of Mating and Population Maintenance Strategies in Hybrid Genetic Heuristics for Product Line Design
    • Balakrishnan, P.V., R. Gupta, V.S. Jacob. 2006. An Investigation of Mating and Population Maintenance Strategies in Hybrid Genetic Heuristics for Product Line Design. Computers and Operational Research 33 639-659.
    • (2006) Computers and Operational Research , vol.33 , pp. 639-659
    • Balakrishnan, P.V.1    Gupta, R.2    Jacob, V.S.3
  • 9
  • 10
    • 0027599793 scopus 로고
    • Universal Approximation Bounds for Superpositions of a Sigmoidal Function
    • Barron, A.R. 1993. Universal Approximation Bounds for Superpositions of a Sigmoidal Function. IEEE Transactions on Information Theory 39 930-945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 11
    • 0442263559 scopus 로고    scopus 로고
    • La modelisation du choix des marques par le modele multinomial logit et les reseaux de neurones artificiels: Proposition d’une approche hybride
    • Bentz, Y., D. Merunka. 1996. La modelisation du choix des marques par le modele multinomial logit et les reseaux de neurones artificiels: proposition d’une approche hybride. Recherche et Applications en Marketing 11 43-61.
    • (1996) Recherche Et Applications En Marketing , vol.11 , pp. 43-61
    • Bentz, Y.1    Merunka, D.2
  • 12
    • 0012863795 scopus 로고    scopus 로고
    • Neural Networks and the Multinomial Logit for Brand Choice Modelling: A Hybrid Approach
    • Bentz, Y., D. Merunka. 2000. Neural Networks and the Multinomial Logit for Brand Choice Modelling: A Hybrid Approach. Journal of Forecasting 19 177-200.
    • (2000) Journal of Forecasting , vol.19 , pp. 177-200
    • Bentz, Y.1    Merunka, D.2
  • 15
    • 0001030926 scopus 로고    scopus 로고
    • Limited Choice Sets, Local Price Response and Implied Measures of Price Competition
    • Bronnenberg, B.J., W.R. Vanhonacker. 1996. Limited Choice Sets, Local Price Response and Implied Measures of Price Competition. Journal of Marketing Research 33 163-173.
    • (1996) Journal of Marketing Research , vol.33 , pp. 163-173
    • Bronnenberg, B.J.1    Vanhonacker, W.R.2
  • 16
    • 0036479162 scopus 로고    scopus 로고
    • A Simulated Annealing Heuristic for a Bicriterion Partitioning Problem in Market Segmentation
    • Brusco, M.J, J.D. Cradit, S. Stahl. 2002. A Simulated Annealing Heuristic for a Bicriterion Partitioning Problem in Market Segmentation. Journal of Marketing Research 39 99-109.
    • (2002) Journal of Marketing Research , vol.39 , pp. 99-109
    • Brusco, M.J.1    Cradit, J.D.2    Stahl, S.3
  • 17
    • 10444274107 scopus 로고    scopus 로고
    • Customer Base Analysis: Partial Defection of Behaviourally Loyal Clients in a Non-contractual FMCG Retail Setting
    • Buckinx, W., D. van den Poel. 2005. Customer Base Analysis: Partial Defection of Behaviourally Loyal Clients in a Non-contractual FMCG Retail Setting. European Journal of Operational Research 164 252-268.
    • (2005) European Journal of Operational Research , vol.164 , pp. 252-268
    • Buckinx, W.1    Van Den Poel, D.2
  • 19
    • 84972539015 scopus 로고
    • Neural Networks. A review from a Statistical Perspective
    • Cheng, B., D.M. Titterington. 1994. Neural Networks. A review from a Statistical Perspective. Statistics Science 9 2-54.
    • (1994) Statistics Science , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 21
    • 0024861871 scopus 로고
    • Continuous Value Neural Networks with Two Hidden Layers are Sufficient. Mathematics of Control
    • Cybenko, G. 1989. Continuous Value Neural Networks with Two Hidden Layers are Sufficient. Mathematics of Control, Signal and Systems 2 303-314.
