-
1
-
-
70349337771
-
The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation
-
Aslam A, Mittal S, Koch F, Andrau JC, Winkler GS. 2009. The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol Biol Cell 20: 3840-3850.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 3840-3850
-
-
Aslam, A.1
Mittal, S.2
Koch, F.3
Andrau, J.C.4
Winkler, G.S.5
-
2
-
-
0032874875
-
The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5
-
Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, Denis CL. 1999. The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19: 6642-6651.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 6642-6651
-
-
Bai, Y.1
Salvadore, C.2
Chiang, Y.C.3
Collart, M.A.4
Liu, H.Y.5
Denis, C.L.6
-
3
-
-
84868094761
-
Architecture of the nuclease module of the yeast Ccr4-NOTcomplex: The NOT1-Caf1-Ccr4 interaction
-
Basquin J, Roudko VV, Rode M, Basquin C, Seraphin B, Conti E. 2012. Architecture of the nuclease module of the yeast Ccr4-NOTcomplex: the NOT1-Caf1-Ccr4 interaction. Mol Cell 48: 207-218.
-
(2012)
Mol Cell
, vol.48
, pp. 207-218
-
-
Basquin, J.1
Roudko, V.V.2
Rode, M.3
Basquin, C.4
Seraphin, B.5
Conti, E.6
-
4
-
-
84874586399
-
NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain
-
Bawankar P, Loh B, Wohlbold L, Schmidt S, Izaurralde E. 2013. NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. RNA Biol 10: 228-244.
-
(2013)
RNA Biol
, vol.10
, pp. 228-244
-
-
Bawankar, P.1
Loh, B.2
Wohlbold, L.3
Schmidt, S.4
Izaurralde, E.5
-
5
-
-
84898869373
-
Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression
-
Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E. 2014. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev 28: 888-901.
-
(2014)
Genes Dev
, vol.28
, pp. 888-901
-
-
Bhandari, D.1
Raisch, T.2
Weichenrieder, O.3
Jonas, S.4
Izaurralde, E.5
-
6
-
-
15444368798
-
Conservation of the deadenylase activity of proteins of the Caf1 family in human
-
Bianchin C, Mauxion F, Sentis S, Séraphin B, Corbo L. 2005. Conservation of the deadenylase activity of proteins of the Caf1 family in human. RNA 11: 487-494.
-
(2005)
RNA
, vol.11
, pp. 487-494
-
-
Bianchin, C.1
Mauxion, F.2
Sentis, S.3
Séraphin, B.4
Corbo, L.5
-
7
-
-
80053580757
-
GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets
-
Braun JE, Huntzinger E, Fauser M, Izaurralde E. 2011. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44: 120-133.
-
(2011)
Mol Cell
, vol.44
, pp. 120-133
-
-
Braun, J.E.1
Huntzinger, E.2
Fauser, M.3
Izaurralde, E.4
-
8
-
-
80555131046
-
miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs
-
Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W. 2011. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18: 1218-1226.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 1218-1226
-
-
Chekulaeva, M.1
Mathys, H.2
Zipprich, J.T.3
Attig, J.4
Colic, M.5
Parker, R.6
Filipowicz, W.7
-
9
-
-
84858442444
-
Mechanisms of deadenylation-dependent decay
-
Chen CY, Shyu AB. 2011. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA 2: 167-183.
-
(2011)
Wiley Interdiscip Rev RNA
, vol.2
, pp. 167-183
-
-
Chen, C.Y.1
Shyu, A.B.2
-
10
-
-
84901911674
-
A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing
-
Chen Y, Boland A, Kuzuoʇlu-Öztürk D, Bawankar P, Loh B, Chang CT, Weichenrieder O, Izaurralde E. 2014. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 54: 737-750.
-
(2014)
Mol Cell
, vol.54
, pp. 737-750
-
-
Chen, Y.1
Boland, A.2
Kuzuoʇlu-Öztürk, D.3
Bawankar, P.4
Loh, B.5
Chang, C.T.6
Weichenrieder, O.7
Izaurralde, E.8
-
12
-
-
0035674477
-
The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
-
Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7: 1717-1727.
