-
1
-
-
53049097710
-
Metabolic engineering of Escherichia coli for 1-butanol production
-
Atsumi S., Cann A.F., Connor M.R., Shen C.R., Smith K.M., Brynildsen M.P., Chou K.J.Y., Hanai T., Liao J.C. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 2008, 10:305-311.
-
(2008)
Metab. Eng.
, vol.10
, pp. 305-311
-
-
Atsumi, S.1
Cann, A.F.2
Connor, M.R.3
Shen, C.R.4
Smith, K.M.5
Brynildsen, M.P.6
Chou, K.J.Y.7
Hanai, T.8
Liao, J.C.9
-
2
-
-
38049001166
-
Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
-
Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
-
(2008)
Nature
, vol.451
, pp. 86-89
-
-
Atsumi, S.1
Hanai, T.2
Liao, J.C.3
-
3
-
-
0027361815
-
A regulatory element in the cha1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae Genes
-
Bornaes C., Ignjatovic M.W., Schjerling P., Kiellandbrandt M.C., Holmberg S. A regulatory element in the cha1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae Genes. Mol. Cell. Biol. 1993, 13:7604-7611.
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 7604-7611
-
-
Bornaes, C.1
Ignjatovic, M.W.2
Schjerling, P.3
Kiellandbrandt, M.C.4
Holmberg, S.5
-
4
-
-
84876976847
-
A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae
-
Branduardi P., Longo V., Berterame N.M., Rossi G., Porro D. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol. Biofuels 2013, 6:68.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 68
-
-
Branduardi, P.1
Longo, V.2
Berterame, N.M.3
Rossi, G.4
Porro, D.5
-
5
-
-
84865777627
-
Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
-
Brat D., Weber C., Lorenzen W., Bode H., Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5:65.
-
(2012)
Biotechnol. Biofuels
, vol.5
, pp. 65
-
-
Brat, D.1
Weber, C.2
Lorenzen, W.3
Bode, H.4
Boles, E.5
-
6
-
-
84878848636
-
Advanced biofuel production by the yeast Saccharomyces cerevisiae
-
Buijs N.A., Siewers V., Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 2013, 17:480-488.
-
(2013)
Curr. Opin. Chem. Biol.
, vol.17
, pp. 480-488
-
-
Buijs, N.A.1
Siewers, V.2
Nielsen, J.3
-
7
-
-
0029915525
-
Computational method to predict mitochondrially imported proteins and their targeting sequences
-
Claros M.G., Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 1996, 241:779-786.
-
(1996)
Eur. J. Biochem.
, vol.241
, pp. 779-786
-
-
Claros, M.G.1
Vincens, P.2
-
8
-
-
80051941601
-
Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
-
(2011)
Nature
, vol.476
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
9
-
-
0025194333
-
Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae
-
Drewke C., Thielen J., Ciriacy M. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J. Bacteriol. 1990, 172:3909-3917.
-
(1990)
J. Bacteriol.
, vol.172
, pp. 3909-3917
-
-
Drewke, C.1
Thielen, J.2
Ciriacy, M.3
-
10
-
-
80051704380
-
Engineering microbial factories for synthesis of value-added products
-
Du J., Shao Z., Zhao H. Engineering microbial factories for synthesis of value-added products. J. Ind. Microbiol. Biotechnol. 2011, 38:873-890.
-
(2011)
J. Ind. Microbiol. Biotechnol.
, vol.38
, pp. 873-890
-
-
Du, J.1
Shao, Z.2
Zhao, H.3
-
11
-
-
38149030843
-
Biobutanol: an attractive biofuel
-
Dürre P. Biobutanol: an attractive biofuel. Biotechnol. J. 2007, 2:1525-1534.
-
(2007)
Biotechnol. J.
, vol.2
, pp. 1525-1534
-
-
Dürre, P.1
-
12
-
-
84875642557
-
Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
-
Gonzalez-Ramos D., van den Broek M., van Maris A.J.A., Pronk J.T., Daran J.M.G. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol. Biofuels 2013, 6:48.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 48
-
-
Gonzalez-Ramos, D.1
van den Broek, M.2
van Maris, A.J.A.3
Pronk, J.T.4
Daran, J.M.G.5
-
13
-
-
0037088811
-
A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
-
Gueldener U., Heinisch J., Koehler G.J., Voss D., Hegemann J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30:e23.
