-
1
-
-
84891818318
-
MiRBase: annotating high confidence microRNAs using deep sequencing data
-
Kozomara A., Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42:D68-D73.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D68-D73
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
2
-
-
84906935783
-
Regulation of microRNA function in somatic stem cell proliferation and differentiation
-
Shenoy A., Blelloch R.H. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat. Rev. Mol. Cell Biol. 2014, 15:565-576.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 565-576
-
-
Shenoy, A.1
Blelloch, R.H.2
-
3
-
-
79960924567
-
MicroRNAs and developmental timing
-
Ambros V. MicroRNAs and developmental timing. Curr. Opin. Genet. Dev. 2011, 21:511-517.
-
(2011)
Curr. Opin. Genet. Dev.
, vol.21
, pp. 511-517
-
-
Ambros, V.1
-
5
-
-
70350227275
-
Small RNAs and their roles in plant development
-
Chen X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 2009, 25:21-44.
-
(2009)
Annu. Rev. Cell Dev. Biol.
, vol.25
, pp. 21-44
-
-
Chen, X.1
-
6
-
-
84862779295
-
Functions of microRNAs in plant stress responses
-
Sunkar R., et al. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012, 17:196-203.
-
(2012)
Trends Plant Sci.
, vol.17
, pp. 196-203
-
-
Sunkar, R.1
-
9
-
-
84877766936
-
Molecular mechanisms of RNA interference
-
Wilson R.C., Doudna J.A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 2013, 42:217-239.
-
(2013)
Annu. Rev. Biophys.
, vol.42
, pp. 217-239
-
-
Wilson, R.C.1
Doudna, J.A.2
-
10
-
-
84925282872
-
From guide to target: molecular insights into eukaryotic RNA-interference machinery
-
Ipsaro J.J., Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat. Struct. Mol. Biol. 2015, 22:20-28.
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
, pp. 20-28
-
-
Ipsaro, J.J.1
Joshua-Tor, L.2
-
11
-
-
33645525893
-
MicroRNAS and their regulatory roles in plants
-
Jones-Rhoades M.W., et al. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 2006, 57:19-53.
-
(2006)
Annu. Rev. Plant Biol.
, vol.57
, pp. 19-53
-
-
Jones-Rhoades, M.W.1
-
12
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
13
-
-
0033572284
-
The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation
-
Olsen P.H., Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 1999, 216:671-680.
-
(1999)
Dev. Biol.
, vol.216
, pp. 671-680
-
-
Olsen, P.H.1
Ambros, V.2
-
14
-
-
0027730383
-
Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
-
Wightman B., et al. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75:855-862.
-
(1993)
Cell
, vol.75
, pp. 855-862
-
-
Wightman, B.1
-
15
-
-
33750619546
-
Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430
-
Mishima Y., et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 2006, 16:2135-2142.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2135-2142
-
-
Mishima, Y.1
-
16
-
-
23944514849
-
Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation
-
Bagga S., et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005, 122:553-563.
-
(2005)
Cell
, vol.122
, pp. 553-563
-
-
Bagga, S.1
-
17
-
-
13944282215
-
Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
-
Lim L.P., et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433:769-773.
-
(2005)
Nature
, vol.433
, pp. 769-773
-
-
Lim, L.P.1
-
18
-
-
33645124258
-
Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs
-
Giraldez A.J., et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006, 312:75-79.
-
(2006)
Science
, vol.312
, pp. 75-79
-
-
Giraldez, A.J.1
-
19
-
-
33645808039
-
Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster
-
Rehwinkel J., et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol. 2006, 26:2965-2975.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2965-2975
-
-
Rehwinkel, J.1
-
20
-
-
33746055678
-
MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes
-
Behm-Ansmant I., et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006, 20:1885-1898.
-
(2006)
Genes Dev.
, vol.20
, pp. 1885-1898
-
-
Behm-Ansmant, I.1
-
21
-
-
80555150587
-
MiRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT
-
Fabian M.R., et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat. Struct. Mol. Biol. 2011, 18:1211-1217.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1211-1217
-
-
Fabian, M.R.1
-
22
-
-
80053580757
-
GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets
-
Braun J.E., et al. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 2011, 44:120-133.
