메뉴 건너뛰기




Volumn 34, Issue , 2016, Pages 36-43

Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids

Author keywords

Ehrlich pathway; Saccharomyces cerevisiae; Short branched chain fatty acids; Transporters

Indexed keywords

BIOCHEMISTRY; CHAINS; CHEMICAL INDUSTRY; CHROMOSOMES; GENES; METABOLIC ENGINEERING; METABOLISM; YEAST;

EID: 84952672368     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2015.12.005     Document Type: Article
Times cited : (68)

References (52)
  • 2
    • 17144401927 scopus 로고    scopus 로고
    • Carbon-13 and proton NMR shift assignments and physical constants of some L-menthol derivatives
    • Ahmad A., Aggarwal K.K., Srivastava S.K., Ahmad J., Kumar S. Carbon-13 and proton NMR shift assignments and physical constants of some L-menthol derivatives. J. Essent. Oil Res. 2000, 12:775-780.
    • (2000) J. Essent. Oil Res. , vol.12 , pp. 775-780
    • Ahmad, A.1    Aggarwal, K.K.2    Srivastava, S.K.3    Ahmad, J.4    Kumar, S.5
  • 4
    • 84937678669 scopus 로고    scopus 로고
    • Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production
    • Chen B., Lee D.Y., Chang M.W. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab. Eng. 2015, 31:53-61.
    • (2015) Metab. Eng. , vol.31 , pp. 53-61
    • Chen, B.1    Lee, D.Y.2    Chang, M.W.3
  • 5
    • 84874818199 scopus 로고    scopus 로고
    • Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae
    • Chen B., Ling H., Chang M.W. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol. Biofuels 2013, 6:21.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 21
    • Chen, B.1    Ling, H.2    Chang, M.W.3
  • 6
    • 84896119130 scopus 로고    scopus 로고
    • Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis
    • Choi K.Y., Wernick D.G., Tat C.A., Liao J.C. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 2014, 23:53-61.
    • (2014) Metab. Eng. , vol.23 , pp. 53-61
    • Choi, K.Y.1    Wernick, D.G.2    Tat, C.A.3    Liao, J.C.4
  • 7
    • 54049146291 scopus 로고    scopus 로고
    • The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review
    • De Smidt O., Du Preez J.C., Albertyn J. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 2008, 8:967-978.
    • (2008) FEMS Yeast Res. , vol.8 , pp. 967-978
    • De Smidt, O.1    Du Preez, J.C.2    Albertyn, J.3
  • 8
    • 0037424342 scopus 로고    scopus 로고
    • The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae
    • Dickinson J.R., Eshantha L., Salgado J., Hewlins M.J.E. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278:8028-8034.
    • (2003) J. Biol. Chem. , vol.278 , pp. 8028-8034
    • Dickinson, J.R.1    Eshantha, L.2    Salgado, J.3    Hewlins, M.J.E.4
  • 9
    • 0032475934 scopus 로고    scopus 로고
    • An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae
    • Dickinson J.R., Harrison S.J., Hewlins M.J. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273:25751-25756.
    • (1998) J. Biol. Chem. , vol.273 , pp. 25751-25756
    • Dickinson, J.R.1    Harrison, S.J.2    Hewlins, M.J.3
  • 12
    • 7944230917 scopus 로고    scopus 로고
    • Could valerian have been the first anticonvulsant?
    • Eadie M.J. Could valerian have been the first anticonvulsant?. Epilepsia 2004, 45:1338-1343.
    • (2004) Epilepsia , vol.45 , pp. 1338-1343
    • Eadie, M.J.1
  • 13
    • 84896129574 scopus 로고    scopus 로고
    • Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol
    • Fisher M.A., Boyarskiy S., Yamada M.R., Kong N., Bauer S., Tullman-Ercek D. Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol. 2013, 3:30-40.
    • (2013) ACS Synth. Biol. , vol.3 , pp. 30-40
    • Fisher, M.A.1    Boyarskiy, S.2    Yamada, M.R.3    Kong, N.4    Bauer, S.5    Tullman-Ercek, D.6
  • 15
    • 84877878130 scopus 로고    scopus 로고
    • Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules
    • Foo J.L., Leong S.S.J. Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol. Biofuels 2013, 6:81.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 81
    • Foo, J.L.1    Leong, S.S.J.2
  • 16
