메뉴 건너뛰기




Volumn 21, Issue 7, 2014, Pages 591-598

The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase

Author keywords

[No Author keywords available]

Indexed keywords

DEADENYLASE; FUNGAL ENZYME; FUNGAL PROTEIN; HOMODIMER; HYDROLASE; MANGANESE; PAN2 PROTEIN; PAN3 PROTEIN; POLYADENYLIC ACID BINDING PROTEIN; POLYADENYLIC ACID BINDING PROTEIN 1; PSEUDOKINASE; RIBONUCLEASE; RNA; UNCLASSIFIED DRUG;

EID: 84903838590     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2834     Document Type: Article
Times cited : (44)

References (52)
  • 1
    • 84897571308 scopus 로고    scopus 로고
    • Poly(A)-tail profling reveals an embryonic switch in translational control
    • Subtelny, A.O., Eichhorn, S.W., Chen, G.R., Sive, H. & Bartel, D.P. Poly(A)-tail profling reveals an embryonic switch in translational control. Nature 508, 66-71 (2014).
    • (2014) Nature , vol.508 , pp. 66-71
    • Subtelny, A.O.1    Eichhorn, S.W.2    Chen, G.R.3    Sive, H.4    Bartel, D.P.5
  • 2
    • 84874102994 scopus 로고    scopus 로고
    • Poly(A) binding proteins: Are they all created equal?
    • Goss, D.J. & Kleiman, F.E. Poly(A) binding proteins: are they all created equal? Wiley Interdiscip. Rev. RNA 4, 167-179 (2013).
    • (2013) Wiley Interdiscip. Rev. RNA , vol.4 , pp. 167-179
    • Goss, D.J.1    Kleiman, F.E.2
  • 3
    • 3943080710 scopus 로고    scopus 로고
    • The molecular mechanics of eukaryotic translation
    • Kapp, L.D. & Lorsch, J.R. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657-704 (2004).
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 657-704
    • Kapp, L.D.1    Lorsch, J.R.2
  • 4
    • 0024591905 scopus 로고
    • The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro
    • Bernstein, P., Peltz, S.W. & Ross, J. The poly(A)-poly(A)-binding protein complex is a major determinant of mRNA stability in vitro. Mol. Cell. Biol. 9, 659-670 (1989).
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 659-670
    • Bernstein, P.1    Peltz, S.W.2    Ross, J.3
  • 5
    • 84864393412 scopus 로고    scopus 로고
    • The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover
    • Brook, M. & Gray, N.K. The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem. Soc. Trans. 40, 856-864 (2012).
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 856-864
    • Brook, M.1    Gray, N.K.2
  • 6
    • 0027320701 scopus 로고
    • A turnover pathway for both stable and unstable mRNAs in yeast: Evidence for a requirement for deadenylation
    • Decker, C.J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632-1643 (1993).
    • (1993) Genes Dev. , vol.7 , pp. 1632-1643
    • Decker, C.J.1    Parker, R.2
  • 7
    • 0031740339 scopus 로고    scopus 로고
    • Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specifc deadenylation
    • Brown, C.E. & Sachs, A.B. Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specifc deadenylation. Mol. Cell. Biol. 18, 6548-6559 (1998).
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6548-6559
    • Brown, C.E.1    Sachs, A.B.2
  • 8
  • 9
    • 84877801967 scopus 로고    scopus 로고
    • RNA decay machines: Deadenylation by the Ccr4-Not and Pan2-Pan3 complexes
    • Wahle, E. & Winkler, G.S. RNA decay machines: deadenylation by the Ccr4-Not and Pan2-Pan3 complexes. Biochim. Biophys. Acta 1829, 561-570 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 561-570
    • Wahle, E.1    Winkler, G.S.2
  • 10
    • 0742288008 scopus 로고    scopus 로고
    • The enzymes and control of eukaryotic mRNA turnover
    • Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121-127 (2004).
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 121-127
    • Parker, R.1    Song, H.2
  • 12
    • 80555131046 scopus 로고    scopus 로고
    • MiRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs
    • Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218-1226 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1218-1226
    • Chekulaeva, M.1
  • 13
    • 80053580757 scopus 로고    scopus 로고
    • GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets
    • Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120-133 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 120-133
    • Braun, J.E.1    Huntzinger, E.2    Fauser, M.3    Izaurralde, E.4
  • 14
    • 80555150587 scopus 로고    scopus 로고
    • MiRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT
    • Fabian, M.R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat. Struct. Mol. Biol. 18, 1211-1217 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1211-1217
    • Fabian, M.R.1
  • 15
    • 84877813924 scopus 로고    scopus 로고
    • Control of maternal mRNA stability in germ cells and early embryos
    • Barckmann, B. & Simonelig, M. Control of maternal mRNA stability in germ cells and early embryos. Biochim. Biophys. Acta 1829, 714-724 (2013).
    • (2013) Biochim. Biophys. Acta , vol.1829 , pp. 714-724
    • Barckmann, B.1    Simonelig, M.2
  • 16
    • 28544450636 scopus 로고    scopus 로고
    • Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover
    • Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054-1063 (2005).
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 1054-1063
    • Yamashita, A.1
  • 17
    • 0030070804 scopus 로고    scopus 로고
    • The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity
    • Boeck, R. et al. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271, 432-438 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 432-438
    • Boeck, R.1
  • 18
    • 0037086657 scopus 로고    scopus 로고
    • Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae
    • Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427-1436 (2002).
    • (2002) EMBO J. , vol.21 , pp. 1427-1436
    • Tucker, M.1    Staples, R.R.2    Valencia-Sanchez, M.A.3    Muhlrad, D.4    Parker, R.5
  • 19
    • 84885359411 scopus 로고    scopus 로고
    • Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels
    • Sun, M. et al. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Mol. Cell 52, 52-62 (2013).
    • (2013) Mol. Cell , vol.52 , pp. 52-62
    • Sun, M.1
  • 20
    • 0037169544 scopus 로고    scopus 로고
    • Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase
    • Maillet, L. & Collart, M.A. Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase. J. Biol. Chem. 277, 2835-2842 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 2835-2842
    • Maillet, L.1    Collart, M.A.2
  • 21
    • 84868094761 scopus 로고    scopus 로고
    • Architecture of the nuclease module of the yeast Ccr4-Not complex: The Not1-Caf1-Ccr4 interaction
    • Basquin, J. et al. Architecture of the nuclease module of the yeast Ccr4-Not complex: the Not1-Caf1-Ccr4 interaction. Mol. Cell 48, 207-218 (2012).
    • (2012) Mol. Cell , vol.48 , pp. 207-218
    • Basquin, J.1
  • 22
    • 84870622730 scopus 로고    scopus 로고
    • The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex
    • Petit, A.-P. et al. The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res. 40, 11058-11072 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 11058-11072
    • Petit, A.-P.1
  • 23
    • 84878904767 scopus 로고    scopus 로고
    • Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin
    • Fabian, M.R. et al. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat. Struct. Mol. Biol. 20, 735-739 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 735-739
    • Fabian, M.R.1
  • 24
    • 84887453009 scopus 로고    scopus 로고
    • Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex
    • Bhaskar, V. et al. Structure and RNA-binding properties of the Not1-Not2-Not5 module of the yeast Ccr4-Not complex. Nat. Struct. Mol. Biol. 20, 1281-1288 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1281-1288
    • Bhaskar, V.1
  • 25
    • 84887455870 scopus 로고    scopus 로고
    • Structure and assembly of the NOT module of the human CCR4-NOT complex
    • Boland, A. et al. Structure and assembly of the NOT module of the human CCR4-NOT complex. Nat. Struct. Mol. Biol. 20, 1289-1297 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1289-1297
    • Boland, A.1
  • 26
    • 0029811599 scopus 로고    scopus 로고
    • PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae
    • Brown, C.E., Tarun, S.Z., Boeck, R. & Sachs, A.B. PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 5744-5753 (1996).
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 5744-5753
    • Brown, C.E.1    Tarun, S.Z.2    Boeck, R.3    Sachs, A.B.4
  • 27
    • 2942532990 scopus 로고    scopus 로고
    • Positive and negative regulation of poly(A) nuclease
    • Mangus, D.A. et al. Positive and negative regulation of poly(A) nuclease. Mol. Cell. Biol. 24, 5521-5533 (2004).
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 5521-5533
    • Mangus, D.A.1
  • 28
    • 84881497030 scopus 로고    scopus 로고
    • Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins
    • Christie, M., Boland, A., Huntzinger, E., Weichenrieder, O. & Izaurralde, E. Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins. Mol. Cell 51, 360-373 (2013).
    • (2013) Mol. Cell , vol.51 , pp. 360-373
    • Christie, M.1    Boland, A.2    Huntzinger, E.3    Weichenrieder, O.4    Izaurralde, E.5
  • 29
    • 0035283033 scopus 로고    scopus 로고
    • Exoribonuclease superfamilies: Structural analysis and phylogenetic distribution
    • Zuo, Y. & Deutscher, M.P. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29, 1017-1026 (2001).
    • (2001) Nucleic Acids Res. , vol.29 , pp. 1017-1026
    • Zuo, Y.1    Deutscher, M.P.2
  • 30
    • 34548359334 scopus 로고    scopus 로고
    • Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein
    • Siddiqui, N. et al. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J. Biol. Chem. 282, 25067-25075 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 25067-25075
    • Siddiqui, N.1
  • 31
    • 0026446398 scopus 로고
    • 3′-UTR-dependent deadenylation by the yeast poly(A) nuclease
    • Lowell, J.E., Rudner, D.Z. & Sachs, A.B. 3′-UTR-dependent deadenylation by the yeast poly(A) nuclease. Genes Dev. 6, 2088-2099 (1992).