-
(2011)
Mol. Cell
, vol.44
, pp. 120-133
-
-
Braun, J.E.1
-
23
-
-
80555131046
-
MiRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs
-
Chekulaeva M., et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 2011, 18:1218-1226.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1218-1226
-
-
Chekulaeva, M.1
-
24
-
-
77749334621
-
CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells
-
Piao X., et al. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol. Cell. Biol. 2010, 30:1486-1494.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1486-1494
-
-
Piao, X.1
-
25
-
-
58149103297
-
Deadenylation is a widespread effect of miRNA regulation
-
Eulalio A., et al. Deadenylation is a widespread effect of miRNA regulation. RNA 2009, 15:21-32.
-
(2009)
RNA
, vol.15
, pp. 21-32
-
-
Eulalio, A.1
-
26
-
-
70350780068
-
Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps
-
Chen C.Y., et al. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat. Struct. Mol. Biol. 2009, 16:1160-1166.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1160-1166
-
-
Chen, C.Y.1
-
27
-
-
25844442472
-
A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing
-
Rehwinkel J., et al. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 2005, 11:1640-1647.
-
(2005)
RNA
, vol.11
, pp. 1640-1647
-
-
Rehwinkel, J.1
-
28
-
-
34948851405
-
A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain
-
Till S., et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 2007, 14:897-903.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 897-903
-
-
Till, S.1
-
29
-
-
66449120184
-
Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression
-
Takimoto K., et al. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 2009, 15:1078-1089.
-
(2009)
RNA
, vol.15
, pp. 1078-1089
-
-
Takimoto, K.1
-
30
-
-
35348970326
-
Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components
-
El-Shami M., et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 2007, 21:2539-2544.
-
(2007)
Genes Dev.
, vol.21
, pp. 2539-2544
-
-
El-Shami, M.1
-
31
-
-
65249134468
-
The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing
-
Lian S.L., et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 2009, 15:804-813.
-
(2009)
RNA
, vol.15
, pp. 804-813
-
-
Lian, S.L.1
-
32
-
-
84861451595
-
The crystal structure of human Argonaute2
-
Schirle N.T., Macrae I.J. The crystal structure of human Argonaute2. Science 2012, 336:1037-1040.
-
(2012)
Science
, vol.336
, pp. 1037-1040
-
-
Schirle, N.T.1
Macrae, I.J.2
-
33
-
-
66449123316
-
The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins
-
Lazzaretti D., et al. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA 2009, 15:1059-1066.
-
(2009)
RNA
, vol.15
, pp. 1059-1066
-
-
Lazzaretti, D.1
-
34
-
-
65249083468
-
Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression
-
Zipprich J.T., et al. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 2009, 15:781-793.
-
(2009)
RNA
, vol.15
, pp. 781-793
-
-
Zipprich, J.T.1
-
35
-
-
65249161794
-
Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila
-
Chekulaeva M., et al. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 2009, 15:794-803.
-
(2009)
RNA
, vol.15
, pp. 794-803
-
-
Chekulaeva, M.1
-
36
-
-
66449124170
-
A C-terminal silencing domain in GW182 is essential for miRNA function
-
Eulalio A., et al. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 2009, 15:1067-1077.
-
(2009)
RNA
, vol.15
, pp. 1067-1077
-
-
Eulalio, A.1
-
37
-
-
70349177026
-
Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation
-
Fabian M.R., et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 2009, 35:868-880.
-
(2009)
Mol. Cell
, vol.35
, pp. 868-880
-
-
Fabian, M.R.1
-
38
-
-
76349104822
-
Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation
-
Jinek M., et al. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat. Struct. Mol. Biol. 2010, 17:238-240.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 238-240
-
-
Jinek, M.1
-
39
-
-
71949121493
-
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release
-
Zekri L., et al. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol. Cell. Biol. 2009, 29:6220-6231.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 6220-6231
-
-
Zekri, L.1
-
40
-
-
78650258635
-
Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing
-
Huntzinger E., et al. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J. 2010, 29:4146-4160.
-
(2010)
EMBO J.
, vol.29
, pp. 4146-4160
-
-
Huntzinger, E.1
-
41
-
-
84875190908
-
The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets
-
Huntzinger E., et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res. 2012, 41:978-994.
