메뉴 건너뛰기




Volumn 22, Issue , 2014, Pages 60-68

Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae

Author keywords

1 Butanol; Biofuel; Metabolic engineering; S. cerevisiae

Indexed keywords

AMINO ACIDS; BIOCHEMISTRY; BIOFUELS; GENES; METABOLIC ENGINEERING; METABOLISM;

EID: 84893502214     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2014.01.002     Document Type: Article
Times cited : (79)

References (44)
  • 2
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 3
    • 0027361815 scopus 로고
    • A regulatory element in the cha1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae Genes
    • Bornaes C., Ignjatovic M.W., Schjerling P., Kiellandbrandt M.C., Holmberg S. A regulatory element in the cha1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae Genes. Mol. Cell. Biol. 1993, 13:7604-7611.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 7604-7611
    • Bornaes, C.1    Ignjatovic, M.W.2    Schjerling, P.3    Kiellandbrandt, M.C.4    Holmberg, S.5
  • 5
    • 84865777627 scopus 로고    scopus 로고
    • Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
    • Brat D., Weber C., Lorenzen W., Bode H., Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5:65.
    • (2012) Biotechnol. Biofuels , vol.5 , pp. 65
    • Brat, D.1    Weber, C.2    Lorenzen, W.3    Bode, H.4    Boles, E.5
  • 6
    • 84878848636 scopus 로고    scopus 로고
    • Advanced biofuel production by the yeast Saccharomyces cerevisiae
    • Buijs N.A., Siewers V., Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 2013, 17:480-488.
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 480-488
    • Buijs, N.A.1    Siewers, V.2    Nielsen, J.3
  • 7
    • 0029915525 scopus 로고    scopus 로고
    • Computational method to predict mitochondrially imported proteins and their targeting sequences
    • Claros M.G., Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 1996, 241:779-786.
    • (1996) Eur. J. Biochem. , vol.241 , pp. 779-786
    • Claros, M.G.1    Vincens, P.2
  • 8
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 9
    • 0025194333 scopus 로고
    • Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae
    • Drewke C., Thielen J., Ciriacy M. Ethanol formation in adh0 mutants reveals the existence of a novel acetaldehyde-reducing activity in Saccharomyces cerevisiae. J. Bacteriol. 1990, 172:3909-3917.
    • (1990) J. Bacteriol. , vol.172 , pp. 3909-3917
    • Drewke, C.1    Thielen, J.2    Ciriacy, M.3
  • 10
    • 80051704380 scopus 로고    scopus 로고
    • Engineering microbial factories for synthesis of value-added products
    • Du J., Shao Z., Zhao H. Engineering microbial factories for synthesis of value-added products. J. Ind. Microbiol. Biotechnol. 2011, 38:873-890.
    • (2011) J. Ind. Microbiol. Biotechnol. , vol.38 , pp. 873-890
    • Du, J.1    Shao, Z.2    Zhao, H.3
  • 11
    • 38149030843 scopus 로고    scopus 로고
    • Biobutanol: an attractive biofuel
    • Dürre P. Biobutanol: an attractive biofuel. Biotechnol. J. 2007, 2:1525-1534.
    • (2007) Biotechnol. J. , vol.2 , pp. 1525-1534
    • Dürre, P.1
  • 12
    • 84875642557 scopus 로고    scopus 로고
    • Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
    • Gonzalez-Ramos D., van den Broek M., van Maris A.J.A., Pronk J.T., Daran J.M.G. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol. Biofuels 2013, 6:48.
    • (2013) Biotechnol. Biofuels , vol.6 , pp. 48
    • Gonzalez-Ramos, D.1    van den Broek, M.2    van Maris, A.J.A.3    Pronk, J.T.4    Daran, J.M.G.5
  • 13
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Gueldener U., Heinisch J., Koehler G.J., Voss D., Hegemann J.H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002, 30:e23.
    • (2002) Nucleic Acids Res. , vol.30
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 14
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood L.A., Daran J.M., van Maris A.J., Pronk J.T., Dickinson J.R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74:2259-2266.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.M.2    van Maris, A.J.3    Pronk, J.T.4    Dickinson, J.R.5
  • 15
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong K.-K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69:2671-2690.
    • (2012) Cell. Mol. Life Sci. , vol.69 , pp. 2671-2690
    • Hong, K.-K.1    Nielsen, J.2
  • 17
    • 84856777402 scopus 로고    scopus 로고
    • Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae
    • Ida Y., Furusawa C., Hirasawa T., Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2012, 113:192-195.
    • (2012) J. Biosci. Bioeng. , vol.113 , pp. 192-195
    • Ida, Y.1    Furusawa, C.2    Hirasawa, T.3    Shimizu, H.4
  • 18
    • 0000714338 scopus 로고
    • The pathway of formation of n-butyl and n-amyl alcohols by a mutant strain of Saccharomyces cerevisiae
    • Ingraham J.L., Guymon J.F., Crowell E.A. The pathway of formation of n-butyl and n-amyl alcohols by a mutant strain of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 1961, 95:169-175.
    • (1961) Arch. Biochem. Biophys. , vol.95 , pp. 169-175
    • Ingraham, J.L.1    Guymon, J.F.2    Crowell, E.A.3
  • 20
    • 80051782239 scopus 로고    scopus 로고
