메뉴 건너뛰기




Volumn 10, Issue 3, 1998, Pages 749-770

Issues in Bayesian Analysis of Neural Network Models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0347128520     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976698300017737     Document Type: Article
Times cited : (82)

References (31)
  • 1
    • 0345871685 scopus 로고
    • Mathematical methods of neurocomputing
    • O. E. Barndorf-Nielsen, J. L. Jensen, & J. S. Kendall (Eds.), London: Chapman and Hall
    • Amari, S. (1993). Mathematical methods of neurocomputing. In O. E. Barndorf-Nielsen, J. L. Jensen, & J. S. Kendall (Eds.), Networks and chaos. London: Chapman and Hall.
    • (1993) Networks and Chaos
    • Amari, S.1
  • 8
    • 4544345309 scopus 로고
    • The structure and dynamics of ringed galaxies, III
    • Buta, R. (1987). The structure and dynamics of ringed galaxies, III. Astrophysical Journal Supplement Series, 64, 1-37.
    • (1987) Astrophysical Journal Supplement Series , vol.64 , pp. 1-37
    • Buta, R.1
  • 9
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • with discussion
    • Cheng, B., & Titterington, D. M. (1994). Neural networks: A review from a statistical perspective (with discussion). Statistical Science, 9, 2-54.
    • (1994) Statistical Science , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 10
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal functions
    • Cybenko, G. (1989). Approximation by superposition of sigmoidal functions. Mathematics of Control Systems and Signals, 2, 303-314.
    • (1989) Mathematics of Control Systems and Signals , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Oxford: Oxford University Press
    • Gelman, A., Roberts, G. O., & Gilks, W. R. (1996). Efficient Metropolis jumping rules. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 5. Oxford: Oxford University Press.
    • (1996) Bayesian Statistics , vol.5
    • Gelman, A.1    Roberts, G.O.2    Gilks, W.R.3
  • 13
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling based approaches to the calculation of posterior moments
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Oxford: Oxford University Press
    • Geweke, J. (1992). Evaluating the accuracy of sampling based approaches to the calculation of posterior moments. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 4. Oxford: Oxford University Press.
    • (1992) Bayesian Statistics , vol.4
    • Geweke, J.1
  • 14
    • 84988091828 scopus 로고
    • A Bayesian method for classification and discrimination
    • Lavine, M., & West, M. (1992). A Bayesian method for classification and discrimination. Canandian Journal of Statistics, 20, 451-461.
    • (1992) Canandian Journal of Statistics , vol.20 , pp. 451-461
    • Lavine, M.1    West, M.2
  • 16
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backprop networks
    • MacKay, D. J. C. (1992). A practical Bayesian framework for backprop networks. Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 17
    • 0003611508 scopus 로고
    • Bayesian methods for neural networks: Theory and applications
    • Cambridge: Cavendish Laboratory, Cambridge University
    • MacKay, D. J. C. (1995). Bayesian methods for neural networks: Theory and applications (Technical Rep.). Cambridge: Cavendish Laboratory, Cambridge University.
    • (1995) Technical Rep.
    • MacKay, D.J.C.1
  • 19
    • 0037591475 scopus 로고
    • Bayesian learning via stochastic dynamics
    • C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), San Francisco: Morgan Kaufman
    • Neal, R. M. (1993). Bayesian learning via stochastic dynamics. In C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), Advances in neural information processing systems 5, San Francisco: Morgan Kaufman.
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Neal, R.M.1
  • 21
    • 0001348541 scopus 로고    scopus 로고
    • Accounting for model uncertainty in survival analysis improves predictive performance
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Oxford: Oxford University Press
    • Raftery, A. E., Madigan, D. M., Volinsky, C. (1996). Accounting for model uncertainty in survival analysis improves predictive performance. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistcs 5. Oxford: Oxford University Press.
    • (1996) Bayesian Statistcs , vol.5
    • Raftery, A.E.1    Madigan, D.M.2    Volinsky, C.3
  • 23
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • O. E. Barndorf-Nielsen, J. L. Jensen, & W. S. Kendall (Eds.), London: Chapman and Hall
    • Ripley, B. D. (1993). Statistical aspects of neural networks. In O. E. Barndorf-Nielsen, J. L. Jensen, & W. S. Kendall (Eds.), Networks and chaos. London: Chapman and Hall.
    • (1993) Networks and Chaos
    • Ripley, B.D.1
  • 26
    • 0003140365 scopus 로고    scopus 로고
    • Neural networks in applied statistics
    • Stern, H.S. (1996). Neural networks in applied statistics. Technometrics, 38, 205-220.
    • (1996) Technometrics , vol.38 , pp. 205-220
    • Stern, H.S.1
  • 27
    • 0029754435 scopus 로고    scopus 로고
    • Review of Bayesian neural networks with an application to near infrared spectroscopy
    • Thodberg, H. H. (1996). Review of Bayesian neural networks with an application to near infrared spectroscopy. IEEE Transactions on Neural Networks, 7, 56-72.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 28
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics, 22, 1701-1762.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 29
    • 0000242096 scopus 로고
    • Unpredictability of standard back propagation neural networks
    • Wang, Y. (1995). Unpredictability of standard back propagation neural networks. Managment Science, 41, 555-559.
    • (1995) Managment Science , vol.41 , pp. 555-559
    • Wang, Y.1
  • 30
    • 0002612391 scopus 로고
    • Hierarchical priors and mixture models, with application in regression and density estimation
    • A. F. M. Smith & P. R. Freeman (Eds.), New York: Wiley
    • West, M., Müller, P., & Escobar, M. D. (1994). Hierarchical priors and mixture models, with application in regression and density estimation. In A. F. M. Smith & P. R. Freeman (Eds.), Aspects of uncertainty: A tribute to D. V. Lindley. New York: Wiley.
    • (1994) Aspects of Uncertainty: A Tribute to D. V. Lindley
    • West, M.1    Müller, P.2    Escobar, M.D.3
  • 31
    • 0011565597 scopus 로고
    • Deconvolution of mixtures in analysis of synaptic transmission
    • West, M., & Turner, M. D. (1994). Deconvolution of mixtures in analysis of synaptic transmission. The Statistician, 43, 31-13.
    • (1994) The Statistician , vol.43 , pp. 31-113
    • West, M.1    Turner, M.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.