-
(2012)
Nucleic Acids Res.
, vol.41
, pp. 978-994
-
-
Huntzinger, E.1
-
42
-
-
84861854141
-
The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes
-
Kuzuoglu-Ozturk D., et al. The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res. 2012, 40:5651-5665.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5651-5665
-
-
Kuzuoglu-Ozturk, D.1
-
43
-
-
84881497030
-
Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins
-
Christie M., et al. Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins. Mol. Cell 2013, 51:360-373.
-
(2013)
Mol. Cell
, vol.51
, pp. 360-373
-
-
Christie, M.1
-
44
-
-
79959915821
-
Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing
-
Su H., et al. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing. Mol. Cell 2011, 43:97-109.
-
(2011)
Mol. Cell
, vol.43
, pp. 97-109
-
-
Su, H.1
-
45
-
-
84901911674
-
A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing
-
Chen Y., et al. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 2014, 54:737-750.
-
(2014)
Mol. Cell
, vol.54
, pp. 737-750
-
-
Chen, Y.1
-
46
-
-
84901940130
-
Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression
-
Mathys H., et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 2014, 54:751-765.
-
(2014)
Mol. Cell
, vol.54
, pp. 751-765
-
-
Mathys, H.1
-
47
-
-
84871681585
-
MicroRNAs mediate gene silencing via multiple different pathways in Drosophila
-
Fukaya T., Tomari Y. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Mol. Cell 2012, 48:825-836.
-
(2012)
Mol. Cell
, vol.48
, pp. 825-836
-
-
Fukaya, T.1
Tomari, Y.2
-
48
-
-
84861839851
-
PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding
-
Moretti F., et al. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat. Struct. Mol. Biol. 2012, 19:603-608.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 603-608
-
-
Moretti, F.1
-
49
-
-
84875914443
-
GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation
-
Zekri L., et al. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. EMBO J. 2013, 32:1052-1065.
-
(2013)
EMBO J.
, vol.32
, pp. 1052-1065
-
-
Zekri, L.1
-
50
-
-
35348962568
-
Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing
-
Eulalio A., et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 2007, 21:2558-2570.
-
(2007)
Genes Dev.
, vol.21
, pp. 2558-2570
-
-
Eulalio, A.1
-
51
-
-
84870790194
-
A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation
-
Braun J.E., et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5' exonucleolytic degradation. Nat. Struct. Mol. Biol. 2012, 19:1324-1331.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1324-1331
-
-
Braun, J.E.1
-
52
-
-
84922260726
-
Uridylation by TUT4 and TUT7 marks mRNA for degradation
-
Lim J., et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 2014, 159:1365-1376.
-
(2014)
Cell
, vol.159
, pp. 1365-1376
-
-
Lim, J.1
-
53
-
-
84885911691
-
MiRISC recruits decapping factors to miRNA targets to enhance their degradation
-
Nishihara T., et al. miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Res. 2013, 41:8692-8705.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 8692-8705
-
-
Nishihara, T.1
-
54
-
-
84925811356
-
Roles of mRNA-fate modulators Dhh1 and Pat1 in TNRC6-dependent gene silencing recapitulated in yeast
-
Makino S., et al. Roles of mRNA-fate modulators Dhh1 and Pat1 in TNRC6-dependent gene silencing recapitulated in yeast. J. Biol. Chem. 2015, 290:8331-8347.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 8331-8347
-
-
Makino, S.1
-
55
-
-
84930757315
-
The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5' and 3' termini of target mRNAs
-
Nishimura T., et al. The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5' and 3' termini of target mRNAs. Cell Rep. 2015, 11:1425-1436.
-
(2015)
Cell Rep.
, vol.11
, pp. 1425-1436
-
-
Nishimura, T.1
-
56
-
-
24644480213
-
Inhibition of translational initiation by Let-7 MicroRNA in human cells
-
Pillai R.S., et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005, 309:1573-1576.
-
(2005)
Science
, vol.309
, pp. 1573-1576
-
-
Pillai, R.S.1
-
57
-
-
33745894330
-
Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54
-
Chu C.Y., Rana T.M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 2006, 4:e210.
-
(2006)
PLoS Biol.
