메뉴 건너뛰기




Volumn 20, Issue 9, 2014, Pages 1398-1409

Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1

Author keywords

CCR4 NOT; DDX6; Deadenylation; Decapping; microRNA; mRNA decay

Indexed keywords

CCR4-NOT; DDX6; DEADENYLATION; DECAPPING; MICRORNA; MRNA DECAY;

EID: 84906874947     PISSN: 13558382     EISSN: 14699001     Source Type: Journal    
DOI: 10.1261/rna.045302.114     Document Type: Article
Times cited : (105)

References (73)
  • 1
    • 84868094761 scopus 로고    scopus 로고
    • Architecture of the nuclease module of the yeast Ccr4-not complex: The Not1-Caf1-Ccr4 interaction
    • Basquin J, Roudko VV, Rode M, Basquin C, Seraphin B, Conti E. 2012. Architecture of the nuclease module of the yeast Ccr4-not complex: the Not1-Caf1-Ccr4 interaction. Mol Cell 48: 207-218.
    • (2012) Mol Cell , vol.48 , pp. 207-218
    • Basquin, J.1    Roudko, V.V.2    Rode, M.3    Basquin, C.4    Seraphin, B.5    Conti, E.6
  • 2
    • 84862778053 scopus 로고    scopus 로고
    • Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish
    • Bazzini AA, Lee MT, Giraldez AJ. 2012. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336: 233-237.
    • (2012) Science , vol.336 , pp. 233-237
    • Bazzini, A.A.1    Lee, M.T.2    Giraldez, A.J.3
  • 4
    • 84864872623 scopus 로고    scopus 로고
    • Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells
    • Bethune J, Artus-Revel CG, Filipowicz W. 2012. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep 13: 716-723.
    • (2012) EMBO Rep , vol.13 , pp. 716-723
    • Bethune, J.1    Artus-Revel, C.G.2    Filipowicz, W.3
  • 5
    • 80053580757 scopus 로고    scopus 로고
    • GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets
    • Braun JE, Huntzinger E, Fauser M, Izaurralde E. 2011. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44: 120-133.
    • (2011) Mol Cell , vol.44 , pp. 120-133
    • Braun, J.E.1    Huntzinger, E.2    Fauser, M.3    Izaurralde, E.4
  • 6
    • 84888357821 scopus 로고    scopus 로고
    • Crystal structure of the human eIF4AIII-CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain
    • Buchwald G, Schussler S, Basquin C, Le Hir H, Conti E. 2013. Crystal structure of the human eIF4AIII-CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain. Proc Natl Acad Sci 110: E4611-E4618.
    • (2013) Proc Natl Acad Sci , vol.110
    • Buchwald, G.1    Schussler, S.2    Basquin, C.3    Le Hir, H.4    Conti, E.5
  • 7
    • 80052642129 scopus 로고    scopus 로고
    • The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics
    • Carroll JS, Munchel SE, Weis K. 2011. The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J Cell Biol 194: 527-537.
    • (2011) J Cell Biol , vol.194 , pp. 527-537
    • Carroll, J.S.1    Munchel, S.E.2    Weis, K.3
  • 8
    • 65249161794 scopus 로고    scopus 로고
    • Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila
    • Chekulaeva M, Filipowicz W, Parker R. 2009. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15: 794-803.
    • (2009) RNA , vol.15 , pp. 794-803
    • Chekulaeva, M.1    Filipowicz, W.2    Parker, R.3
  • 10
    • 70350780068 scopus 로고    scopus 로고
    • Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps
    • Chen CY, Zheng D, Xia Z, Shyu AB. 2009. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 16: 1160-1166.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 1160-1166
    • Chen, C.Y.1    Zheng, D.2    Xia, Z.3    Shyu, A.B.4
  • 12
    • 33745894330 scopus 로고    scopus 로고
    • Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54
    • Chu CY, Rana TM. 2006. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4: e210.
    • (2006) PLoS Biol , vol.4
    • Chu, C.Y.1    Rana, T.M.2
  • 13
    • 25144482816 scopus 로고    scopus 로고
    • General translational repression by activators of mRNA decapping
    • Coller J, Parker R. 2005. General translational repression by activators of mRNA decapping. Cell 122: 875-886.