-
(2001)
RNA
, vol.7
, pp. 1717-1727
-
-
Coller, J.M.1
Tucker, M.2
Sheth, U.3
Valencia-Sanchez, M.A.4
Parker, R.5
-
13
-
-
77956503398
-
Translational repression by deadenylases
-
Cooke A, Prigge A, Wickens M. 2010. Translational repression by deadenylases. J Biol Chem 285: 28506-28513.
-
(2010)
J Biol Chem
, vol.285
, pp. 28506-28513
-
-
Cooke, A.1
Prigge, A.2
Wickens, M.3
-
14
-
-
57449099865
-
MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
-
Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367-1372.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 1367-1372
-
-
Cox, J.1
Mann, M.2
-
15
-
-
79953701087
-
Andromeda: A peptide search engine integrated into the MaxQuant environment
-
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. 2011. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 1794-1805.
-
(2011)
J Proteome Res
, vol.10
, pp. 1794-1805
-
-
Cox, J.1
Neuhauser, N.2
Michalski, A.3
Scheltema, R.A.4
Olsen, J.V.5
Mann, M.6
-
16
-
-
84907197082
-
Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
-
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513-2526.
-
(2014)
Mol Cell Proteomics
, vol.13
, pp. 2513-2526
-
-
Cox, J.1
Hein, M.Y.2
Luber, C.A.3
Paron, I.4
Nagaraj, N.5
Mann, M.6
-
17
-
-
0035834731
-
Poly(A) polymerase and the regulation of cytoplasmic polyadenylation
-
Dickson KS, Thompson SR, Gray NK, Wickens M. 2001. Poly(A) polymerase and the regulation of cytoplasmic polyadenylation. J Biol Chem 276: 41810-41816.
-
(2001)
J Biol Chem
, vol.276
, pp. 41810-41816
-
-
Dickson, K.S.1
Thompson, S.R.2
Gray, N.K.3
Wickens, M.4
-
18
-
-
84864383679
-
Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex
-
Doidge R, Mittal S, Aslam A, Winkler GS. 2012. Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex. Biochem Soc Trans 40: 896-901.
-
(2012)
Biochem Soc Trans
, vol.40
, pp. 896-901
-
-
Doidge, R.1
Mittal, S.2
Aslam, A.3
Winkler, G.S.4
-
19
-
-
70349177026
-
Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation
-
Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, et al. 2009. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35: 868-880.
-
(2009)
Mol Cell
, vol.35
, pp. 868-880
-
-
Fabian, M.R.1
Mathonnet, G.2
Sundermeier, T.3
Mathys, H.4
Zipprich, J.T.5
Svitkin, Y.V.6
Rivas, F.7
Jinek, M.8
Wohlschlegel, J.9
Doudna, J.A.10
-
20
-
-
80555150587
-
miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT
-
Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, Raught B, Duchaine TF, et al. 2011. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 18: 1211-1217.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 1211-1217
-
-
Fabian, M.R.1
Cieplak, M.K.2
Frank, F.3
Morita, M.4
Green, J.5
Srikumar, T.6
Nagar, B.7
Yamamoto, T.8
Raught, B.9
Duchaine, T.F.10
-
21
-
-
84878904767
-
Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin
-
Fabian MR, Frank F, Rouya C, Siddiqui N, Lai WS, Karetnikov A, Blackshear PJ, Nagar B, Sonenberg N. 2013. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat Struct Mol Biol 20: 735-739.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 735-739
-
-
Fabian, M.R.1
Frank, F.2
Rouya, C.3
Siddiqui, N.4
Lai, W.S.5
Karetnikov, A.6
Blackshear, P.J.7
Nagar, B.8
Sonenberg, N.9
-
22
-
-
24944448262
-
A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay
-
Ferraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, Sonenberg N. 2005. A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol 170: 913-924.
-
(2005)
J Cell Biol
, vol.170
, pp. 913-924
-
-
Ferraiuolo, M.A.1
Basak, S.2
Dostie, J.3
Murray, E.L.4
Schoenberg, D.R.5
Sonenberg, N.6
-
23
-
-
0037013898
-
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
-
Fischer N, Weis K. 2002. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 21: 2788-2797.