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz R.D., Schiestl R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007, 2:31-34.
    • (2007) Nat. Protoc. , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 18
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Gueldener U., Heinisch J., Koehler G., Voss D., Hegemann J. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30:e23.
    • (2002) Nucleic Acids Res. , vol.30 , pp. e23
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.3    Voss, D.4    Hegemann, J.5
  • 20
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood L.A., Daran J.M., van Maris A.J., Pronk J.T., Dickinson J.R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74:2259-2266.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.M.2    van Maris, A.J.3    Pronk, J.T.4    Dickinson, J.R.5
  • 21
    • 33747353371 scopus 로고    scopus 로고
    • A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism
    • Hazelwood L.A., Tai S.L., Boer V.M., De Winde J.H., Pronk J.T., Daran J.M. A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res. 2006, 6:937-945.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 937-945
    • Hazelwood, L.A.1    Tai, S.L.2    Boer, V.M.3    De Winde, J.H.4    Pronk, J.T.5    Daran, J.M.6
  • 22
    • 80052919515 scopus 로고    scopus 로고
    • Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae
    • Hegemann J.H., Heick S.B. Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Methods Mol. Biol. 2011, 765:189-206.
    • (2011) Methods Mol. Biol. , vol.765 , pp. 189-206
    • Hegemann, J.H.1    Heick, S.B.2
  • 23
    • 80052959088 scopus 로고    scopus 로고
    • Genomic promoter replacement cassettes to alter gene expression in the yeast Saccharomyces cerevisiae
    • Kaufmann A., Knop M. Genomic promoter replacement cassettes to alter gene expression in the yeast Saccharomyces cerevisiae. Methods Mol. Biol. 2011, 765:275-294.
    • (2011) Methods Mol. Biol. , vol.765 , pp. 275-294
    • Kaufmann, A.1    Knop, M.2
  • 24
    • 84859499726 scopus 로고    scopus 로고
    • Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
    • Kondo T., Tezuka H., Ishii J., Matsuda F., Ogino C., Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J. Biotechnol. 2012, 159:32-37.
    • (2012) J. Biotechnol. , vol.159 , pp. 32-37
    • Kondo, T.1    Tezuka, H.2    Ishii, J.3    Matsuda, F.4    Ogino, C.5    Kondo, A.6
  • 25
    • 0000224981 scopus 로고    scopus 로고
    • Enantiomeric synthesis of (S)-2-methylbutanoic acid methyl ester, apple flavor, using lipases in organic solvent
    • Kwon D.Y., Hong Y.J., Yoon S.H. Enantiomeric synthesis of (S)-2-methylbutanoic acid methyl ester, apple flavor, using lipases in organic solvent. J. Agric. Food Chem. 2000, 48:524-530.
    • (2000) J. Agric. Food Chem. , vol.48 , pp. 524-530
    • Kwon, D.Y.1    Hong, Y.J.2    Yoon, S.H.3
  • 26
    • 84892158708 scopus 로고    scopus 로고
    • Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites
    • Lang K., Zierow J., Buehler K., Schmid A. Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites. Microbiol. Cell Fact. 2014, 13:2.
    • (2014) Microbiol. Cell Fact. , vol.13 , pp. 2
    • Lang, K.1    Zierow, J.2    Buehler, K.3    Schmid, A.4
  • 27
    • 84903748219 scopus 로고    scopus 로고
    • Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
    • Latimer L.N., Lee M.E., Medina-Cleghorn D., Kohnz R.A., Nomura D.K., Dueber J.E. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab. Eng. 2014, 25:20-29.
    • (2014) Metab. Eng. , vol.25 , pp. 20-29
    • Latimer, L.N.1    Lee, M.E.2    Medina-Cleghorn, D.3    Kohnz, R.A.4    Nomura, D.K.5    Dueber, J.E.6
  • 28
    • 84855963972 scopus 로고    scopus 로고
    • Genetic engineering of industrial strains of Saccharomyces cerevisiae
    • Le Borgne S. Genetic engineering of industrial strains of Saccharomyces cerevisiae. Methods Mol. Biol. 2012, 824:451-465.
    • (2012) Methods Mol. Biol. , vol.824 , pp. 451-465
    • Le Borgne, S.1
  • 29
    • 33745886499 scopus 로고    scopus 로고
    • The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates
    • Lilly M., Bauer F.F., Styger G., Lambrechts M.G., Pretorius I.S. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Res. 2006, 6:726-743.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 726-743
    • Lilly, M.1    Bauer, F.F.2    Styger, G.3    Lambrechts, M.G.4    Pretorius, I.S.5
  • 30
    • 84879802434 scopus 로고    scopus 로고
    • Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance
    • Ling H., Chen B., Kang A., Lee J.M., Chang M.W. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. Biotechnol. Biofuels 2013, 6:95.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 95
    • Ling, H.1    Chen, B.2    Kang, A.3    Lee, J.M.4    Chang, M.W.5
  • 31
    • 0031997685 scopus 로고    scopus 로고
    • FePO catalysts for the selective oxidative dehydrogenation of isobutyric acid into methacrylic acid
    • Millet J.M.M. FePO catalysts for the selective oxidative dehydrogenation of isobutyric acid into methacrylic acid. Catal. Rev. 1998, 40:1-38.
    • (1998) Catal. Rev. , vol.40 , pp. 1-38
    • Millet, J.M.M.1
  • 32
    • 84862193202 scopus 로고    scopus 로고
    • The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids
    • Mustafi N., Grünberger A., Kohlheyer D., Bott M., Frunzke J. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab. Eng. 2012, 14:449-457.
    • (2012) Metab. Eng. , vol.14 , pp. 449-457
    • Mustafi, N.1    Grünberger, A.2    Kohlheyer, D.3    Bott, M.4    Frunzke, J.5
  • 33
    • 0035527733 scopus 로고    scopus 로고
    • New developments in the production of methyl methacrylate
    • Nagai K. New developments in the production of methyl methacrylate. Appl. Catal. A: Gen. 2001, 221:367-377.
    • (2001) Appl. Catal. A: Gen. , vol.221 , pp. 367-377
    • Nagai, K.1
  • 34
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2008, 72:379-412.
    • (2008) Microbiol. Mol. Biol. Rev. , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 35
    • 33747376106 scopus 로고    scopus 로고
    • Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae
    • Nevoigt E., Kohnke J., Fischer C.R., Alper H., Stahl U., Stephanopoulos G. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2006, 72:5266-5273.
    • (2006) Appl. Environ. Microbiol. , vol.72 , pp. 5266-5273
    • Nevoigt, E.1    Kohnke, J.2    Fischer, C.R.3    Alper, H.4    Stahl, U.5    Stephanopoulos, G.6
  • 36
    • 84878641167 scopus 로고    scopus 로고
    • Metabolic engineering of yeast for production of fuels and chemicals
    • Nielsen J., Larsson C., van Maris A., Pronk J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 2013, 24:398-404.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 398-404
    • Nielsen, J.1    Larsson, C.2    van Maris, A.3    Pronk, J.4
  • 38
    • 35448991740 scopus 로고    scopus 로고
    • Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation
    • Pigeau G., Inglis D. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation. J. Appl. Microbiol. 2007, 103:1576-1586.
    • (2007) J. Appl. Microbiol. , vol.103 , pp. 1576-1586
    • Pigeau, G.1    Inglis, D.2
  • 39
    • 84872131864 scopus 로고    scopus 로고
    • Activating transhydrogenase and NAD kinase in combination for improving isobutanol production
    • Shi A., Zhu X., Lu J., Zhang X., Ma Y. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab. Eng. 2013, 16:1-10.
    • (2013) Metab. Eng. , vol.16 , pp. 1-10
    • Shi, A.1    Zhu, X.2    Lu, J.3    Zhang, X.4    Ma, Y.5
  • 40
    • 84883001788 scopus 로고    scopus 로고
    • Production of bulk chemicals via novel metabolic pathways in microorganisms
    • Shin J.H., Kim H.U., Kim D.I., Lee S.Y. Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol. Adv. 2013, 31:925-935.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 925-935
    • Shin, J.H.1    Kim, H.U.2    Kim, D.I.3    Lee, S.Y.4
  • 41
    • 84893502214 scopus 로고    scopus 로고
    • Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae
    • Si T., Luo Y., Xiao H., Zhao H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab. Eng. 2014, 22:60-68.