    • (2005) Cell , vol.122 , pp. 875-886
    • Coller, J.1    Parker, R.2
  • 14
    • 0035674477 scopus 로고    scopus 로고
    • The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
    • Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7: 1717-1727.
    • (2001) RNA , vol.7 , pp. 1717-1727
    • Coller, J.M.1    Tucker, M.2    Sheth, U.3    Valencia-Sanchez, M.A.4    Parker, R.5
  • 15
    • 77956503398 scopus 로고    scopus 로고
    • Translational repression by deadenylases
    • Cooke A, Prigge A, Wickens M. 2010. Translational repression by deadenylases. J Biol Chem 285: 28506-28513.
    • (2010) J Biol Chem , vol.285 , pp. 28506-28513
    • Cooke, A.1    Prigge, A.2    Wickens, M.3
  • 16
    • 84859632747 scopus 로고    scopus 로고
    • miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay
    • Djuranovic S, Nahvi A, Green R. 2012. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336: 237-240.
    • (2012) Science , vol.336 , pp. 237-240
    • Djuranovic, S.1    Nahvi, A.2    Green, R.3
  • 17
    • 0035310917 scopus 로고    scopus 로고
    • Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G
    • Dominguez D, Kislig E, Altmann M, Trachsel H. 2001. Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G. Biochem J 355: 223-230.
    • (2001) Biochem J , vol.355 , pp. 223-230
    • Dominguez, D.1    Kislig, E.2    Altmann, M.3    Trachsel, H.4
  • 18
    • 79961016813 scopus 로고    scopus 로고
    • Intermolecular interactions within the abundant DEAD-box protein Dhh1 regulate its activity in vivo
    • Dutta A, Zheng S, Jain D, Cameron CE, Reese JC. 2011. Intermolecular interactions within the abundant DEAD-box protein Dhh1 regulate its activity in vivo. J Biol Chem 286: 27454-27470.
    • (2011) J Biol Chem , vol.286 , pp. 27454-27470
    • Dutta, A.1    Zheng, S.2    Jain, D.3    Cameron, C.E.4    Reese, J.C.5
  • 21
    • 66449124170 scopus 로고    scopus 로고
    • A C-terminal silencing domain in GW182 is essential for miRNA function
    • Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E. 2009. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15: 1067-1077.
    • (2009) RNA , vol.15 , pp. 1067-1077
    • Eulalio, A.1    Helms, S.2    Fritzsch, C.3    Fauser, M.4    Izaurralde, E.5
  • 22
    • 84861866572 scopus 로고    scopus 로고
    • The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC
    • Fabian MR, Sonenberg N. 2012. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19: 586-593.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 586-593
    • Fabian, M.R.1    Sonenberg, N.2
  • 26
    • 29144481702 scopus 로고    scopus 로고
    • Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
    • Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. 2005. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20: 905-915.
    • (2005) Mol Cell , vol.20 , pp. 905-915
    • Fenger-Gron, M.1    Fillman, C.2    Norrild, B.3    Lykke-Andersen, J.4
  • 27
    • 0037013898 scopus 로고    scopus 로고
    • The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
    • Fischer N, Weis K. 2002. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 21: 2788-2797.
    • (2002) EMBO J , vol.21 , pp. 2788-2797
    • Fischer, N.1    Weis, K.2
  • 28
    • 84871681585 scopus 로고    scopus 로고
    • MicroRNAs mediate gene silencing via multiple different pathways in Drosophila
    • Fukaya T, Tomari Y. 2012. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Mol Cell 48: 825-836.
    • (2012) Mol Cell , vol.48 , pp. 825-836
    • Fukaya, T.1    Tomari, Y.2
  • 29
    • 77954959530 scopus 로고    scopus 로고
    • Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression
    • Glasmacher E, Hoefig KP, Vogel KU, Rath N, Du L, Wolf C, Kremmer E, Wang X, Heissmeyer V. 2010. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat Immunol 11: 725-733.