-
(2002)
EMBO J
, vol.21
, pp. 2788-2797
-
-
Fischer, N.1
Weis, K.2
-
25
-
-
5044229348
-
Molecular mechanisms of translational control
-
Gebauer F, Hentze MW. 2004. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5: 827-835.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, pp. 827-835
-
-
Gebauer, F.1
Hentze, M.W.2
-
26
-
-
41149138114
-
Multifunctional deadenylase complexes diversify mRNA control
-
Goldstrohm AC, Wickens M. 2008. Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9: 337-344.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, pp. 337-344
-
-
Goldstrohm, A.C.1
Wickens, M.2
-
28
-
-
0034282752
-
Multiple portions of poly(A)-binding protein stimulate translation in vivo
-
Gray NK, Coller JM, Dickson KS, Wickens M. 2000. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 19: 4723-4733.
-
(2000)
EMBO J
, vol.19
, pp. 4723-4733
-
-
Gray, N.K.1
Coller, J.M.2
Dickson, K.S.3
Wickens, M.4
-
29
-
-
67649713887
-
Structural basis for the antiproliferative activity of the Tob-hCaf1 complex
-
Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T, Kawamura-Tsuzuku J, Takahasi K, Yamamoto T, Inagaki F. 2009. Structural basis for the antiproliferative activity of the Tob-hCaf1 complex. J Biol Chem 284: 13244-13255.
-
(2009)
J Biol Chem
, vol.284
, pp. 13244-13255
-
-
Horiuchi, M.1
Takeuchi, K.2
Noda, N.3
Muroya, N.4
Suzuki, T.5
Nakamura, T.6
Kawamura-Tsuzuku, J.7
Takahasi, K.8
Yamamoto, T.9
Inagaki, F.10
-
30
-
-
79953803635
-
Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase
-
Hosoda N, Funakoshi Y, Hirasawa M, Yamagishi R, Asano Y, Miyagawa R, Ogami K, Tsujimoto M, Hoshino S. 2011. Anti-proliferative protein Tob negatively regulates CPEB3 target by recruiting Caf1 deadenylase. EMBO J 30: 1311-1323.
-
(2011)
EMBO J
, vol.30
, pp. 1311-1323
-
-
Hosoda, N.1
Funakoshi, Y.2
Hirasawa, M.3
Yamagishi, R.4
Asano, Y.5
Miyagawa, R.6
Ogami, K.7
Tsujimoto, M.8
Hoshino, S.9
-
31
-
-
84905665078
-
Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation
-
Inada T, Makino S. 2014. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation. Front Genet 5: 135.
-
(2014)
Front Genet
, vol.5
, pp. 135
-
-
Inada, T.1
Makino, S.2
-
32
-
-
34248580923
-
Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline
-
Kadyrova LY, Habara Y, Lee TH, Wharton RP. 2007. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134: 1519-1527.
-
(2007)
Development
, vol.134
, pp. 1519-1527
-
-
Kadyrova, L.Y.1
Habara, Y.2
Lee, T.H.3
Wharton, R.P.4
-
33
-
-
84899022819
-
Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing
-
Kamenska A, Lu WT, Kubacka D, Broomhead H, Minshall N, Bushell M, Standart N. 2014. Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Res 42: 3298-3313.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 3298-3313
-
-
Kamenska, A.1
Lu, W.T.2
Kubacka, D.3
Broomhead, H.4
Minshall, N.5
Bushell, M.6
Standart, N.7
-
34
-
-
46549086974
-
Viral IRES RNA structures and ribosome interactions
-
Kieft JS. 2008. Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33: 274-283.
-
(2008)
Trends Biochem Sci
, vol.33
, pp. 274-283
-
-
Kieft, J.S.1
-
35
-
-
1842585784
-
Mammalian GLD-2 homologs are poly(A) polymerases
-
Kwak JE, Wang L, Ballantyne S, Kimble J, Wickens M. 2004. Mammalian GLD-2 homologs are poly(A) polymerases. Proc Natl Acad Sci 101: 4407-4412.