    • (1989) Signal and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 22
    • 0001344011 scopus 로고
    • Comparing the Predictive Performance of a Neural Network Model with Some Traditional Market Response Models
    • Dasgupta, C.G., G.S. Dispensa, S. Ghose. 1994. Comparing the Predictive Performance of a Neural Network Model with Some Traditional Market Response Models. International Journal of Forecasting 10 235-244.
    • (1994) International Journal of Forecasting , vol.10 , pp. 235-244
    • Dasgupta, C.G.1    Dispensa, G.S.2    Ghose, S.3
  • 23
    • 0001104737 scopus 로고
    • A Simulated Annealing Methodology for Clusterwise Linear Regression
    • DeSarbo, W.S., R.L. Oliver, A. Rangaswamy. 1989. A Simulated Annealing Methodology for Clusterwise Linear Regression. Psychometrika 4 707-736.
    • (1989) Psychometrika , vol.4 , pp. 707-736
    • Desarbo, W.S.1    Oliver, R.L.2    Rangaswamy, A.3
  • 24
    • 84874478476 scopus 로고    scopus 로고
    • Comparaison de la prédictivité d’un réseau de neurones a retropropagation avec celle des methodes de regression lineaire, logistique et AID, pour le calcul des scores en marketing direct
    • Desmet, P. 1996. Comparaison de la prédictivité d’un réseau de neurones a retropropagation avec celle des methodes de regression lineaire, logistique et AID, pour le calcul des scores en marketing direct. Recherche et Applications en Marketing 11 17-27.
    • (1996) Recherche Et Applications En Marketing , vol.11 , pp. 17-27
    • Desmet, P.1
  • 25
    • 0000922317 scopus 로고
    • Positioning and Pricing of a Product Line: Formulation and Heuristics
    • Dobson, G., S. Kalish. 1988. Positioning and Pricing of a Product Line: Formulation and Heuristics. Marketing Science 7 107-125.
    • (1988) Marketing Science , vol.7 , pp. 107-125
    • Dobson, G.1    Kalish, S.2
  • 26
    • 0001419757 scopus 로고
    • Distributed Representations, Simple Recurrent Networks, and Grammatical Structure
    • Elman, J.L. 1991. Distributed Representations, Simple Recurrent Networks, and Grammatical Structure. Machine Learning 7 195-225.
    • (1991) Machine Learning , vol.7 , pp. 195-225
    • Elman, J.L.1
  • 27
    • 0346899283 scopus 로고    scopus 로고
    • Using an Artificial Neural Network Trained with a Genetic Algorithm to Model Brand Share
    • Fish, K.E., J.D. Johnson, R.E. Dorsey, J.G. Blodgett. 2004. Using an Artificial Neural Network Trained with a Genetic Algorithm to Model Brand Share. Journal of Business Research 57 79-85.
    • (2004) Journal of Business Research , vol.57 , pp. 79-85
    • Fish, K.E.1    Johnson, J.D.2    Dorsey, R.E.3    Blodgett, J.G.4
  • 32
    • 0004296209 scopus 로고    scopus 로고
    • 5th edition, Prentice Hall, Upper Saddle River, NJ
    • Greene, W.H. 2003. Econometric Analysis, 5th edition, Prentice Hall, Upper Saddle River, NJ.
    • (2003) Econometric Analysis
    • Greene, W.H.1
  • 33
    • 0001886068 scopus 로고
    • Models and Heuristics for Product Line Selection
    • Green, P.E., A.M. Krieger. 1985. Models and Heuristics for Product Line Selection. Marketing Science 4 1-19.
    • (1985) Marketing Science , vol.4 , pp. 1-19
    • Green, P.E.1    Krieger, A.M.2
  • 34
    • 0037401823 scopus 로고    scopus 로고
    • Optimal New Product Positioning: A Genetic Algorithm Approach
    • Gruca, T.S., B.R. Klemz. 2003. Optimal New Product Positioning: A Genetic Algorithm Approach. European Journal of Operational Research 146 621-633.