    • (2010) Nat Immunol , vol.11 , pp. 725-733
    • Glasmacher, E.1    Hoefig, K.P.2    Vogel, K.U.3    Rath, N.4    Du, L.5    Wolf, C.6    Kremmer, E.7    Wang, X.8    Heissmeyer, V.9
  • 31
    • 0031886351 scopus 로고    scopus 로고
    • Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae
    • Hata H, Mitsui H, Liu H, Bai Y, Denis CL, Shimizu Y, Sakai A. 1998. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148: 571-579.
    • (1998) Genetics , vol.148 , pp. 571-579
    • Hata, H.1    Mitsui, H.2    Liu, H.3    Bai, Y.4    Denis, C.L.5    Shimizu, Y.6    Sakai, A.7
  • 32
    • 28044457883 scopus 로고    scopus 로고
    • MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function
    • Humphreys DT, Westman BJ, Martin DI, Preiss T. 2005. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci 102: 16961-16966.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 16961-16966
    • Humphreys, D.T.1    Westman, B.J.2    Martin, D.I.3    Preiss, T.4
  • 33
    • 78650258635 scopus 로고    scopus 로고
    • Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing
    • Huntzinger E, Braun JE, Heimstadt S, Zekri L, Izaurralde E. 2010. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J 29: 4146-4160.
    • (2010) EMBO J , vol.29 , pp. 4146-4160
    • Huntzinger, E.1    Braun, J.E.2    Heimstadt, S.3    Zekri, L.4    Izaurralde, E.5
  • 34
    • 84875190908 scopus 로고    scopus 로고
    • The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets
    • Huntzinger E, Kuzuoglu-Ozturk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde E. 2013. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res 41: 978-994.
    • (2013) Nucleic Acids Res , vol.41 , pp. 978-994
    • Huntzinger, E.1    Kuzuoglu-Ozturk, D.2    Braun, J.E.3    Eulalio, A.4    Wohlbold, L.5    Izaurralde, E.6
  • 35
    • 0030666625 scopus 로고    scopus 로고
    • Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A
    • Imataka H, Sonenberg N. 1997. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17: 6940-6947.
    • (1997) Mol Cell Biol , vol.17 , pp. 6940-6947
    • Imataka, H.1    Sonenberg, N.2
  • 36
    • 63649105975 scopus 로고    scopus 로고
    • Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression
    • Iwasaki S, Kawamata T, Tomari Y. 2009. Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34: 58-67.
    • (2009) Mol Cell , vol.34 , pp. 58-67
    • Iwasaki, S.1    Kawamata, T.2    Tomari, Y.3
  • 37
    • 76349104822 scopus 로고    scopus 로고
    • Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation
    • Jinek M, Fabian MR, Coyle SM, Sonenberg N, Doudna JA. 2010. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat Struct Mol Biol 17: 238-240.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 238-240
    • Jinek, M.1    Fabian, M.R.2    Coyle, S.M.3    Sonenberg, N.4    Doudna, J.A.5
  • 38
    • 84877708543 scopus 로고    scopus 로고
    • Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs
    • Leppek K, Schott J, Reitter S, Poetz F, Hammond MC, Stoecklin G. 2013. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153: 869-881.
    • (2013) Cell , vol.153 , pp. 869-881
    • Leppek, K.1    Schott, J.2    Reitter, S.3    Poetz, F.4    Hammond, M.C.5    Stoecklin, G.6
  • 39
    • 48449105393 scopus 로고    scopus 로고
    • The RosettaDock server for local protein-protein docking
    • Lyskov S, Gray JJ. 2008. The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36: W233-W238.
    • (2008) Nucleic Acids Res , vol.36
    • Lyskov, S.1    Gray, J.J.2
  • 40
    • 0037169544 scopus 로고    scopus 로고
    • Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase
    • Maillet L, Collart MA. 2002. Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase. J Biol Chem 277: 2835-2842.
    • (2002) J Biol Chem , vol.277 , pp. 2835-2842
    • Maillet, L.1    Collart, M.A.2
  • 44
    • 2542580178 scopus 로고    scopus 로고
    • The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer
    • Minshall N, Standart N. 2004. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res 32: 1325-1334.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1325-1334
    • Minshall, N.1    Standart, N.2
  • 45
    • 79954598438 scopus 로고    scopus 로고
    • A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export
    • Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K. 2011. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472: 238-242.
