메뉴 건너뛰기




Volumn 21, Issue 7, 2015, Pages 1335-1345

Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo

Author keywords

4E T; CAF1; CCR4 NOT; NOT1; Translation; Xp54

Indexed keywords

CHROMATIN ASSEMBLY FACTOR 1; INITIATION FACTOR 4B; INITIATION FACTOR 4E; INITIATION FACTOR 4G; MICRORNA; NOT1 PROTEIN; RNA BINDING PROTEIN; UNCLASSIFIED DRUG; CNOT1 PROTEIN, HUMAN; CNOT8 PROTEIN, HUMAN; EIF4ENIF1 PROTEIN, HUMAN; NUCLEOCYTOPLASMIC TRANSPORT PROTEIN; TRANSCRIPTION FACTOR;

EID: 84931057948     PISSN: 13558382     EISSN: 14699001     Source Type: Journal    
DOI: 10.1261/rna.051565.115     Document Type: Article
Times cited : (24)

References (57)
  • 1
    • 70349337771 scopus 로고    scopus 로고
    • The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation
    • Aslam A, Mittal S, Koch F, Andrau JC, Winkler GS. 2009. The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol Biol Cell 20: 3840-3850.
    • (2009) Mol Biol Cell , vol.20 , pp. 3840-3850
    • Aslam, A.1    Mittal, S.2    Koch, F.3    Andrau, J.C.4    Winkler, G.S.5
  • 2
    • 0032874875 scopus 로고    scopus 로고
    • The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5
    • Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, Denis CL. 1999. The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19: 6642-6651.
    • (1999) Mol Cell Biol , vol.19 , pp. 6642-6651
    • Bai, Y.1    Salvadore, C.2    Chiang, Y.C.3    Collart, M.A.4    Liu, H.Y.5    Denis, C.L.6
  • 3
    • 84868094761 scopus 로고    scopus 로고
    • Architecture of the nuclease module of the yeast Ccr4-NOTcomplex: The NOT1-Caf1-Ccr4 interaction
    • Basquin J, Roudko VV, Rode M, Basquin C, Seraphin B, Conti E. 2012. Architecture of the nuclease module of the yeast Ccr4-NOTcomplex: the NOT1-Caf1-Ccr4 interaction. Mol Cell 48: 207-218.
    • (2012) Mol Cell , vol.48 , pp. 207-218
    • Basquin, J.1    Roudko, V.V.2    Rode, M.3    Basquin, C.4    Seraphin, B.5    Conti, E.6
  • 4
    • 84874586399 scopus 로고    scopus 로고
    • NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain
    • Bawankar P, Loh B, Wohlbold L, Schmidt S, Izaurralde E. 2013. NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. RNA Biol 10: 228-244.
    • (2013) RNA Biol , vol.10 , pp. 228-244
    • Bawankar, P.1    Loh, B.2    Wohlbold, L.3    Schmidt, S.4    Izaurralde, E.5
  • 5
    • 84898869373 scopus 로고    scopus 로고
    • Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression
    • Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E. 2014. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev 28: 888-901.
    • (2014) Genes Dev , vol.28 , pp. 888-901
    • Bhandari, D.1    Raisch, T.2    Weichenrieder, O.3    Jonas, S.4    Izaurralde, E.5
  • 6
    • 15444368798 scopus 로고    scopus 로고
    • Conservation of the deadenylase activity of proteins of the Caf1 family in human
    • Bianchin C, Mauxion F, Sentis S, Séraphin B, Corbo L. 2005. Conservation of the deadenylase activity of proteins of the Caf1 family in human. RNA 11: 487-494.
    • (2005) RNA , vol.11 , pp. 487-494
    • Bianchin, C.1    Mauxion, F.2    Sentis, S.3    Séraphin, B.4    Corbo, L.5
  • 7
    • 80053580757 scopus 로고    scopus 로고
    • GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets
    • Braun JE, Huntzinger E, Fauser M, Izaurralde E. 2011. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44: 120-133.
    • (2011) Mol Cell , vol.44 , pp. 120-133
    • Braun, J.E.1    Huntzinger, E.2    Fauser, M.3    Izaurralde, E.4
  • 9
    • 84858442444 scopus 로고    scopus 로고
    • Mechanisms of deadenylation-dependent decay
    • Chen CY, Shyu AB. 2011. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA 2: 167-183.
    • (2011) Wiley Interdiscip Rev RNA , vol.2 , pp. 167-183
    • Chen, C.Y.1    Shyu, A.B.2
  • 11
    • 84155195139 scopus 로고    scopus 로고
    • The Ccr4-not complex
    • Collart MA, Panasenko OO. 2012. The Ccr4-not complex. Gene 492: 42-53.
    • (2012) Gene , vol.492 , pp. 42-53