-
(2004)
Proc Natl Acad Sci
, vol.101
, pp. 4407-4412
-
-
Kwak, J.E.1
Wang, L.2
Ballantyne, S.3
Kimble, J.4
Wickens, M.5
-
36
-
-
70249110072
-
Human Ccr4-Not complexes contain variable deadenylase subunits
-
Lau NC, Kolkman A, van Schaik FM, Mulder KW, Pijnappel WW, Heck AJ, Timmers HT. 2009. Human Ccr4-Not complexes contain variable deadenylase subunits. Biochem J 422: 443-453.
-
(2009)
Biochem J
, vol.422
, pp. 443-453
-
-
Lau, N.C.1
Kolkman, A.2
Van Schaik, F.M.3
Mulder, K.W.4
Pijnappel, W.W.5
Heck, A.J.6
Timmers, H.T.7
-
37
-
-
79958025810
-
Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis
-
Lund E, Sheets MD, Imboden SB, Dahlberg JE. 2011. Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25: 1121-1131.
-
(2011)
Genes Dev
, vol.25
, pp. 1121-1131
-
-
Lund, E.1
Sheets, M.D.2
Imboden, S.B.3
Dahlberg, J.E.4
-
38
-
-
84901940130
-
Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression
-
Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny M, Conti E, Filipowicz W. 2014. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell 54: 751-765.
-
(2014)
Mol Cell
, vol.54
, pp. 751-765
-
-
Mathys, H.1
Basquin, J.2
Ozgur, S.3
Czarnocki-Cieciura, M.4
Bonneau, F.5
Aartse, A.6
Dziembowski, A.7
Nowotny, M.8
Conti, E.9
Filipowicz, W.10
-
39
-
-
84876318702
-
Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation
-
Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, Godfrey JD, Willis AE, Bushell M. 2013. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340: 82-85.
-
(2013)
Science
, vol.340
, pp. 82-85
-
-
Meijer, H.A.1
Kong, Y.W.2
Lu, W.T.3
Wilczynska, A.4
Spriggs, R.V.5
Robinson, S.W.6
Godfrey, J.D.7
Willis, A.E.8
Bushell, M.9
-
40
-
-
84862685172
-
Ccr4-Not complex: The control freak of eukaryotic cells
-
Miller JE, Reese JC. 2012. Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev Biochem Mol Biol 47: 315-333.
-
(2012)
Crit Rev Biochem Mol Biol
, vol.47
, pp. 315-333
-
-
Miller, J.E.1
Reese, J.C.2
-
41
-
-
2542580178
-
The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer
-
Minshall N, Standart N. 2004. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res 32: 1325-1334.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 1325-1334
-
-
Minshall, N.1
Standart, N.2
-
42
-
-
38049134877
-
CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes
-
Minshall N, Reiter MH, Weil D, Standart N. 2007. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem 282: 37389-37401.
-
(2007)
J Biol Chem
, vol.282
, pp. 37389-37401
-
-
Minshall, N.1
Reiter, M.H.2
Weil, D.3
Standart, N.4
-
43
-
-
24944561521
-
C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression
-
Molin L, Puisieux A. 2005. C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene 358: 73-81.
-
(2005)
Gene
, vol.358
, pp. 73-81
-
-
Molin, L.1
Puisieux, A.2
-
44
-
-
79960366105
-
Insights into the structure of the CCR4-NOT complex by electron microscopy
-
Nasertorabi F, Batisse C, Diepholz M, Suck D, Bottcher B. 2011. Insights into the structure of the CCR4-NOT complex by electron microscopy. FEBS Lett 585: 2182-2186.
-
(2011)
FEBS Lett
, vol.585
, pp. 2182-2186
-
-
Nasertorabi, F.1
Batisse, C.2
Diepholz, M.3
Suck, D.4
Bottcher, B.5
-
45
-
-
27644555055
-
Interpretation of shotgun proteomic data: The protein inference problem
-
Nesvizhskii AI, Aebersold R. 2005. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4: 1419-1440.