    • Progress in the production and application of n-butanol as a biofuel
    • Jin C., Yao M.F., Liu H.F., Lee C.F.F., Ji J. Progress in the production and application of n-butanol as a biofuel. Renew. Sust. Energ. Rev. 2011, 15:4080-4106.
    • (2011) Renew. Sust. Energ. Rev. , vol.15 , pp. 4080-4106
    • Jin, C.1    Yao, M.F.2    Liu, H.F.3    Lee, C.F.F.4    Ji, J.5
  • 21
    • 79956226145 scopus 로고    scopus 로고
    • Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae
    • Kneen M.M., Stan R., Yep A., Tyler R.P., Saehuan C., McLeish M.J. Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J. 2011, 278:1842-1853.
    • (2011) FEBS J. , vol.278 , pp. 1842-1853
    • Kneen, M.M.1    Stan, R.2    Yep, A.3    Tyler, R.P.4    Saehuan, C.5    McLeish, M.J.6
  • 22
    • 67449106543 scopus 로고    scopus 로고
    • Butanol tolerance in a selection of microorganisms
    • Knoshaug E.P., Zhang M. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 2009, 153:13-20.
    • (2009) Appl. Biochem. Biotechnol. , vol.153 , pp. 13-20
    • Knoshaug, E.P.1    Zhang, M.2
  • 23
    • 0037338355 scopus 로고    scopus 로고
    • Leucine biosynthesis in fungi: entering metabolism through the back door
    • Kohlhaw G.B. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol. Mol. Biol. Rev. 2003, 67:1-15.
    • (2003) Microbiol. Mol. Biol. Rev. , vol.67 , pp. 1-15
    • Kohlhaw, G.B.1
  • 24
    • 84859499726 scopus 로고    scopus 로고
    • Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
    • Kondo T., Tezuka H., Ishii J., Matsuda F., Ogino C., Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J. Biotechnol. 2012, 159:32-37.
    • (2012) J. Biotechnol. , vol.159 , pp. 32-37
    • Kondo, T.1    Tezuka, H.2    Ishii, J.3    Matsuda, F.4    Ogino, C.5    Kondo, A.6
  • 26
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • Lee J.W., Na D., Park J.M., Lee J., Choi S., Lee S.Y. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 2012, 8:536-546.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 536-546
    • Lee, J.W.1    Na, D.2    Park, J.M.3    Lee, J.4    Choi, S.5    Lee, S.Y.6
  • 28
    • 0036891388 scopus 로고    scopus 로고
    • The three zinc-containing alcohol dehydrogenases from baker's yeast Saccharomyces cerevisiae
    • Leskovac V., Trivic S., Pericin D. The three zinc-containing alcohol dehydrogenases from baker's yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2002, 2:481-494.
    • (2002) FEMS Yeast Res. , vol.2 , pp. 481-494
    • Leskovac, V.1    Trivic, S.2    Pericin, D.3
  • 29
    • 0034214105 scopus 로고    scopus 로고
    • Enrichment of threonine content in Saccharomyces cerevisiae by pathway engineering
    • Maria-Jose Farfan I.L.C. Enrichment of threonine content in Saccharomyces cerevisiae by pathway engineering. Enzyme Microb. Technol. 2000, 26:763-770.
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 763-770
    • Maria-Jose Farfan, I.L.C.1
  • 31
    • 0030945741 scopus 로고    scopus 로고
    • Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis
    • Monschau N., Stahmann K.P., Sahm H., McNeil J.B., Bognar A.L. Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol. Lett. 1997, 150:55-60.
    • (1997) FEMS Microbiol. Lett. , vol.150 , pp. 55-60
    • Monschau, N.1    Stahmann, K.P.2    Sahm, H.3    McNeil, J.B.4    Bognar, A.L.5
  • 32
    • 58549117130 scopus 로고    scopus 로고
    • Mutagenic inverted repeat assisted genome engineering (MIRAGE)
    • Nair N.U., Zhao H. Mutagenic inverted repeat assisted genome engineering (MIRAGE). Nucleic Acids Res. 2009, 37:e9.
    • (2009) Nucleic Acids Res. , vol.37
    • Nair, N.U.1    Zhao, H.2
  • 35
    • 84868623605 scopus 로고    scopus 로고
    • Substrate Specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae
    • Romagnoli G., Luttik M.A.H., Kotter P., Pronk J.T., Daran J.M. Substrate Specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78:7538-7548.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 7538-7548
    • Romagnoli, G.1    Luttik, M.A.H.2    Kotter, P.3    Pronk, J.T.4    Daran, J.M.5
  • 36
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao Z., Zhao H., Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009, 37:e16.
    • (2009) Nucleic Acids Res. , vol.37
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 38
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • Shen C.R., Liao J.C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 2008, 10:312-320.
    • (2008) Metab. Eng. , vol.10 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 42
    • 33947456785 scopus 로고
    • Composition of typical grape brandy fusel oil
    • Webb A.D., Kepner R.E., Ikeda R.M. Composition of typical grape brandy fusel oil. Anal. Chem. 1952, 24:1944-1949.
    • (1952) Anal. Chem. , vol.24 , pp. 1944-1949
    • Webb, A.D.1    Kepner, R.E.2    Ikeda, R.M.3
  • 44
    • 84875138991 scopus 로고    scopus 로고
    • Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae
    • Williams T.C., Nielsen L.K., Vickers C.E. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth. Biol. 2013, 2:136-149.
    • (2013) ACS Synth. Biol. , vol.2 , pp. 136-149
    • Williams, T.C.1    Nielsen, L.K.2    Vickers, C.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.