, vol.4
, pp. e210
-
-
Chu, C.Y.1
Rana, T.M.2
-
58
-
-
80053186141
-
Visualization of single mRNAs reveals temporal association of proteins with microRNA-regulated mRNA
-
Shih J.D., et al. Visualization of single mRNAs reveals temporal association of proteins with microRNA-regulated mRNA. Nucleic Acids Res. 2011, 39:7740-7749.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 7740-7749
-
-
Shih, J.D.1
-
59
-
-
84869088655
-
DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation
-
Hu Q., et al. DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation. Nat. Struct. Mol. Biol. 2012, 19:1168-1175.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1168-1175
-
-
Hu, Q.1
-
60
-
-
85011942152
-
The decapping activator HPat a novel factor co-purifying with GW182 from Drosophila cells
-
Jager E., Dorner S. The decapping activator HPat a novel factor co-purifying with GW182 from Drosophila cells. RNA Biol. 2010, 7:381-385.
-
(2010)
RNA Biol.
, vol.7
, pp. 381-385
-
-
Jager, E.1
Dorner, S.2
-
61
-
-
84906874947
-
Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1
-
Rouya C., et al. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA 2014, 20:1398-1409.
-
(2014)
RNA
, vol.20
, pp. 1398-1409
-
-
Rouya, C.1
-
62
-
-
84897571308
-
Poly(A)-tail profiling reveals an embryonic switch in translational control
-
Subtelny A.O., et al. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014, 508:66-71.
-
(2014)
Nature
, vol.508
, pp. 66-71
-
-
Subtelny, A.O.1
-
63
-
-
84864872623
-
Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells
-
Bethune J., et al. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep. 2012, 13:716-723.
-
(2012)
EMBO Rep.
, vol.13
, pp. 716-723
-
-
Bethune, J.1
-
64
-
-
84888173712
-
Molecular insights into microRNA-mediated translational repression in plants
-
Iwakawa H.O., Tomari Y. Molecular insights into microRNA-mediated translational repression in plants. Mol. Cell 2013, 52:591-601.
-
(2013)
Mol. Cell
, vol.52
, pp. 591-601
-
-
Iwakawa, H.O.1
Tomari, Y.2
-
65
-
-
84883167952
-
Biogenesis, turnover, and mode of action of plant microRNAs
-
Rogers K., Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 2013, 25:2383-2399.
-
(2013)
Plant Cell
, vol.25
, pp. 2383-2399
-
-
Rogers, K.1
Chen, X.2
-
66
-
-
84899741616
-
The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis
-
Bologna N.G., Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 2014, 65:473-503.
-
(2014)
Annu. Rev. Plant Biol.
, vol.65
, pp. 473-503
-
-
Bologna, N.G.1
Voinnet, O.2
-
67
-
-
46149088681
-
Plant ARGONAUTES
-
Vaucheret H. Plant ARGONAUTES. Trends Plant Sci. 2008, 13:350-358.
-
(2008)
Trends Plant Sci.
, vol.13
, pp. 350-358
-
-
Vaucheret, H.1
-
68
-
-
0037144457
-
Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA
-
Llave C., et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002, 297:2053-2056.
-
(2002)
Science
, vol.297
, pp. 2053-2056
-
-
Llave, C.1
-
69
-
-
23844550243
-
Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs
-
Baumberger N., Baulcombe D.C. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:11928-11933.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 11928-11933
-
-
Baumberger, N.1
Baulcombe, D.C.2
-
70
-
-
84874525489
-
Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures
-
Poulsen C., et al. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. Plant Cell 2013, 25:22-37.
-
(2013)
Plant Cell
, vol.25
, pp. 22-37
-
-
Poulsen, C.1
-
71
-
-
0037224921
-
A biochemical framework for RNA silencing in plants
-
Tang G., et al. A biochemical framework for RNA silencing in plants. Genes Dev. 2003, 17:49-63.
-
(2003)
Genes Dev.
, vol.17
, pp. 49-63
-
-
Tang, G.1
-
72
-
-
3242691607
-
AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets
-
Souret F.F., et al. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell 2004, 15:173-183.
-
(2004)
Mol. Cell
, vol.15
, pp. 173-183
-
-
Souret, F.F.1
-
73
-
-
15444368560
-
Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome
-
Orban T.I., Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 2005, 11:459-469.