    • (2003) European Journal of Operational Research , vol.146 , pp. 621-633
    • Gruca, T.S.1    Klemz, B.R.2
  • 35
    • 84857648148 scopus 로고    scopus 로고
    • Mining Sales Data Using a Neural Network Model of Market Response
    • Gruca, T.S., B.R. Klemz, E.A. Petersen. 1998. Mining Sales Data Using a Neural Network Model of Market Response. SIGKDD Explorations 1(1) 39-43.
    • (1998) SIGKDD Explorations , vol.1 , Issue.1 , pp. 39-43
    • Gruca, T.S.1    Klemz, B.R.2    Petersen, E.A.3
  • 39
    • 2342595855 scopus 로고    scopus 로고
    • Determining the Appropriate Amount of Data for Classifying Consumer for Direct Marketing Purposes
    • Heilman, C.M., F. Kaefer, S.D. Ramenofsky. 2003. Determining the Appropriate Amount of Data for Classifying Consumer for Direct Marketing Purposes. Journal of Interactive Marketing 17(3) 5-28.
    • (2003) Journal of Interactive Marketing , vol.17 , Issue.3 , pp. 5-28
    • Heilman, C.M.1    Kaefer, F.2    Ramenofsky, S.D.3
  • 41
    • 0024880831 scopus 로고
    • Multilayer Feedforward Networks are Universal Approximators
    • Hornik, K., M. Stinchcombe, H. White. 1989. Multilayer Feedforward Networks are Universal Approximators. Neural Networks 3 359-366.
    • (1989) Neural Networks , vol.3 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 42
    • 0027904982 scopus 로고
    • Determining Market Response Functions by Neural Network Modeling. A Comparison to Econometric Techniques
    • Hruschka, H. 1993. Determining Market Response Functions by Neural Network Modeling. A Comparison to Econometric Techniques. European Journal of Operational Research 66 27-35.
    • (1993) European Journal of Operational Research , vol.66 , pp. 27-35
    • Hruschka, H.1
  • 43
    • 33746234588 scopus 로고    scopus 로고
    • An Artificial Neural Net Attraction Model (ANNAM) to Analyze Market Share Effects of Marketing Instruments
    • Hruschka, H. 2001. An Artificial Neural Net Attraction Model (ANNAM) to Analyze Market Share Effects of Marketing Instruments. Schmalenbach Business Review-zfbf 53 27-40.
    • (2001) Schmalenbach Business Review-Zfbf , vol.53 , pp. 27-40
    • Hruschka, H.1
  • 44
    • 33746257303 scopus 로고    scopus 로고
    • Relevance of Functional Flexibility for Heterogeneous Sales Response Models: A Comparison of Parametric and Seminonparametric Models
    • Hruschka, H. 2006. Relevance of Functional Flexibility for Heterogeneous Sales Response Models: A Comparison of Parametric and Seminonparametric Models. European Journal of Operational Research 174 1009-1020.
    • (2006) European Journal of Operational Research , vol.174 , pp. 1009-1020
    • Hruschka, H.1
  • 45
    • 2942661901 scopus 로고    scopus 로고
    • An Empirical Comparison of the Validity of a Neural Net Based Multinomial Logit Choice Model to Alternative Model Specifications
    • Hruschka, H., W. Fettes, M. Probst. 2004. An Empirical Comparison of the Validity of a Neural Net Based Multinomial Logit Choice Model to Alternative Model Specifications. European Journal of Operational Research 159 166-180.
    • (2004) European Journal of Operational Research , vol.159 , pp. 166-180
    • Hruschka, H.1    Fettes, W.2    Probst, M.3
  • 46
    • 0344438154 scopus 로고    scopus 로고
    • A Flexible Brand Choice Model Based on Neural Net Methodology. A Comparison to the Linear Utility Multinomial Logit Model and its Latent Class Extension
    • Hruschka, H., W. Fettes, M. Probst, C. Mies. 2002. A Flexible Brand Choice Model Based on Neural Net Methodology. A Comparison to the Linear Utility Multinomial Logit Model and its Latent Class Extension. OR Spectrum 24 127-143.