    • (2011) Nature , vol.472 , pp. 238-242
    • Montpetit, B.1    Thomsen, N.D.2    Helmke, K.J.3    Seeliger, M.A.4    Berger, J.M.5    Weis, K.6
  • 46
    • 84861839851 scopus 로고    scopus 로고
    • PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding
    • Moretti F, Kaiser C, Zdanowicz-Specht A, Hentze MW. 2012. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol 19: 603-608.
    • (2012) Nat Struct Mol Biol , vol.19 , pp. 603-608
    • Moretti, F.1    Kaiser, C.2    Zdanowicz-Specht, A.3    Hentze, M.W.4
  • 47
    • 0028202495 scopus 로고
    • Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′ → 3′ digestion of the transcript
    • Muhlrad D, Decker CJ, Parker R. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′ → 3′ digestion of the transcript. Genes Dev 8: 855-866.
    • (1994) Genes Dev , vol.8 , pp. 855-866
    • Muhlrad, D.1    Decker, C.J.2    Parker, R.3
  • 48
    • 0034800019 scopus 로고    scopus 로고
    • Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis
    • Nakamura A, Amikura R, Hanyu K, Kobayashi S. 2001. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128: 3233-3242.
    • (2001) Development , vol.128 , pp. 3233-3242
    • Nakamura, A.1    Amikura, R.2    Hanyu, K.3    Kobayashi, S.4
  • 49
    • 77956540817 scopus 로고    scopus 로고
    • Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
    • Nissan T, Rajyaguru P, She M, Song H, Parker R. 2010. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39: 773-783.
    • (2010) Mol Cell , vol.39 , pp. 773-783
    • Nissan, T.1    Rajyaguru, P.2    She, M.3    Song, H.4    Parker, R.5
  • 50
    • 24944469031 scopus 로고    scopus 로고
    • Structural basis for the enhancement of eIF4A helicase activity by eIF4G
    • Oberer M, Marintchev A, Wagner G. 2005. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev 19: 2212-2223.
    • (2005) Genes Dev , vol.19 , pp. 2212-2223
    • Oberer, M.1    Marintchev, A.2    Wagner, G.3
  • 51
    • 84879022131 scopus 로고    scopus 로고
    • Role of Rck-Pat1b binding in assembly of processing-bodies
    • Ozgur S, Stoecklin G. 2013. Role of Rck-Pat1b binding in assembly of processing-bodies. RNA Biol 10: 528-539.
    • (2013) RNA Biol , vol.10 , pp. 528-539
    • Ozgur, S.1    Stoecklin, G.2
  • 52
    • 77956642517 scopus 로고    scopus 로고
    • Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies
    • Ozgur S, Chekulaeva M, Stoecklin G. 2010. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol Cell Biol 30: 4308-4323.
    • (2010) Mol Cell Biol , vol.30 , pp. 4308-4323
    • Ozgur, S.1    Chekulaeva, M.2    Stoecklin, G.3
  • 53
    • 84870622730 scopus 로고    scopus 로고
    • The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex
    • Petit AP, Wohlbold L, Bawankar P, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O. 2012. The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res 40: 11058-11072.
    • (2012) Nucleic Acids Res , vol.40 , pp. 11058-11072
    • Petit, A.P.1    Wohlbold, L.2    Bawankar, P.3    Huntzinger, E.4    Schmidt, S.5    Izaurralde, E.6    Weichenrieder, O.7
  • 54
    • 4644310115 scopus 로고    scopus 로고
    • Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis
    • Pillai RS, Artus CG, Filipowicz W. 2004. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10: 1518-1525.
    • (2004) RNA , vol.10 , pp. 1518-1525
    • Pillai, R.S.1    Artus, C.G.2    Filipowicz, W.3
  • 56
    • 25844442472 scopus 로고    scopus 로고
    • A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing
    • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. 2005. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11: 1640-1647.
    • (2005) RNA , vol.11 , pp. 1640-1647
    • Rehwinkel, J.1    Behm-Ansmant, I.2    Gatfield, D.3    Izaurralde, E.4
  • 61
    • 84884971938 scopus 로고    scopus 로고
    • Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions
    • Sharif H, Ozgur S, Sharma K, Basquin C, Urlaub H, Conti E. 2013. Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Nucleic Acids Res 41: 8377-8390.