-
(2005)
RNA
, vol.11
, pp. 459-469
-
-
Orban, T.I.1
Izaurralde, E.2
-
74
-
-
84899654405
-
Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage
-
Ren G., et al. Methylation protects microRNAs from an AGO1-associated activity that uridylates 5' RNA fragments generated by AGO1 cleavage. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:6365-6370.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 6365-6370
-
-
Ren, G.1
-
75
-
-
33845957402
-
Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts
-
Ibrahim F., et al. Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science 2006, 314:1893.
-
(2006)
Science
, vol.314
, pp. 1893
-
-
Ibrahim, F.1
-
76
-
-
84868540050
-
A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs
-
Braun J.E., et al. A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harb. Perspect. Biol. 2012, 4:a012328.
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
-
-
Braun, J.E.1
-
77
-
-
77953629046
-
Regulation of mRNA translation and stability by microRNAs
-
Fabian M.R., et al. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79:351-379.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 351-379
-
-
Fabian, M.R.1
-
78
-
-
84861866572
-
The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC
-
Fabian M.R., Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 2012, 19:586-593.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 586-593
-
-
Fabian, M.R.1
Sonenberg, N.2
-
79
-
-
78751477191
-
Gene silencing by microRNAs: contributions of translational repression and mRNA decay
-
Huntzinger E., Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 2011, 12:99-110.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 99-110
-
-
Huntzinger, E.1
Izaurralde, E.2
-
80
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H., et al. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466:835-840.
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
-
81
-
-
84862778053
-
Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish
-
Bazzini A.A., et al. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 2012, 336:233-237.
-
(2012)
Science
, vol.336
, pp. 233-237
-
-
Bazzini, A.A.1
-
82
-
-
84922394487
-
MRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues
-
Eichhorn S.W., et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 2014, 56:104-115.
-
(2014)
Mol. Cell
, vol.56
, pp. 104-115
-
-
Eichhorn, S.W.1
-
83
-
-
84876318702
-
Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation
-
Meijer H.A., et al. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 2013, 340:82-85.
-
(2013)
Science
, vol.340
, pp. 82-85
-
-
Meijer, H.A.1
-
84
-
-
84931057948
-
Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo
-
Waghray S., et al. Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. RNA 2015, 21:1335-1345.
-
(2015)
RNA
, vol.21
, pp. 1335-1345
-
-
Waghray, S.1
-
85
-
-
84922394977
-
MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans
-
Fukao A., et al. MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Mol. Cell 2014, 56:79-89.
-
(2014)
Mol. Cell
, vol.56
, pp. 79-89
-
-
Fukao, A.1
-
86
-
-
84922394010
-
MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila
-
Fukaya T., et al. MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila. Mol. Cell 2014, 56:67-78.
-
(2014)
Mol. Cell
, vol.56
, pp. 67-78
-
-
Fukaya, T.1
-
87
-
-
59349083988
-
Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing
-
Li S., et al. Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing. J. Cell Sci. 2008, 121:4134-4144.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 4134-4144
-
-
Li, S.1
-
88
-
-
79954610487
-
Divergent GW182 functional domains in the regulation of translational silencing
-
Yao B., et al. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res. 2011, 39:2534-2547.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 2534-2547
-
-
Yao, B.1
-
89
-
-
83555161676
-
PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro
-
Fukaya T., Tomari Y. PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. EMBO J. 2011, 30:4998-5009.
-
(2011)
EMBO J.
, vol.30
, pp. 4998-5009
-
-
Fukaya, T.1
Tomari, Y.2
-
90
-
-
77956503398
-
Translational repression by deadenylases
-
Cooke A., et al. Translational repression by deadenylases. J. Biol. Chem. 2010, 285:28506-28513.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 28506-28513
-
-
Cooke, A.1
-
91
-
-
78049393669
-
The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression
-
Chekulaeva M., et al. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res. 2010, 38:6673-6683.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 6673-6683
-
-
Chekulaeva, M.1
-
92
-
-
41649115420
-
GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay
-
Eulalio A., et al. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 2008, 15:346-353.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 346-353
-
-
Eulalio, A.1
-
93
-
-
77951596454
-
Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein
-
Kozlov G., et al. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. J. Biol. Chem. 2010, 285:13599-13606.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13599-13606
-
-
Kozlov, G.1
-
94
-
-
28044457883
-
MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function
-
Humphreys D.T., et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:16961-16966.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 16961-16966
-
-
Humphreys, D.T.1
-
95
-
-
33645119514
-
MicroRNAs direct rapid deadenylation of mRNA
-
Wu L., et al. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:4034-4039.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 4034-4039
-
-
Wu, L.1
-
96
-
-
69449099275
-
MicroRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells
-
Beilharz T.H., et al. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS ONE 2009, 4:e6783.