    • Collart, M.A.1    Panasenko, O.O.2
  • 12
    • 0035674477 scopus 로고    scopus 로고
    • The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
    • Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7: 1717-1727.
    • (2001) RNA , vol.7 , pp. 1717-1727
    • Coller, J.M.1    Tucker, M.2    Sheth, U.3    Valencia-Sanchez, M.A.4    Parker, R.5
  • 13
    • 77956503398 scopus 로고    scopus 로고
    • Translational repression by deadenylases
    • Cooke A, Prigge A, Wickens M. 2010. Translational repression by deadenylases. J Biol Chem 285: 28506-28513.
    • (2010) J Biol Chem , vol.285 , pp. 28506-28513
    • Cooke, A.1    Prigge, A.2    Wickens, M.3
  • 14
    • 57449099865 scopus 로고    scopus 로고
    • MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
    • Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367-1372.
    • (2008) Nat Biotechnol , vol.26 , pp. 1367-1372
    • Cox, J.1    Mann, M.2
  • 16
    • 84907197082 scopus 로고    scopus 로고
    • Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
    • Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513-2526.
    • (2014) Mol Cell Proteomics , vol.13 , pp. 2513-2526
    • Cox, J.1    Hein, M.Y.2    Luber, C.A.3    Paron, I.4    Nagaraj, N.5    Mann, M.6
  • 17
    • 0035834731 scopus 로고    scopus 로고
    • Poly(A) polymerase and the regulation of cytoplasmic polyadenylation
    • Dickson KS, Thompson SR, Gray NK, Wickens M. 2001. Poly(A) polymerase and the regulation of cytoplasmic polyadenylation. J Biol Chem 276: 41810-41816.
    • (2001) J Biol Chem , vol.276 , pp. 41810-41816
    • Dickson, K.S.1    Thompson, S.R.2    Gray, N.K.3    Wickens, M.4
  • 18
    • 84864383679 scopus 로고    scopus 로고
    • Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex
    • Doidge R, Mittal S, Aslam A, Winkler GS. 2012. Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex. Biochem Soc Trans 40: 896-901.
    • (2012) Biochem Soc Trans , vol.40 , pp. 896-901
    • Doidge, R.1    Mittal, S.2    Aslam, A.3    Winkler, G.S.4
  • 23
    • 0037013898 scopus 로고    scopus 로고
    • The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
    • Fischer N, Weis K. 2002. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 21: 2788-2797.
    • (2002) EMBO J , vol.21 , pp. 2788-2797
    • Fischer, N.1    Weis, K.2
  • 25
    • 5044229348 scopus 로고    scopus 로고
    • Molecular mechanisms of translational control
    • Gebauer F, Hentze MW. 2004. Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5: 827-835.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , pp. 827-835
    • Gebauer, F.1    Hentze, M.W.2
  • 26
    • 41149138114 scopus 로고    scopus 로고
    • Multifunctional deadenylase complexes diversify mRNA control
    • Goldstrohm AC, Wickens M. 2008. Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9: 337-344.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 337-344
    • Goldstrohm, A.C.1    Wickens, M.2
  • 28
    • 0034282752 scopus 로고    scopus 로고
    • Multiple portions of poly(A)-binding protein stimulate translation in vivo
    • Gray NK, Coller JM, Dickson KS, Wickens M. 2000. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 19: 4723-4733.
    • (2000) EMBO J , vol.19 , pp. 4723-4733
    • Gray, N.K.1    Coller, J.M.2    Dickson, K.S.3    Wickens, M.4
  • 31
    • 84905665078 scopus 로고    scopus 로고
    • Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation
    • Inada T, Makino S. 2014. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation. Front Genet 5: 135.
    • (2014) Front Genet , vol.5 , pp. 135
    • Inada, T.1    Makino, S.2
  • 32
    • 34248580923 scopus 로고    scopus 로고
    • Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline
    • Kadyrova LY, Habara Y, Lee TH, Wharton RP. 2007. Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134: 1519-1527.
    • (2007) Development , vol.134 , pp. 1519-1527
    • Kadyrova, L.Y.1    Habara, Y.2    Lee, T.H.3    Wharton, R.P.4
  • 34
    • 46549086974 scopus 로고    scopus 로고