    • (2002) OR Spectrum , vol.24 , pp. 127-143
    • Hruschka, H.1    Fettes, W.2    Probst, M.3    Mies, C.4
  • 47
    • 84955096790 scopus 로고    scopus 로고
    • Arnott, D. et al., Eds. Marketing: Progress, Prospects, Perspectives, Proceedings of the Annual Conference of the European Marketing Academy (EMAC), Warwick Business School, UK
    • Hruschka, H., J.P. Heimel, M. Natter, A. Taudes. 1998. Connectionist and Logit Models of Brand Choice. Arnott, D. et al., Eds. Marketing: Progress, Prospects, Perspectives, Proceedings of the Annual Conference of the European Marketing Academy (EMAC), Warwick Business School, UK, 1772-1778.
    • (1998) Connectionist and Logit Models of Brand Choice , pp. 1772-1778
    • Hruschka, H.1    Heimel, J.P.2    Natter, M.3    Taudes, A.4
  • 48
    • 0039705626 scopus 로고
    • Analyse von Marktsegmenten mit Hilfe konnexionistischer Modelle
    • Hruschka, H., M. Natter.1993a. Analyse von Marktsegmenten mit Hilfe konnexionistischer Modelle. Zeitschrift fur Betriebswirtschaft 63 425-442.
    • (1993) Zeitschrift Fur Betriebswirtschaft , vol.63 , pp. 425-442
    • Hruschka, H.1    Natter, M.2
  • 49
    • 84955072594 scopus 로고
    • Janssens, J., C.H. Skiadas, Eds. Applied Stochastic Models and Data Analysis, Vol. I, World Scientific Singapore
    • Hruschka, H., M. Natter. 1993b. A-Posteriori Segmentation in Marketing by Neural Network Models. Janssens, J., C.H. Skiadas, Eds. Applied Stochastic Models and Data Analysis, Vol. I, World Scientific Singapore, 375-387.
    • (1993) A-Posteriori Segmentation in Marketing by Neural Network Models , pp. 375-387
    • Hruschka, H.1    Natter, M.2
  • 50
    • 0033116873 scopus 로고    scopus 로고
    • Comparing Performance of Feedforward Neural Nets and K-Means for Cluster-Based Market Segmentation
    • Hruschka, H., M. Natter 1999. Comparing Performance of Feedforward Neural Nets and K-Means for Cluster-Based Market Segmentation. European Journal of Operational Research 114 346-353.
    • (1999) European Journal of Operational Research , vol.114 , pp. 346-353
    • Hruschka, H.1    Natter, M.2
  • 51
    • 0012715994 scopus 로고    scopus 로고
    • Estimation of Posterior Probabilities of Consumer Situational Choices with Neural Network Classifiers
    • Hu, M.Y., M. Shanker, M.S. Hung. 1999. Estimation of Posterior Probabilities of Consumer Situational Choices with Neural Network Classifiers. International Journal of Research in Marketing 16 307-317.
    • (1999) International Journal of Research in Marketing , vol.16 , pp. 307-317
    • Hu, M.Y.1    Shanker, M.2    Hung, M.S.3
  • 52
    • 0037401696 scopus 로고    scopus 로고
    • Explaining Consumer Choice Through Neural Networks: The Stacked Generalization Approach
    • Hu, M.Y., C. Tsoukalas. 2003. Explaining Consumer Choice Through Neural Networks: The Stacked Generalization Approach. European Journal of Operational Research 146 650-660.
    • (2003) European Journal of Operational Research , vol.146 , pp. 650-660
    • Hu, M.Y.1    Tsoukalas, C.2
  • 54
    • 23844478259 scopus 로고    scopus 로고
    • Neural Network Modeling for Small Datasets
    • Ingrassia, S., I. Morlini. 2005. Neural Network Modeling for Small Datasets. Technometrics 47 297-311.
    • (2005) Technometrics , vol.47 , pp. 297-311
    • Ingrassia, S.1    Morlini, I.2
  • 55
    • 2942587224 scopus 로고    scopus 로고
    • Joint Optimization of Customer Segmentation and Marketing Policy to Maximize Long-Term Profitability
    • Jonker, J.-J., N. Piersma, D. van den Poel. 2004. Joint Optimization of Customer Segmentation and Marketing Policy to Maximize Long-Term Profitability. Expert Systems with Applications 27 159-168.