-
(2009)
PLoS ONE
, vol.4
, pp. e6783
-
-
Beilharz, T.H.1
-
97
-
-
63649105975
-
Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression
-
Iwasaki S., et al. Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression. Mol. Cell 2009, 34:58-67.
-
(2009)
Mol. Cell
, vol.34
, pp. 58-67
-
-
Iwasaki, S.1
-
98
-
-
84856375470
-
Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish
-
Mishima Y., et al. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1104-1109.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 1104-1109
-
-
Mishima, Y.1
-
99
-
-
84874586399
-
NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain
-
Bawankar P., et al. NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. RNA Biol. 2013, 10:228-244.
-
(2013)
RNA Biol.
, vol.10
, pp. 228-244
-
-
Bawankar, P.1
-
100
-
-
84878113615
-
The DHH1/RCKp54 family of helicases: an ancient family of proteins that promote translational silencing
-
Presnyak V., Coller J. The DHH1/RCKp54 family of helicases: an ancient family of proteins that promote translational silencing. Biochim. Biophys. Acta 2013, 1829:817-823.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 817-823
-
-
Presnyak, V.1
Coller, J.2
-
101
-
-
25144482816
-
General translational repression by activators of mRNA decapping
-
Coller J., Parker R. General translational repression by activators of mRNA decapping. Cell 2005, 122:875-886.
-
(2005)
Cell
, vol.122
, pp. 875-886
-
-
Coller, J.1
Parker, R.2
-
102
-
-
84899022819
-
Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing
-
Kamenska A., et al. Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Res. 2014, 42:3298-3313.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 3298-3313
-
-
Kamenska, A.1
-
103
-
-
34250653704
-
MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay
-
Behm-Ansmant I., et al. MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb. Symp. Quant. Biol. 2006, 71:523-530.
-
(2006)
Cold Spring Harb. Symp. Quant. Biol.
, vol.71
, pp. 523-530
-
-
Behm-Ansmant, I.1
-
104
-
-
34547623022
-
Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system
-
Wakiyama M., et al. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007, 21:1857-1862.
-
(2007)
Genes Dev.
, vol.21
, pp. 1857-1862
-
-
Wakiyama, M.1
-
105
-
-
34249282243
-
Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation
-
Thermann R., Hentze M.W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 2007, 447:875-878.
-
(2007)
Nature
, vol.447
, pp. 875-878
-
-
Thermann, R.1
Hentze, M.W.2
-
106
-
-
34547944309
-
MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F
-
Mathonnet G., et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 2007, 317:1764-1767.
-
(2007)
Science
, vol.317
, pp. 1764-1767
-
-
Mathonnet, G.1
-
107
-
-
34250017082
-
An mRNA m7G cap binding-like motif within human Ago2 represses translation
-
Kiriakidou M., et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 2007, 129:1141-1151.
-
(2007)
Cell
, vol.129
, pp. 1141-1151
-
-
Kiriakidou, M.1
-
108
-
-
84871781809
-
MiRNA repression of translation in vitro takes place during 43S ribosomal scanning
-
Ricci E.P., et al. miRNA repression of translation in vitro takes place during 43S ribosomal scanning. Nucleic Acids Res. 2013, 41:586-598.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 586-598
-
-
Ricci, E.P.1
-
109
-
-
84873601243
-
EIF4GI facilitates the MicroRNA-mediated gene silencing
-
Ryu I., et al. eIF4GI facilitates the MicroRNA-mediated gene silencing. PLoS ONE 2013, 8:e55725.
-
(2013)
PLoS ONE
, vol.8
, pp. e55725
-
-
Ryu, I.1
-
110
-
-
43449091567
-
Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome
-
Addo-Quaye C., et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 2008, 18:758-762.