-
(2002)
Nucleic Acids Res.
, vol.30
-
-
Gueldener, U.1
Heinisch, J.2
Koehler, G.J.3
Voss, D.4
Hegemann, J.H.5
-
14
-
-
42349106782
-
The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
-
Hazelwood L.A., Daran J.M., van Maris A.J., Pronk J.T., Dickinson J.R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74:2259-2266.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 2259-2266
-
-
Hazelwood, L.A.1
Daran, J.M.2
van Maris, A.J.3
Pronk, J.T.4
Dickinson, J.R.5
-
15
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong K.-K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69:2671-2690.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 2671-2690
-
-
Hong, K.-K.1
Nielsen, J.2
-
16
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh W.K., Falvo J.V., Gerke L.C., Carroll A.S., Howson R.W., Weissman J.S., O'Shea E.K. Global analysis of protein localization in budding yeast. Nature 2003, 425:686-691.
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
Falvo, J.V.2
Gerke, L.C.3
Carroll, A.S.4
Howson, R.W.5
Weissman, J.S.6
O'Shea, E.K.7
-
17
-
-
84856777402
-
Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
-
Ida Y., Furusawa C., Hirasawa T., Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 113:192-195.
-
(2012)
J. Biosci. Bioeng.
, vol.113
, pp. 192-195
-
-
Ida, Y.1
Furusawa, C.2
Hirasawa, T.3
Shimizu, H.4
-
18
-
-
0000714338
-
The pathway of formation of n-butyl and n-amyl alcohols by a mutant strain of Saccharomyces cerevisiae
-
Ingraham J.L., Guymon J.F., Crowell E.A. The pathway of formation of n-butyl and n-amyl alcohols by a mutant strain of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 1961, 95:169-175.
-
(1961)
Arch. Biochem. Biophys.
, vol.95
, pp. 169-175
-
-
Ingraham, J.L.1
Guymon, J.F.2
Crowell, E.A.3
-
19
-
-
38049162218
-
Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli
-
Inui M., Suda M., Kimura S., Yasuda K., Suzuki H., Toda H., Yamamoto S., Okino S., Suzuki N., Yukawa H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 2008, 77:1305-1316.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.77
, pp. 1305-1316
-
-
Inui, M.1
Suda, M.2
Kimura, S.3
Yasuda, K.4
Suzuki, H.5
Toda, H.6
Yamamoto, S.7
Okino, S.8
Suzuki, N.9
Yukawa, H.10
-
20
-
-
80051782239
-
Progress in the production and application of n-butanol as a biofuel
-
Jin C., Yao M.F., Liu H.F., Lee C.F.F., Ji J. Progress in the production and application of n-butanol as a biofuel. Renew. Sust. Energ. Rev. 2011, 15:4080-4106.
-
(2011)
Renew. Sust. Energ. Rev.
, vol.15
, pp. 4080-4106
-
-
Jin, C.1
Yao, M.F.2
Liu, H.F.3
Lee, C.F.F.4
Ji, J.5
-
21
-
-
79956226145
-
Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae
-
Kneen M.M., Stan R., Yep A., Tyler R.P., Saehuan C., McLeish M.J. Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J. 2011, 278:1842-1853.
-
(2011)
FEBS J.
, vol.278
, pp. 1842-1853
-
-
Kneen, M.M.1
Stan, R.2
Yep, A.3
Tyler, R.P.4
Saehuan, C.5
McLeish, M.J.6
-
22
-
-
67449106543
-
Butanol tolerance in a selection of microorganisms
-
Knoshaug E.P., Zhang M. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 2009, 153:13-20.
-
(2009)
Appl. Biochem. Biotechnol.
, vol.153
, pp. 13-20
-
-
Knoshaug, E.P.1
Zhang, M.2
-
23
-
-
0037338355
-
Leucine biosynthesis in fungi: entering metabolism through the back door
-
Kohlhaw G.B. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol. Mol. Biol. Rev. 2003, 67:1-15.
-
(2003)
Microbiol. Mol. Biol. Rev.
, vol.67
, pp. 1-15
-
-
Kohlhaw, G.B.1
-
24
-
-
84859499726
-
Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
-
Kondo T., Tezuka H., Ishii J., Matsuda F., Ogino C., Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J. Biotechnol. 2012, 159:32-37.