    • (2004) Expert Systems with Applications , vol.27 , pp. 159-168
    • Jonker, J.-J.1    Piersma, N.2    Van Den Poel, D.3
  • 56
    • 13544274197 scopus 로고    scopus 로고
    • A Neural Network Application to Consumer Classification to Improve the Timing of Direkt Marketing Activities
    • Kaefer, F., C.M. Heilman, S.D. Ramenofsky. 2005. A Neural Network Application to Consumer Classification to Improve the Timing of Direkt Marketing Activities. Computers and Operational Research 32 2505-2615.
    • (2005) Computers and Operational Research , vol.32 , pp. 2505-2615
    • Kaefer, F.1    Heilman, C.M.2    Ramenofsky, S.D.3
  • 57
    • 0000917415 scopus 로고
    • A Probabilistic Choice Model for Market Segmentation and Elasticity Structure
    • Kamakura, W.A., G.J. Russel. 1989. A Probabilistic Choice Model for Market Segmentation and Elasticity Structure. Journal of Marketing Research 26 379-390.
    • (1989) Journal of Marketing Research , vol.26 , pp. 379-390
    • Kamakura, W.A.1    Russel, G.J.2
  • 58
    • 14944368253 scopus 로고    scopus 로고
    • Customer Targeting: A Neural Network Approach by Genetic Algorithms
    • Kim, Y., W.N. Street, G.J. Russell, F. Menczer. 2005. Customer Targeting: A Neural Network Approach by Genetic Algorithms. Management Science 51 264-276.
    • (2005) Management Science , vol.51 , pp. 264-276
    • Kim, Y.1    Street, W.N.2    Russell, G.J.3    Menczer, F.4
  • 59
    • 0012696068 scopus 로고    scopus 로고
    • Using Genetic Algorithms to Assess the Impact of Pricing Activity Timing
    • Klemz, B. 1999. Using Genetic Algorithms to Assess the Impact of Pricing Activity Timing. Omega 27 363-372.
    • (1999) Omega , vol.27 , pp. 363-372
    • Klemz, B.1
  • 60
    • 0042919556 scopus 로고    scopus 로고
    • Next-Product-to-Buy Models for Cross-selling Applications
    • Knott, A., A. Hayes, S.A. Neslin. 2002. Next-Product-to-Buy Models for Cross-selling Applications. Journal of Interactive Marketing 16(3) 59-75.
    • (2002) Journal of Interactive Marketing , vol.16 , Issue.3 , pp. 59-75
    • Knott, A.1    Hayes, A.2    Neslin, S.A.3
  • 61
    • 0023589050 scopus 로고
    • A Heuristic Approach to Product Design
    • Kohli, R., R. Krishnamurthi 1987. A Heuristic Approach to Product Design. Management Science 33 1523-1533.
    • (1987) Management Science , vol.33 , pp. 1523-1533
    • Kohli, R.1    Krishnamurthi, R.2
  • 62
    • 0001395037 scopus 로고
    • An Empirical Comparison of Neural Networks and Logistic Regression Models
    • Kumar, A., V.R. Rao, H. Soni. 1995. An Empirical Comparison of Neural Networks and Logistic Regression Models. Marketing Letters 6 251-263.
    • (1995) Marketing Letters , vol.6 , pp. 251-263
    • Kumar, A.1    Rao, V.R.2    Soni, H.3
  • 63
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian Approach for Neural Networks - Review and Case Studies
    • Lampinen, J., A. Vehtari. 2001. Bayesian Approach for Neural Networks - Review and Case Studies. Neural Networks 14 257-274.
    • (2001) Neural Networks , vol.14 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 65
    • 21644473756 scopus 로고    scopus 로고
    • An Empirical Study of Dynamic Customer Relationship Management
    • Li, C., Y. Xu, H. Li. 2005. An Empirical Study of Dynamic Customer Relationship Management. Journal of Retailing and Consumer Services 12 431-441.