-
(2008)
Curr. Biol.
, vol.18
, pp. 758-762
-
-
Addo-Quaye, C.1
-
111
-
-
84899865836
-
A non-canonical plant microRNA target site
-
Brousse C., et al. A non-canonical plant microRNA target site. Nucleic Acids Res. 2014, 42:5270-5279.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 5270-5279
-
-
Brousse, C.1
-
112
-
-
77957328824
-
A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana
-
Todesco M., et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 2010, 6:e1001031.
-
(2010)
PLoS Genet.
, vol.6
-
-
Todesco, M.1
-
113
-
-
16244398080
-
Specific effects of microRNAs on the plant transcriptome
-
Schwab R., et al. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 2005, 8:517-527.
-
(2005)
Dev. Cell
, vol.8
, pp. 517-527
-
-
Schwab, R.1
-
114
-
-
1642366133
-
A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development
-
Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 2004, 303:2022-2025.
-
(2004)
Science
, vol.303
, pp. 2022-2025
-
-
Chen, X.1
-
115
-
-
0242361521
-
Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes
-
Aukerman M.J., Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 2003, 15:2730-2741.
-
(2003)
Plant Cell
, vol.15
, pp. 2730-2741
-
-
Aukerman, M.J.1
Sakai, H.2
-
116
-
-
33846904347
-
The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings
-
Gandikota M., et al. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007, 49:683-693.
-
(2007)
Plant J.
, vol.49
, pp. 683-693
-
-
Gandikota, M.1
-
117
-
-
45849122499
-
Widespread translational inhibition by plant miRNAs and siRNAs
-
Brodersen P., et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008, 320:1185-1190.
-
(2008)
Science
, vol.320
, pp. 1185-1190
-
-
Brodersen, P.1
-
118
-
-
84862908617
-
Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis
-
Yang L., et al. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:315-320.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 315-320
-
-
Yang, L.1
-
119
-
-
84876918219
-
MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis
-
Li S., et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013, 153:562-574.
-
(2013)
Cell
, vol.153
, pp. 562-574
-
-
Li, S.1
-
120
-
-
33947540895
-
Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development
-
Xu J., et al. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 2006, 18:3386-3398.
-
(2006)
Plant Cell
, vol.18
, pp. 3386-3398
-
-
Xu, J.1
-
121
-
-
0037351702
-
The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth
-
Bouquin T., et al. The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J. Cell Sci. 2003, 116:791-801.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 791-801
-
-
Bouquin, T.1
-
122
-
-
68949115601
-
Biochemical evidence for translational repression by Arabidopsis microRNAs
-
Lanet E., et al. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell 2009, 21:1762-1768.
-
(2009)
Plant Cell
, vol.21
, pp. 1762-1768
-
-
Lanet, E.1
-
123
-
-
77953635299
-
Biochemical principles of small RNA pathways
-
Liu Q., Paroo Z. Biochemical principles of small RNA pathways. Annu. Rev. Biochem. 2010, 79:295-319.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 295-319
-
-
Liu, Q.1
Paroo, Z.2
-
124
-
-
23044478505
-
Biochemical specialization within Arabidopsis RNA silencing pathways
-
Qi Y., et al. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 2005, 19:421-428.
-
(2005)
Mol. Cell
, vol.19
, pp. 421-428
-
-
Qi, Y.1
-
125
-
-
77955479987
-
In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90
-
Iki T., et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell 2010, 39:282-291.
-
(2010)
Mol. Cell
, vol.39
, pp. 282-291
-
-
Iki, T.1
-
126
-
-
84857195703
-
Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants
-
Iki T., et al. Cyclophilin 40 facilitates HSP90-mediated RISC assembly in plants. EMBO J. 2012, 31:267-278.
-
(2012)
EMBO J.
, vol.31
, pp. 267-278
-
-
Iki, T.1
-
127
-
-
84862989445
-
Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes
-
Ye R., et al. Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. Mol. Cell 2012, 46:859-870.
-
(2012)
Mol. Cell
, vol.46
, pp. 859-870
-
-
Ye, R.1
-
128
-
-
84879688354
-
Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly
-
Endo Y., et al. Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep. 2013, 14:652-658.