    • (1992) Genes Dev. , vol.6 , pp. 2088-2099
    • Lowell, J.E.1    Rudner, D.Z.2    Sachs, A.B.3
  • 32
    • 0347093310 scopus 로고    scopus 로고
    • Identifcation of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein
    • Uchida, N., Hoshino, S.-I. & Katada, T. Identifcation of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. 279, 1383-1391 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 1383-1391
    • Uchida, N.1    Hoshino, S.-I.2    Katada, T.3
  • 33
    • 7544228191 scopus 로고    scopus 로고
    • Crystal structure of human ISG20, an interferon-induced antiviral ribonuclease
    • Horio, T. et al. Crystal structure of human ISG20, an interferon-induced antiviral ribonuclease. FEBS Lett. 577, 111-116 (2004).
    • (2004) FEBS Lett. , vol.577 , pp. 111-116
    • Horio, T.1
  • 34
    • 0037184947 scopus 로고    scopus 로고
    • Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde
    • Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041-1054 (2002).
    • (2002) Cell , vol.111 , pp. 1041-1054
    • Hu, M.1
  • 35
    • 77954288774 scopus 로고    scopus 로고
    • Dali server: Conservation mapping in 3D
    • Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-W549 (2010).
    • (2010) Nucleic Acids Res. , vol.38
    • Holm, L.1    Rosenström, P.2
  • 36
    • 0345832225 scopus 로고    scopus 로고
    • X-ray structure and activity of the yeast Pop2 protein: A nuclease subunit of the mRNA deadenylase complex
    • Thore, S., Mauxion, F., Seraphin, B. & Suck, D. X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep. 4, 1150-1155 (2003).
    • (2003) EMBO Rep. , vol.4 , pp. 1150-1155
    • Thore, S.1    Mauxion, F.2    Seraphin, B.3    Suck, D.4
  • 37
    • 77955414733 scopus 로고    scopus 로고
    • Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specifcity
    • Wang, H. et al. Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specifcity. EMBO J. 29, 2566-2576 (2010).
    • (2010) EMBO J. , vol.29 , pp. 2566-2576
    • Wang, H.1
  • 38
    • 0242330123 scopus 로고    scopus 로고
    • Structural basis of Aurora-A activation by TPX2 at the mitotic spindle
    • Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851-862 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 851-862
    • Bayliss, R.1    Sardon, T.2    Vernos, I.3    Conti, E.4
  • 39
    • 0026800718 scopus 로고
    • Translation initiation requires the PAB-dependent poly(A) ribonuclease in yeast
    • Sachs, A.B. & Deardorff, J.A. Translation initiation requires the PAB-dependent poly(A) ribonuclease in yeast. Cell 70, 961-973 (1992).
    • (1992) Cell , vol.70 , pp. 961-973
    • Sachs, A.B.1    Deardorff, J.A.2
  • 40
    • 84892890442 scopus 로고    scopus 로고
    • Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity
    • Huang, H. et al. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Mol. Cell 53, 221-234 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 221-234
    • Huang, H.1
  • 41
    • 0035066836 scopus 로고    scopus 로고
    • Global indicators of X-ray data quality
    • Weiss, M.S. Global indicators of X-ray data quality. J. Appl. Crystallogr. 34, 130-135 (2001).
    • (2001) J. Appl. Crystallogr. , vol.34 , pp. 130-135
    • Weiss, M.S.1
  • 44
    • 33751247668 scopus 로고    scopus 로고
    • Protein complex expression by using multigene baculoviral vectors
    • Fitzgerald, D.J. et al. Protein complex expression by using multigene baculoviral vectors. Nat. Methods 3, 1021-1032 (2006).
    • (2006) Nat. Methods , vol.3 , pp. 1021-1032
    • Fitzgerald, D.J.1
  • 45
    • 84882796823 scopus 로고    scopus 로고
    • The yeast ski complex: Crystal structure and RNA channeling to the exosome complex
    • Halbach, F., Reichelt, P., Rode, M. & Conti, E. The yeast ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154, 814-826 (2013).
    • (2013) Cell , vol.154 , pp. 814-826
    • Halbach, F.1    Reichelt, P.2    Rode, M.3    Conti, E.4
  • 46
    • 76449106188 scopus 로고    scopus 로고
    • Integration, scaling, space-group assignment and post-refnement
    • Kabsch, W. Integration, scaling, space-group assignment and post-refnement. Acta Crystallogr. D Biol. Crystallogr. 66, 133-144 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 133-144
    • Kabsch, W.1
  • 47
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 49
    • 84860273177 scopus 로고    scopus 로고
    • Towards automated crystallographic structure refnement with phenix.refne
    • Afonine, P.V. et al. Towards automated crystallographic structure refnement with phenix.refne. Acta Crystallogr. D Biol. Crystallogr. 68, 352-367 (2012).
    • (2012) Acta Crystallogr. D Biol. Crystallogr. , vol.68 , pp. 352-367
    • Afonine, P.V.1
  • 50
    • 34447508216 scopus 로고    scopus 로고
    • Phaser crystallographic software
    • McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674 (2007).
    • (2007) J. Appl. Crystallogr. , vol.40 , pp. 658-674
    • McCoy, A.J.1
  • 52
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 12-21
    • Chen, V.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.