    • (2005) Journal of Retailing and Consumer Services , vol.12 , pp. 431-441
    • Li, C.1    Xu, Y.2    Li, H.3
  • 66
    • 40949088390 scopus 로고    scopus 로고
    • Predicting the Effects of Physician-Directed Promotion on Prescription Yield and Sales Uptake Using Neural Networks. Journal of Targeting
    • Lim, C.W., T. Kirikoshi. 2005. Predicting the Effects of Physician-Directed Promotion on Prescription Yield and Sales Uptake Using Neural Networks. Journal of Targeting, Measurement and Analysis for Marketing 13 156-167.
    • (2005) Measurement and Analysis for Marketing , vol.13 , pp. 156-167
    • Lim, C.W.1    Kirikoshi, T.2
  • 68
    • 0002704818 scopus 로고
    • A Practical Bayesian Framework for Backpropagation Networks
    • MacKay, D.J.C. 1992a. A Practical Bayesian Framework for Backpropagation Networks. Neural Computation 4 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 69
    • 0001025418 scopus 로고
    • Bayesian Interpolation
    • MacKay, D.J.C. 1992b. Bayesian Interpolation. Neural Computation 4 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 70
    • 14544268278 scopus 로고    scopus 로고
    • Neural Market Structure Analysis: Novel Topology-Sensitive Methodology
    • Mazanec, J.A. 2001. Neural Market Structure Analysis: Novel Topology-Sensitive Methodology. European Journal of Marketing 35 894-914.
    • (2001) European Journal of Marketing , vol.35 , pp. 894-914
    • Mazanec, J.A.1
  • 74
    • 0042709395 scopus 로고    scopus 로고
    • An Improved Collaborative Filtering Approach for Predicting Cross-Category Purchases Based on Binary Market Basket Data
    • Mild, A., T. Reutterer. 2003. An Improved Collaborative Filtering Approach for Predicting Cross-Category Purchases Based on Binary Market Basket Data. Journal of Retailing and Consumer Services 10 123-133.
    • (2003) Journal of Retailing and Consumer Services , vol.10 , pp. 123-133
    • Mild, A.1    Reutterer, T.2
  • 76
    • 0027205884 scopus 로고
    • A Scaled Conjugated Gradient Algorithm for Fast Supervised Learning
    • Möller, M. 1993. A Scaled Conjugated Gradient Algorithm for Fast Supervised Learning. Neural Networks 6 525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Möller, M.1
  • 77
    • 0347128520 scopus 로고    scopus 로고
    • Issues in Bayesian Analysis of Neural Network Models
    • Muller, P., D.R. Insua. 1998. Issues in Bayesian Analysis of Neural Network Models. Neural Computation 10 571-592.
    • (1998) Neural Computation , vol.10 , pp. 571-592
    • Muller, P.1    Insua, D.R.2
  • 78
    • 0032218130 scopus 로고    scopus 로고
    • Planing Media Schedules in the Presence of Dynamic Advertising Quality
    • Naik, P.A., M.K. Mantrala, A.G. Sawyer. 1998. Planing Media Schedules in the Presence of Dynamic Advertising Quality. Marketing Science 17 214-235.
    • (1998) Marketing Science , vol.17 , pp. 214-235
    • Naik, P.A.1    Mantrala, M.K.2    Sawyer, A.G.3
  • 79
    • 1642353423 scopus 로고    scopus 로고
    • A Model and a Solution Method for Multi-Period Sales Promotion Design
    • Nair, S.K., P. Tarasewich. 2003. A Model and a Solution Method for Multi-Period Sales Promotion Design. European Journal of Operational Research 150 672-687.
    • (2003) European Journal of Operational Research , vol.150 , pp. 672-687
    • Nair, S.K.1    Tarasewich, P.2
  • 80
    • 0000468927 scopus 로고
    • Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics
    • Nair, S.K., L. Thakur, K.-W. Wen. 1995. Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics. Management Science 41 767-785.
    • (1995) Management Science , vol.41 , pp. 767-785
    • Nair, S.K.1    Thakur, L.2    Wen, K.-W.3
  • 81
    • 84930749530 scopus 로고    scopus 로고
    • Ankerpreise als Erwartungen oder dynamische latente Variablen in Marktreaktionsmodellen
    • Natter, M., H. Hruschka. 1997. Ankerpreise als Erwartungen oder dynamische latente Variablen in Marktreaktionsmodellen. Zeitschrift fur betriebswirtschaftliche Forschung 49 747-764.
