메뉴 건너뛰기




Volumn , Issue , 2005, Pages 71-90

Modeling brand choice using boosted and stacked neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84898378395     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-59140-702-7.ch005     Document Type: Chapter
Times cited : (1)

References (19)
  • 1
    • 0032341958 scopus 로고    scopus 로고
    • An empirical investigation of the dynamic McFadden model of purchase timing and brand choice: Implications for market structure
    • Chintagunta, P. K., & Prasad, A. R. (1998). An empirical investigation of the dynamic McFadden model of purchase timing and brand choice: Implications for market structure. Journal of Business and Economic Statistics, 16, 2-11.
    • (1998) Journal of Business and Economic Statistics , vol.16 , pp. 2-11
    • Chintagunta, P.K.1    Prasad, A.R.2
  • 2
    • 0001344011 scopus 로고
    • Comparing the predictive performance of a neural network model with some traditional market response models
    • Dasgupta, C. G., Dispensa, G. S., & Ghose, S. (1994). Comparing the predictive performance of a neural network model with some traditional market response models. International Journal of Forecasting, 10, 235-244.
    • (1994) International Journal of Forecasting , vol.10 , pp. 235-244
    • Dasgupta, C.G.1    Dispensa, G.S.2    Ghose, S.3
  • 6
    • 0027904982 scopus 로고
    • Determining market response functions by neural network modeling: A comparison to econometric techniques
    • Hruschka, H. (1993). Determining market response functions by neural network modeling: A comparison to econometric techniques. European Journal of Operational Research, 66, 27-35.
    • (1993) European Journal of Operational Research , vol.66 , pp. 27-35
    • Hruschka, H.1
  • 7
    • 0344438154 scopus 로고    scopus 로고
    • A flexible brand choice model based on neural net methodology. A comparison to the linear utility multinomial logit model and its latent class extension
    • Hruschka, H., Fettes, W., Probst, M., & Mies, C. (2002). A flexible brand choice model based on neural net methodology. A comparison to the linear utility multinomial logit model and its latent class extension. OR Spectrum, 24, 127-143.
    • (2002) OR Spectrum , vol.24 , pp. 127-143
    • Hruschka, H.1    Fettes, W.2    Probst, M.3    Mies, C.4
  • 8
    • 0012715994 scopus 로고    scopus 로고
    • Estimation of posterior probabilities of consumer situational choices with neural network classifiers
    • Hu, M. Y., Shanker, M., & Hung, M. S. (1999). Estimation of posterior probabilities of consumer situational choices with neural network classifiers. International Journal of Research in Marketing, 16, 307-317.
    • (1999) International Journal of Research In Marketing , vol.16 , pp. 307-317
    • Hu, M.Y.1    Shanker, M.2    Hung, M.S.3
  • 9
    • 0037401696 scopus 로고    scopus 로고
    • Explaining consumer choice through neural networks: The stacked generalization approach
    • Hu, M. Y., & Tsoukalas, C. (2003). Explaining consumer choice through neural networks: The stacked generalization approach. European Journal of Operational Research, 146, 650-660.
    • (2003) European Journal of Operational Research , vol.146 , pp. 650-660
    • Hu, M.Y.1    Tsoukalas, C.2
  • 10
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behavior
    • In P. Zarembka (Ed.), New York: Academic
    • McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105-142). New York: Academic.
    • (1973) Frontiers In Econometrics , pp. 105-142
    • McFadden, D.1
  • 11
    • 0037804430 scopus 로고    scopus 로고
    • Neural networks for target selection in direct marketing
    • In K. Smith & J. Gupta (Eds.), Hershey, PA: Idea Group Publishing
    • Potharst, R., Kaymak, U., & Pijls, W. (2002). Neural networks for target selection in direct marketing. In K. Smith & J. Gupta (Eds.), Neural networks in business: Techniques and applications (pp. 89-110). Hershey, PA: Idea Group Publishing.
    • (2002) Neural Networks In Business: Techniques and Applications , pp. 89-110
    • Potharst, R.1    Kaymak, U.2    Pijls, W.3
  • 13
    • 0031506841 scopus 로고    scopus 로고
    • Consideration: Review of research and prospects for future insights
    • Roberts, J. H., & Lattin, J. M. (1997). Consideration: Review of research and prospects for future insights. Journal of Marketing Research, 34, 406-410.
    • (1997) Journal of Marketing Research , vol.34 , pp. 406-410
    • Roberts, J.H.1    Lattin, J.M.2
  • 14
    • 0034243471 scopus 로고    scopus 로고
    • Boosting neural networks
    • Schwenk, H., & Bengio, Y. (2000). Boosting neural networks. Neural Computation, 12, 1869-1887.
    • (2000) Neural Computation , vol.12 , pp. 1869-1887
    • Schwenk, H.1    Bengio, Y.2
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Tibshirani, R., Friedman, J., & Hastie, T. (2000). Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28, 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Tibshirani, R.1    Friedman, J.2    Hastie, T.3
  • 17
  • 18
    • 0031283672 scopus 로고    scopus 로고
    • A comparative analysis of neural networks and statistical methods for predicting consumer choice
    • West, P. M., Brockett, P. L., & Golden, L. L. (1997). A comparative analysis of neural networks and statistical methods for predicting consumer choice. Marketing Science, 16(4), 370-391.
    • (1997) Marketing Science , vol.16 , Issue.4 , pp. 370-391
    • West, P.M.1    Brockett, P.L.2    Golden, L.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.