    • (2014) Metab. Eng. , vol.22 , pp. 60-68
    • Si, T.1    Luo, Y.2    Xiao, H.3    Zhao, H.4
  • 42
    • 84870024081 scopus 로고    scopus 로고
    • Hydromenthoxycarbonylation of isobutylene in the presence of Tetrakis (triphenylphosphine) palladium-based catalyst systems
    • Suerbaev K.A., Chepaikin E.G., Zhaksylykova G.Z. Hydromenthoxycarbonylation of isobutylene in the presence of Tetrakis (triphenylphosphine) palladium-based catalyst systems. Petrol. Chem. 2012, 52:422-425.
    • (2012) Petrol. Chem. , vol.52 , pp. 422-425
    • Suerbaev, K.A.1    Chepaikin, E.G.2    Zhaksylykova, G.Z.3
  • 43
    • 4644262700 scopus 로고    scopus 로고
    • Controlled expression of homologous genes by genomic promoter replacement in the yeast Saccharomyces cerevisiae
    • Verstrepen K.J., Thevelein J.M. Controlled expression of homologous genes by genomic promoter replacement in the yeast Saccharomyces cerevisiae. Methods Mol. Biol. 2004, 267:259-266.
    • (2004) Methods Mol. Biol. , vol.267 , pp. 259-266
    • Verstrepen, K.J.1    Thevelein, J.M.2
  • 44
    • 0042029541 scopus 로고    scopus 로고
    • Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae
    • Vuralhan Z., Morais M.A., Tai S.L., Piper M.D., Pronk J.T. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. . Appl. Environ. Microbiol. 2003, 69:4534-4541.
    • (2003) . Appl. Environ. Microbiol. , vol.69 , pp. 4534-4541
    • Vuralhan, Z.1    Morais, M.A.2    Tai, S.L.3    Piper, M.D.4    Pronk, J.T.5
  • 45
    • 84883553644 scopus 로고    scopus 로고
    • Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli
    • Wang J.F., Xiong Z.Q., Li S.Y., Wang Y. Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli. Appl. Microbiol. Biotechnol. 2013, 97:8057-8067.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 8057-8067
    • Wang, J.F.1    Xiong, Z.Q.2    Li, S.Y.3    Wang, Y.4
  • 46
    • 0036805674 scopus 로고    scopus 로고
    • Statins as anti-inflammatory agents
    • Weitz-Schmidt G. Statins as anti-inflammatory agents. Trends Pharmacol. Sci. 2002, 23:482-486.
    • (2002) Trends Pharmacol. Sci. , vol.23 , pp. 482-486
    • Weitz-Schmidt, G.1
  • 47
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E. coli
    • Xu P., Gu Q., Wang W., Wong L., Bower A.G., Collins C.H., Koffas M.A. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 2013, 4:1409.
    • (2013) Nat. Commun. , vol.4 , pp. 1409
    • Xu, P.1    Gu, Q.2    Wang, W.3    Wong, L.4    Bower, A.G.5    Collins, C.H.6    Koffas, M.A.7
  • 48
    • 84905668376 scopus 로고    scopus 로고
    • Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
    • Xu P., Li L., Zhang F., Stephanopoulos G., Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. USA 2014, 111:11299-11304.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 11299-11304
    • Xu, P.1    Li, L.2    Zhang, F.3    Stephanopoulos, G.4    Koffas, M.5
  • 50
    • 84936803078 scopus 로고    scopus 로고
    • Engineering Escherichia coli coculture systems for the production of biochemical products
    • Zhang H., Pereira B., Li Z., Stephanopoulos G. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. USA 2015, 112:8266-8271.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 8266-8271
    • Zhang, H.1    Pereira, B.2    Li, Z.3    Stephanopoulos, G.4
  • 51
    • 84923882067 scopus 로고    scopus 로고
    • Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli
    • Zhang J., Kang Z., Chen J., Du G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 2015, 5:8584.
    • (2015) Sci. Rep. , vol.5 , pp. 8584
    • Zhang, J.1    Kang, Z.2    Chen, J.3    Du, G.4
  • 52
    • 80052003262 scopus 로고    scopus 로고
    • A synthetic metabolic pathway for production of the platform chemical isobutyric acid
    • Zhang K., Woodruff A.P., Xiong M., Zhou J., Dhande Y.K. A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem 2011, 4:1068-1070.
    • (2011) ChemSusChem , vol.4 , pp. 1068-1070
    • Zhang, K.1    Woodruff, A.P.2    Xiong, M.3    Zhou, J.4    Dhande, Y.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.