    • (1997) Zeitschrift Fur Betriebswirtschaftliche Forschung , vol.49 , pp. 747-764
    • Natter, M.1    Hruschka, H.2
  • 82
    • 3643140119 scopus 로고    scopus 로고
    • Evaluation of Aggressive Competitive Pricing Strategies
    • Natter, M., H. Hruschka. 1998a. Evaluation of Aggressive Competitive Pricing Strategies. Marketing Letters 9 337-347.
    • (1998) Marketing Letters , vol.9 , pp. 337-347
    • Natter, M.1    Hruschka, H.2
  • 86
    • 28444474633 scopus 로고    scopus 로고
    • Development of a Multifunctional Sales Response Model with the Diagnostic Aid of Artifical Neural Networks
    • Pantelidaki, S., D. Bunn. 2005. Development of a Multifunctional Sales Response Model with the Diagnostic Aid of Artifical Neural Networks. Journal of Forecasting 24 505-521.
    • (2005) Journal of Forecasting , vol.24 , pp. 505-521
    • Pantelidaki, S.1    Bunn, D.2
  • 90
    • 0034083799 scopus 로고    scopus 로고
    • Segmentation Based Competitive Analysis with MULTICLUS and Topology Representing Networks
    • Reutterer, T., M. Natter. 2000. Segmentation Based Competitive Analysis with MULTICLUS and Topology Representing Networks. Computers and Operational Research 27 1227-1247.
    • (2000) Computers and Operational Research , vol.27 , pp. 1227-1247
    • Reutterer, T.1    Natter, M.2
  • 91
    • 20344374702 scopus 로고    scopus 로고
    • Assessing Potential Threats to Incumbent Brands: New Product Positioning Under Price Competition in a Multisegmented Market
    • Rhin, H., L.G. Cooper. 2005. Assessing Potential Threats to Incumbent Brands: New Product Positioning Under Price Competition in a Multisegmented Market. International Journal of Research in Marketing 22 159-182.
    • (2005) International Journal of Research in Marketing , vol.22 , pp. 159-182
    • Rhin, H.1    Cooper, L.G.2
  • 92
    • 0002983776 scopus 로고
    • Barndorff-Nielsen, O.E., J.L. Jensen, W.S. Kendall, Eds. Networks and Chaos - Statistical and Probabilistic Aspects. Chapman & Hall, London
    • Ripley, B.D. 1993. Statistical Aspects of Neural Networks. Barndorff-Nielsen, O.E., J.L. Jensen, W.S. Kendall, Eds. Networks and Chaos - Statistical and Probabilistic Aspects. Chapman & Hall, London, 40-123.
    • (1993) Statistical Aspects of Neural Networks , pp. 40-123
    • Ripley, B.D.1
  • 94
    • 0001438534 scopus 로고
    • Simulated Annealing for Constrained Global Optimization
    • Romeijn, H.E., R. Smith. 1994. Simulated Annealing for Constrained Global Optimization. Journal of Global Optimization 5, 101-126.
    • (1994) Journal of Global Optimization , vol.5 , pp. 101-126
    • Romeijn, H.E.1    Smith, R.2
  • 96
    • 0030631963 scopus 로고    scopus 로고
    • Partial BFGS Update and Efficient Step-Length Calculation for Three-Layer Neural Networks
    • Saito, K., R. Nakano. 1997. Partial BFGS Update and Efficient Step-Length Calculation for Three-Layer Neural Networks. Neural Computation 9 123-141.
    • (1997) Neural Computation , vol.9 , pp. 123-141
    • Saito, K.1    Nakano, R.2
  • 97
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • Schwarz, G. 1979. Estimating the Dimension of a Model. Annals of Statistics 6 461-464.
    • (1979) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 98
    • 0033235405 scopus 로고    scopus 로고
    • A Decision Support System for Planning Manufacturers’ Sales Promotion Calendars
    • Silva-Russo, J.M., R.E. Bucklin, D.G. Morrison. 1999. A Decision Support System for Planning Manufacturers’ Sales Promotion Calendars. Marketing Science 18 274-300.