-
(2013)
EMBO Rep.
, vol.14
, pp. 652-658
-
-
Endo, Y.1
-
129
-
-
49949116902
-
The impact of microRNAs on protein output
-
Baek D., et al. The impact of microRNAs on protein output. Nature 2008, 455:64-71.
-
(2008)
Nature
, vol.455
, pp. 64-71
-
-
Baek, D.1
-
130
-
-
49949117302
-
Widespread changes in protein synthesis induced by microRNAs
-
Selbach M., et al. Widespread changes in protein synthesis induced by microRNAs. Nature 2008, 455:58-63.
-
(2008)
Nature
, vol.455
, pp. 58-63
-
-
Selbach, M.1
-
131
-
-
72949115517
-
Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA
-
Hendrickson D.G., et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 2009, 7:e1000238.
-
(2009)
PLoS Biol.
, vol.7
-
-
Hendrickson, D.G.1
-
132
-
-
84859632747
-
MiRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay
-
Djuranovic S., et al. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 2012, 336:237-240.
-
(2012)
Science
, vol.336
, pp. 237-240
-
-
Djuranovic, S.1
-
133
-
-
84896405087
-
TAIL-seq: genome-wide determination of poly(A) tail length and 3' end modifications
-
Chang H., et al. TAIL-seq: genome-wide determination of poly(A) tail length and 3' end modifications. Mol. Cell 2014, 53:1044-1052.
-
(2014)
Mol. Cell
, vol.53
, pp. 1044-1052
-
-
Chang, H.1
-
134
-
-
33744973775
-
Relief of microRNA-mediated translational repression in human cells subjected to stress
-
Bhattacharyya S.N., et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006, 125:1111-1124.
-
(2006)
Cell
, vol.125
, pp. 1111-1124
-
-
Bhattacharyya, S.N.1
-
135
-
-
84861889524
-
HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA
-
Kundu P., et al. HuR protein attenuates miRNA-mediated repression by promoting miRISC dissociation from the target RNA. Nucleic Acids Res. 2012, 40:5088-5100.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5088-5100
-
-
Kundu, P.1
-
136
-
-
72149086111
-
A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation
-
Banerjee S., et al. A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 2009, 64:871-884.
-
(2009)
Neuron
, vol.64
, pp. 871-884
-
-
Banerjee, S.1
-
137
-
-
84868089450
-
Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants
-
Carbonell A., et al. Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 2012, 24:3613-3629.
-
(2012)
Plant Cell
, vol.24
, pp. 3613-3629
-
-
Carbonell, A.1
-
138
-
-
49449118943
-
Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends
-
German M.A., et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 2008, 26:941-946.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 941-946
-
-
German, M.A.1
-
139
-
-
84888404338
-
Translational landscape of photomorphogenic Arabidopsis
-
Liu M.J., et al. Translational landscape of photomorphogenic Arabidopsis. Plant Cell 2013, 25:3699-3710.
-
(2013)
Plant Cell
, vol.25
, pp. 3699-3710
-
-
Liu, M.J.1
-
140
-
-
84903838590
-
The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase
-
Schafer I.B., et al. The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase. Nat. Struct. Mol. Biol. 2014, 21:591-598.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 591-598
-
-
Schafer, I.B.1
-
141
-
-
84904558548
-
Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation
-
Wolf J., et al. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J. 2014, 33:1514-1526.
-
(2014)
EMBO J.
, vol.33
, pp. 1514-1526
-
-
Wolf, J.1
-
142
-
-
84903847281
-
An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay
-
Jonas S., et al. An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. Nat. Struct. Mol. Biol. 2014, 21:599-608.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 599-608
-
-
Jonas, S.1
-
143
-
-
84931572130
-
Towards a molecular understanding of microRNA-mediated gene silencing
-
Jonas S., Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16:421-433.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 421-433
-
-
Jonas, S.1
Izaurralde, E.2
-
144
-
-
84902193122
-
The scanning mechanism of eukaryotic translation initiation
-
Hinnebusch A.G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 2014, 83:779-812.
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 779-812
-
-
Hinnebusch, A.G.1
-
145
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: mechanisms and biological targets
-
Sonenberg N., Hinnebusch A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731-745.
-
(2009)
Cell
, vol.136
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
|