메뉴 건너뛰기




Volumn 14, Issue 3, 2001, Pages 257-274

Bayesian approach for neural networks - Review and case studies

Author keywords

Bayesian data analysis; Comparison of models; Hirarchical models; Neural networks

Indexed keywords

INVERSE PROBLEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; REGRESSION ANALYSIS;

EID: 0035312886     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(00)00098-8     Document Type: Review
Times cited : (303)

References (57)
  • 2
    • 0005495142 scopus 로고
    • Statistical design theory and Bayesian analysis, Springer series in statistics, 2nd ed., Springer
    • (1985)
    • Berger, J.O.1
  • 3
    • 0001141391 scopus 로고
    • On the development of reference priors
    • Bernardo J.M., Berger J.O., Dawid A.P., Smith A.F.M. (Eds.), Bayesian statistics 4, Oxford University Press
    • (1992) , pp. 35-60
    • Berger, J.O.1    Bernardo, J.M.2
  • 6
    • 0005483106 scopus 로고
    • Neural networks for pattern recognition, Oxford University Press
    • (1995)
    • Bishop, C.M.1
  • 7
    • 84898994542 scopus 로고    scopus 로고
    • Regression with input-dependent noise: a Bayesian treatment
    • Mozer M.C., Jordan M.I., Petsche T. (Eds.), Advances in neural information processing systems 9, MIT Press
    • (1997) , pp. 347-353
    • Bishop, C.M.1    Qazaz, C.S.2
  • 12
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 15
    • 0001803816 scopus 로고    scopus 로고
    • Model determination using sampling-based methods
    • Gilks W.R., Richardson S., Spiegelhalter D.J. (Eds.), Markov chain Monte Carlo in practice, Chapman & Hall
    • (1996) , pp. 145-162
    • Gelfand, A.E.1
  • 16
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • Gilks W.R., Richardson S., Spiegelhalter D.J. (Eds.), Markov chain Monte Carlo in practice, Chapman & Hall
    • (1996) , pp. 131-144
    • Gelman, A.1
  • 20
    • 0005440451 scopus 로고    scopus 로고
    • Gilks W.R., Richardson S., Spiegelhalter D.J. (Eds.), Markov chain Monte Carlo in practice, Chapman & Hall
    • (1996)
  • 22
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 23
    • 0005458525 scopus 로고    scopus 로고
    • Empirical evaluation of Bayesian sampling for neural classifiers
    • Niklasson L., Boden M., Ziemke T. (Eds.), ICANN '98: Proceedings of the Eighth International Conference on Artificial Neural Networks, Springer
    • (1998)
    • Husmeier, D.1    Penny, W.D.2    Roberts, S.J.3
  • 24
    • 0005408961 scopus 로고
    • Theory of probability, 3rd ed., Oxford University Press
    • (1961)
    • Jeffreys, J.1
  • 28
    • 85054435084 scopus 로고
    • Neural network ensembles, cross-validation, and active learning
    • Tesauro G., Touretzky D.S., Leen T.K. (Eds.), Advances in neural information processing systems 7, MIT Press
    • (1995) , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 31
    • 0005416567 scopus 로고    scopus 로고
    • Lemm, J. C. (1996). Prior information and generalized questions. Technical report AIM 1598, CBCLP 141, Massachusetts Institute of Technology, Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Department of Brain and Cognitive Sciences.
  • 32
    • 0005419248 scopus 로고    scopus 로고
    • Lemm, J. C. (1999). Bayesian field theory. Technical report MS-TP1-99-1, Universität Münster, Institut für Theoretische Physik.
  • 37
    • 0005467571 scopus 로고    scopus 로고
    • Neal, R. M. (1992). Bayesian training of backpropagation networks by the hybrid Monte Carlo method. Technical report CRG-TR-92-1, Department of Computer Science, University of Toronto.
  • 38
    • 0005511912 scopus 로고    scopus 로고
    • volume 118 of Lecture notes in statistics, Springer-Verlag
    • (1996)
    • Neal, R.M.1
  • 40
    • 0002628667 scopus 로고    scopus 로고
    • Regression and classification using Gaussian process priors (with discussion)
    • Bernardo J.M., Berger J.O., Dawid A.P., Smith A.F. (Eds.), Bayesian statistics 6, Oxford University Press
    • (1999) , pp. 475-501
    • Neal, R.M.1
  • 42
    • 0005446489 scopus 로고    scopus 로고
    • Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for non-linear regression. PhD thesis, Department of Computer Science, University of Toronto.
  • 44
    • 0005499021 scopus 로고    scopus 로고
    • Sarle, W. S. (1997). How to measure importance of inputs? [online]. Technical report, SAS Institute Inc., Cary, NC, USA. Revised 23 June 2000. Available at: ftp://ftp.sas.com/pub/neural/importance.html
  • 48
    • 0005498738 scopus 로고    scopus 로고
    • Vehtari, A. & Lampinen, J. (1999). Bayesian neural networks with correlating residuals. In IJCNN '99: Proceedings of the 1999 International Joint Conference on Neural Networks [CD-ROM], number 2061. IEEE.
  • 49
    • 0005419978 scopus 로고    scopus 로고
    • Vehtari, A. & Lampinen, J. (2000). On Bayesian model assessment and choice using cross-validation predictive densities. Technical report B23, Laboratory of Computational Engineering, Helsinki University of Technology.
  • 50
    • 0005458526 scopus 로고    scopus 로고
    • Vehtari, A., Heikkonen, J., Lampinen, J. & Juujärvi, J. (1998). Using Bayesian neural networks to classify forest scenes. In D. P. Casasent (Ed.), Intelligent robots and computer vision XVII: algorithms, techniques, and active vision, volume 3522 of Proceedings of SPIE (pp. 66-73). SPIE.
  • 51
    • 0005483108 scopus 로고    scopus 로고
    • Vehtari, A., Särkkä, S. & Lampinen, J. (2000). On MCMC sampling in Bayesian MLP neural networks. In S.-I. Amari, C. L. Giles, M. Gori & V. Piuri (Eds.), IJCNN '2000: Proceedings of the 2000 International Joint Conference on Neural Networks, volume 1 (pp. 317-322). IEEE.
  • 52
    • 0005505745 scopus 로고    scopus 로고
    • Vivarelli, F. & Williams, C. K. I. (1997). Using Bayesian neural networks to classify segmented images. In Proceedings of the IEE Fifth International Conference on Artificial Neural Networks, number 40 in Conference Publications (pp. 268-263). The Institution of Electrical Engineers.
  • 53
    • 0005466825 scopus 로고    scopus 로고
    • Winther, O. (1998). Bayesian mean field algorithms for neural networks and Gaussian processes. PhD thesis, University of Copenhagen.
  • 56
    • 0005408963 scopus 로고    scopus 로고
    • Wolpert, D. H. & Macready, W. G. (1995). No free lunch theorems for search. Technical report SFI-TR-95-02-010. The Santa Fe Institute.
  • 57
    • 0005409887 scopus 로고    scopus 로고
    • Yang, R. & Berger, J. O. (1997). A catalog of noninformative priors. ISDS Discussion paper 97-42, Institute of Statistics and Decision Sciences, Duke University.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.