-
(2012)
J. Biotechnol.
, vol.159
, pp. 32-37
-
-
Kondo, T.1
Tezuka, H.2
Ishii, J.3
Matsuda, F.4
Ogino, C.5
Kondo, A.6
-
25
-
-
84884351687
-
Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism
-
Krivoruchko A., Serrano-Amatriain C., Chen Y., Siewers V., Nielsen J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J. Ind. Microbiol. Biotechnol. 2013, 1-6.
-
(2013)
J. Ind. Microbiol. Biotechnol.
, pp. 1-6
-
-
Krivoruchko, A.1
Serrano-Amatriain, C.2
Chen, Y.3
Siewers, V.4
Nielsen, J.5
-
26
-
-
84861440312
-
Systems metabolic engineering of microorganisms for natural and non-natural chemicals
-
Lee J.W., Na D., Park J.M., Lee J., Choi S., Lee S.Y. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 2012, 8:536-546.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 536-546
-
-
Lee, J.W.1
Na, D.2
Park, J.M.3
Lee, J.4
Choi, S.5
Lee, S.Y.6
-
27
-
-
51649108629
-
Fermentative butanol production by Clostridia
-
Lee S.Y., Park J.H., Jang S.H., Nielsen L.K., Kim J., Jung K.S. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 2008, 101:209-228.
-
(2008)
Biotechnol. Bioeng.
, vol.101
, pp. 209-228
-
-
Lee, S.Y.1
Park, J.H.2
Jang, S.H.3
Nielsen, L.K.4
Kim, J.5
Jung, K.S.6
-
28
-
-
0036891388
-
The three zinc-containing alcohol dehydrogenases from baker's yeast Saccharomyces cerevisiae
-
Leskovac V., Trivic S., Pericin D. The three zinc-containing alcohol dehydrogenases from baker's yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2002, 2:481-494.
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 481-494
-
-
Leskovac, V.1
Trivic, S.2
Pericin, D.3
-
29
-
-
0034214105
-
Enrichment of threonine content in Saccharomyces cerevisiae by pathway engineering
-
Maria-Jose Farfan I.L.C. Enrichment of threonine content in Saccharomyces cerevisiae by pathway engineering. Enzyme Microb. Technol. 2000, 26:763-770.
-
(2000)
Enzyme Microb. Technol.
, vol.26
, pp. 763-770
-
-
Maria-Jose Farfan, I.L.C.1
-
30
-
-
80052600481
-
Engineering strategy of yeast metabolism for higher alcohol production
-
Matsuda F., Furusawa C., Kondo T., Ishii J., Shimizu H., Kondo A. Engineering strategy of yeast metabolism for higher alcohol production. Microb. Cell. Fact. 2011, 10:70.
-
(2011)
Microb. Cell. Fact.
, vol.10
, pp. 70
-
-
Matsuda, F.1
Furusawa, C.2
Kondo, T.3
Ishii, J.4
Shimizu, H.5
Kondo, A.6
-
31
-
-
0030945741
-
Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis
-
Monschau N., Stahmann K.P., Sahm H., McNeil J.B., Bognar A.L. Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol. Lett. 1997, 150:55-60.
-
(1997)
FEMS Microbiol. Lett.
, vol.150
, pp. 55-60
-
-
Monschau, N.1
Stahmann, K.P.2
Sahm, H.3
McNeil, J.B.4
Bognar, A.L.5
-
32
-
-
58549117130
-
Mutagenic inverted repeat assisted genome engineering (MIRAGE)
-
Nair N.U., Zhao H. Mutagenic inverted repeat assisted genome engineering (MIRAGE). Nucleic Acids Res. 2009, 37:e9.
-
(2009)
Nucleic Acids Res.
, vol.37
-
-
Nair, N.U.1
Zhao, H.2
-
33
-
-
0030845322
-
Locus-specific suppression of ilv1 in Saccharomyces cerevisiae by deregulation of CHA1 transcription
-
Pedersen J.O., Rodriguez M.A., PretoriusIbba M., NilssonTillgren T., Calderon I.L., Holmberg S. Locus-specific suppression of ilv1 in Saccharomyces cerevisiae by deregulation of CHA1 transcription. Mol. Gen. Genet. 1997, 255:561-569.