-
(2005)
Mol Cell Proteomics
, vol.4
, pp. 1419-1440
-
-
Nesvizhskii, A.I.1
Aebersold, R.2
-
46
-
-
0029956389
-
Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry
-
Pestova TV, Hellen CU, Shatsky IN. 1996. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16: 6859-6869.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 6859-6869
-
-
Pestova, T.V.1
Hellen, C.U.2
Shatsky, I.N.3
-
47
-
-
84870622730
-
The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex
-
Petit AP, Wohlbold L, Bawankar P, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O. 2012. The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res 40: 11058-11072.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11058-11072
-
-
Petit, A.P.1
Wohlbold, L.2
Bawankar, P.3
Huntzinger, E.4
Schmidt, S.5
Izaurralde, E.6
Weichenrieder, O.7
-
48
-
-
84862025869
-
The structures of nonprotein-coding RNAs that drive internal ribosome entry site function
-
Plank TD, Kieft JS. 2012. The structures of nonprotein-coding RNAs that drive internal ribosome entry site function. Wiley Interdiscip Rev RNA 3: 195-212.
-
(2012)
Wiley Interdiscip Rev RNA
, vol.3
, pp. 195-212
-
-
Plank, T.D.1
Kieft, J.S.2
-
49
-
-
84906874947
-
Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1
-
Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. 2014. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA 20: 1398-1409.
-
(2014)
RNA
, vol.20
, pp. 1398-1409
-
-
Rouya, C.1
Siddiqui, N.2
Morita, M.3
Duchaine, T.F.4
Fabian, M.R.5
Sonenberg, N.6
-
50
-
-
79960928455
-
Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin
-
Sandler H, Kreth J, Timmers HT, Stoecklin G. 2011. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39: 4373-4386.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 4373-4386
-
-
Sandler, H.1
Kreth, J.2
Timmers, H.T.3
Stoecklin, G.4
-
51
-
-
77649252314
-
NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs
-
Suzuki A, Igarashi K, Aisaki K, Kanno J, Saga Y. 2010. NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci 107: 3594-3599.
-
(2010)
Proc Natl Acad Sci
, vol.107
, pp. 3594-3599
-
-
Suzuki, A.1
Igarashi, K.2
Aisaki, K.3
Kanno, J.4
Saga, Y.5
-
52
-
-
84926378656
-
Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells
-
Suzuki A, Niimi Y, Saga Y. 2014. Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells. Biol Open 3: 1207-1216.
-
(2014)
Biol Open
, vol.3
, pp. 1207-1216
-
-
Suzuki, A.1
Niimi, Y.2
Saga, Y.3
-
53
-
-
84905671047
-
Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: Molecular and developmental aspects
-
Temme C, Simonelig M, Wahle E. 2014. Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Front Genet 5: 143.
-
(2014)
Front Genet
, vol.5
, pp. 143
-
-
Temme, C.1
Simonelig, M.2
Wahle, E.3
-
54
-
-
84877801967
-
RNA decay machines: Deadenylation by the Ccr4-not and Pan2-Pan3 complexes
-
Wahle E, Winkler GS. 2013. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829: 561-570.
-
(2013)
Biochim Biophys Acta
, vol.1829
, pp. 561-570
-
-
Wahle, E.1
Winkler, G.S.2
-
56
-
-
84905672506
-
Insights into the structure and architecture of the CCR4-NOT complex
-
Xu K, Bai Y, Zhang A, Zhang Q, Bartlam MG. 2014. Insights into the structure and architecture of the CCR4-NOT complex. Front Genet 5: 137.
-
(2014)
Front Genet
, vol.5
, pp. 137
-
-
Xu, K.1
Bai, Y.2
Zhang, A.3
Zhang, Q.4
Bartlam, M.G.5
-
57
-
-
28544450636
-
Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover
-
Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB. 2005. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12: 1054-1063.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 1054-1063
-
-
Yamashita, A.1
Chang, T.C.2
Yamashita, Y.3
Zhu, W.4
Zhong, Z.5
Chen, C.Y.6
Shyu, A.B.7
|