    • (2013) Nucleic Acids Res , vol.41 , pp. 8377-8390
    • Sharif, H.1    Ozgur, S.2    Sharma, K.3    Basquin, C.4    Urlaub, H.5    Conti, E.6
  • 62
    • 60149091189 scopus 로고    scopus 로고
    • Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
    • Sonenberg N, Hinnebusch AG. 2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136: 731-745.
    • (2009) Cell , vol.136 , pp. 731-745
    • Sonenberg, N.1    Hinnebusch, A.G.2
  • 63
    • 79959915821 scopus 로고    scopus 로고
    • Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing
    • Su H, Meng S, Lu Y, Trombly MI, Chen J, Lin C, Turk A, Wang X. 2011. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing. Mol Cell 43: 97-109.
    • (2011) Mol Cell , vol.43 , pp. 97-109
    • Su, H.1    Meng, S.2    Lu, Y.3    Trombly, M.I.4    Chen, J.5    Lin, C.6    Turk, A.7    Wang, X.8
  • 64
    • 45949105543 scopus 로고    scopus 로고
    • DIALIGN-TX: Greedy and progressive approaches for segment-based multiple sequence alignment
    • Subramanian AR, Kaufmann M, Morgenstern B. 2008. DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol Biol 3: 6.
    • (2008) Algorithms Mol Biol , vol.3 , pp. 6
    • Subramanian, A.R.1    Kaufmann, M.2    Morgenstern, B.3
  • 65
    • 84880921276 scopus 로고    scopus 로고
    • Adult-specific functions of animal microRNAs
    • Sun K, Lai EC. 2013. Adult-specific functions of animal microRNAs. Nat Rev Genet 14: 535-548.
    • (2013) Nat Rev Genet , vol.14 , pp. 535-548
    • Sun, K.1    Lai, E.C.2
  • 66
    • 84863688029 scopus 로고    scopus 로고
    • The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement
    • Sweet T, Kovalak C, Coller J. 2012. The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol 10: e1001342.
    • (2012) PLoS Biol , vol.10
    • Sweet, T.1    Kovalak, C.2    Coller, J.3
  • 67
    • 61649102918 scopus 로고    scopus 로고
    • Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B
    • Tritschler F, Braun JE, Eulalio A, Truffault V, Izaurralde E, Weichenrieder O. 2009. Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B. Mol Cell 33: 661-668.
    • (2009) Mol Cell , vol.33 , pp. 661-668
    • Tritschler, F.1    Braun, J.E.2    Eulalio, A.3    Truffault, V.4    Izaurralde, E.5    Weichenrieder, O.6
  • 68
    • 75649096055 scopus 로고    scopus 로고
    • Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression
    • Walters RW, Bradrick SS, Gromeier M. 2010. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA 16: 239-250.
    • (2010) RNA , vol.16 , pp. 239-250
    • Walters, R.W.1    Bradrick, S.S.2    Gromeier, M.3
  • 69
    • 33745742173 scopus 로고    scopus 로고
    • Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export
    • Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. 2006. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 8: 668-676.
    • (2006) Nat Cell Biol , vol.8 , pp. 668-676
    • Weirich, C.S.1    Erzberger, J.P.2    Flick, J.S.3    Berger, J.M.4    Thorner, J.5    Weis, K.6
  • 72
    • 71949121493 scopus 로고    scopus 로고
    • The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release
    • Zekri L, Huntzinger E, Heimstadt S, Izaurralde E. 2009. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 29: 6220-6231.
    • (2009) Mol Cell Biol , vol.29 , pp. 6220-6231
    • Zekri, L.1    Huntzinger, E.2    Heimstadt, S.3    Izaurralde, E.4
  • 73
    • 65249083468 scopus 로고    scopus 로고
    • Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression
    • Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W. 2009. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15: 781-793.
    • (2009) RNA , vol.15 , pp. 781-793
    • Zipprich, J.T.1    Bhattacharyya, S.2    Mathys, H.3    Filipowicz, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.