-
(1997)
Mol. Gen. Genet.
, vol.255
, pp. 561-569
-
-
Pedersen, J.O.1
Rodriguez, M.A.2
PretoriusIbba, M.3
NilssonTillgren, T.4
Calderon, I.L.5
Holmberg, S.6
-
34
-
-
84865142847
-
Microbial engineering for the production of advanced biofuels
-
Peralta-Yahya P.P., Zhang F.Z., del Cardayre S.B., Keasling J.D. Microbial engineering for the production of advanced biofuels. Nature 2012, 488:320-328.
-
(2012)
Nature
, vol.488
, pp. 320-328
-
-
Peralta-Yahya, P.P.1
Zhang, F.Z.2
del Cardayre, S.B.3
Keasling, J.D.4
-
35
-
-
84868623605
-
Substrate Specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae
-
Romagnoli G., Luttik M.A.H., Kotter P., Pronk J.T., Daran J.M. Substrate Specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78:7538-7548.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 7538-7548
-
-
Romagnoli, G.1
Luttik, M.A.H.2
Kotter, P.3
Pronk, J.T.4
Daran, J.M.5
-
36
-
-
59649108349
-
DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
-
Shao Z., Zhao H., Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009, 37:e16.
-
(2009)
Nucleic Acids Res.
, vol.37
-
-
Shao, Z.1
Zhao, H.2
Zhao, H.3
-
37
-
-
79955611425
-
Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
-
Shen C.R., Lan E.I., Dekishima Y., Baez A., Cho K.M., Liao J.C. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol. 2011, 77:2905-2915.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 2905-2915
-
-
Shen, C.R.1
Lan, E.I.2
Dekishima, Y.3
Baez, A.4
Cho, K.M.5
Liao, J.C.6
-
38
-
-
54349114978
-
Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
-
Shen C.R., Liao J.C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 2008, 10:312-320.
-
(2008)
Metab. Eng.
, vol.10
, pp. 312-320
-
-
Shen, C.R.1
Liao, J.C.2
-
39
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
-
Steen E.J., Chan R., Prasad N., Myers S., Petzold C.J., Redding A., Ouellet M., Keasling J.D. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell. Fact. 2008, 7:8.
-
(2008)
Microb. Cell. Fact.
, vol.7
, pp. 8
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
Myers, S.4
Petzold, C.J.5
Redding, A.6
Ouellet, M.7
Keasling, J.D.8
-
40
-
-
0003965925
-
-
Cold Spring Harbor laboratory Press, Plainview, New York
-
Strathern J.N., Jones E.W., Broach J.R. The molecular biology of the yeast saccharomyces metabolism and gene expression 1982, 181-299. Cold Spring Harbor laboratory Press, Plainview, New York.
-
(1982)
The molecular biology of the yeast saccharomyces metabolism and gene expression
, pp. 181-299
-
-
Strathern, J.N.1
Jones, E.W.2
Broach, J.R.3
-
41
-
-
0345869655
-
Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast
-
van Maris A.J.A., Geertman J.M.A., Vermeulen A., Groothuizen M.K., Winkler A.A., Piper M.D.W., van Dijken J.P., Pronk J.T. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl. Environ. Microb. 2004, 70:159-166.
-
(2004)
Appl. Environ. Microb.
, vol.70
, pp. 159-166
-
-
van Maris, A.J.A.1
Geertman, J.M.A.2
Vermeulen, A.3
Groothuizen, M.K.4
Winkler, A.A.5
Piper, M.D.W.6
van Dijken, J.P.7
Pronk, J.T.8
-
42
-
-
33947456785
-
Composition of typical grape brandy fusel oil
-
Webb A.D., Kepner R.E., Ikeda R.M. Composition of typical grape brandy fusel oil. Anal. Chem. 1952, 24:1944-1949.
-
(1952)
Anal. Chem.
, vol.24
, pp. 1944-1949
-
-
Webb, A.D.1
Kepner, R.E.2
Ikeda, R.M.3
-
44
-
-
84875138991
-
Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae
-
Williams T.C., Nielsen L.K., Vickers C.E. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth. Biol. 2013, 2:136-149.
-
(2013)
ACS Synth. Biol.
, vol.2
, pp. 136-149
-
-
Williams, T.C.1
Nielsen, L.K.2
Vickers, C.E.3
|