    • (1999) Marketing Science , vol.18 , pp. 274-300
    • Silva-Russo, J.M.1    Bucklin, R.E.2    Morrison, D.G.3
  • 99
    • 33244470548 scopus 로고    scopus 로고
    • A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data
    • Steiner, W., H. Hruschka. 2000. A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data. Review of Marketing Science 441.
    • (2000) Review of Marketing Science , pp. 441
    • Steiner, W.1    Hruschka, H.2
  • 101
    • 0001586572 scopus 로고
    • A Simulation Comparison of Methods for New Product Location
    • Sudharsan, D., J.H. May, A.D. Shocker. 1987. A Simulation Comparison of Methods for New Product Location. Marketing Science 6 182-201.
    • (1987) Marketing Science , vol.6 , pp. 182-201
    • Sudharsan, D.1    May, J.H.2    Shocker, A.D.3
  • 102
    • 0036815902 scopus 로고    scopus 로고
    • A Genetic Algorithms Approach to Forecasting of Wireless Subscribers
    • Venkatesan, R., V. Kumar. 2002. A Genetic Algorithms Approach to Forecasting of Wireless Subscribers. International Journal of Forecasting 18(4) 625-646.
    • (2002) International Journal of Forecasting , vol.18 , Issue.4 , pp. 625-646
    • Venkatesan, R.1    Kumar, V.2
  • 103
    • 4644312789 scopus 로고    scopus 로고
    • A Customer Lifetime Value Framework for Customer Selection and Resource Allocation Strategy
    • Venkatesan, R., V. Kumar. 2004. A Customer Lifetime Value Framework for Customer Selection and Resource Allocation Strategy. Journal ofMarketing 68(October) 106-125.
    • (2004) Journal Ofmarketing , vol.68 , Issue.October , pp. 106-125
    • Venkatesan, R.1    Kumar, V.2
  • 104
    • 4944224630 scopus 로고    scopus 로고
    • Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Non Linear Least Squares
    • Venkatesan, R., T.V. Krishnan, V. Kumar. 2004. Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Non Linear Least Squares. Marketing Science 23 451-464.
    • (2004) Marketing Science , vol.23 , pp. 451-464
    • Venkatesan, R.1    Krishnan, T.V.2    Kumar, V.3
  • 106
    • 0031283672 scopus 로고    scopus 로고
    • A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice
    • West, P.M., P.L. Brocket, L. Golden. 1997. A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing Science 16 370-391.
    • (1997) Marketing Science , vol.16 , pp. 370-391
    • West, P.M.1    Brocket, P.L.2    Golden, L.3
  • 107
    • 0040891620 scopus 로고
    • Predicting Market Responses with a Neural Network: The Case of fast moving consumer goods
    • van Wezel, M.C., W.R.J. Baets. 1995. Predicting Market Responses with a Neural Network: The Case of fast moving consumer goods. Marketing Intelligence & Planning 13(7) 23-30.
    • (1995) Marketing Intelligence & Planning , vol.13 , Issue.7 , pp. 23-30
    • Van Wezel, M.C.1    Baets, W.R.J.2
  • 108
    • 84955134775 scopus 로고    scopus 로고
    • Prediction with Neural Nets in Marketing Time Series Data. Management Report Series no. 258
    • Wierenga, B., J. Kluytmans. (1996). Prediction with Neural Nets in Marketing Time Series Data. Management Report Series no. 258. Erasmus Universiteit Rotterdam.
    • (1996) Erasmus Universiteit Rotterdam
    • Wierenga, B.1    Kluytmans, J.2
  • 111
    • 79960474345 scopus 로고    scopus 로고
    • Applying Neural Computing to Target Marketing
    • Zahavi, J., N. Levin. 1997. Applying Neural Computing to Target Marketing. Journal of Direct Marketing 11(1) 5-22.
    • (1997) Journal of Direct Marketing , vol.11 , Issue.1 , pp. 5-22
    • Zahavi, J.1    Levin, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.