    • Viral IRES RNA structures and ribosome interactions
    • Kieft JS. 2008. Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33: 274-283.
    • (2008) Trends Biochem Sci , vol.33 , pp. 274-283
    • Kieft, J.S.1
  • 37
    • 79958025810 scopus 로고    scopus 로고
    • Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis
    • Lund E, Sheets MD, Imboden SB, Dahlberg JE. 2011. Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25: 1121-1131.
    • (2011) Genes Dev , vol.25 , pp. 1121-1131
    • Lund, E.1    Sheets, M.D.2    Imboden, S.B.3    Dahlberg, J.E.4
  • 40
    • 84862685172 scopus 로고    scopus 로고
    • Ccr4-Not complex: The control freak of eukaryotic cells
    • Miller JE, Reese JC. 2012. Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev Biochem Mol Biol 47: 315-333.
    • (2012) Crit Rev Biochem Mol Biol , vol.47 , pp. 315-333
    • Miller, J.E.1    Reese, J.C.2
  • 41
    • 2542580178 scopus 로고    scopus 로고
    • The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer
    • Minshall N, Standart N. 2004. The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res 32: 1325-1334.
    • (2004) Nucleic Acids Res , vol.32 , pp. 1325-1334
    • Minshall, N.1    Standart, N.2
  • 42
    • 38049134877 scopus 로고    scopus 로고
    • CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes
    • Minshall N, Reiter MH, Weil D, Standart N. 2007. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem 282: 37389-37401.
    • (2007) J Biol Chem , vol.282 , pp. 37389-37401
    • Minshall, N.1    Reiter, M.H.2    Weil, D.3    Standart, N.4
  • 43
    • 24944561521 scopus 로고    scopus 로고
    • C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression
    • Molin L, Puisieux A. 2005. C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene 358: 73-81.
    • (2005) Gene , vol.358 , pp. 73-81
    • Molin, L.1    Puisieux, A.2
  • 44
    • 79960366105 scopus 로고    scopus 로고
    • Insights into the structure of the CCR4-NOT complex by electron microscopy
    • Nasertorabi F, Batisse C, Diepholz M, Suck D, Bottcher B. 2011. Insights into the structure of the CCR4-NOT complex by electron microscopy. FEBS Lett 585: 2182-2186.
    • (2011) FEBS Lett , vol.585 , pp. 2182-2186
    • Nasertorabi, F.1    Batisse, C.2    Diepholz, M.3    Suck, D.4    Bottcher, B.5
  • 45
    • 27644555055 scopus 로고    scopus 로고
    • Interpretation of shotgun proteomic data: The protein inference problem
    • Nesvizhskii AI, Aebersold R. 2005. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4: 1419-1440.
    • (2005) Mol Cell Proteomics , vol.4 , pp. 1419-1440
    • Nesvizhskii, A.I.1    Aebersold, R.2
  • 46
    • 0029956389 scopus 로고    scopus 로고
    • Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry
    • Pestova TV, Hellen CU, Shatsky IN. 1996. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16: 6859-6869.
    • (1996) Mol Cell Biol , vol.16 , pp. 6859-6869
    • Pestova, T.V.1    Hellen, C.U.2    Shatsky, I.N.3
  • 47
    • 84870622730 scopus 로고    scopus 로고
    • The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex
    • Petit AP, Wohlbold L, Bawankar P, Huntzinger E, Schmidt S, Izaurralde E, Weichenrieder O. 2012. The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res 40: 11058-11072.
    • (2012) Nucleic Acids Res , vol.40 , pp. 11058-11072
    • Petit, A.P.1    Wohlbold, L.2    Bawankar, P.3    Huntzinger, E.4    Schmidt, S.5    Izaurralde, E.6    Weichenrieder, O.7
  • 48
    • 84862025869 scopus 로고    scopus 로고
    • The structures of nonprotein-coding RNAs that drive internal ribosome entry site function
    • Plank TD, Kieft JS. 2012. The structures of nonprotein-coding RNAs that drive internal ribosome entry site function. Wiley Interdiscip Rev RNA 3: 195-212.
    • (2012) Wiley Interdiscip Rev RNA , vol.3 , pp. 195-212
    • Plank, T.D.1    Kieft, J.S.2
  • 49
    • 84906874947 scopus 로고    scopus 로고
    • Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1
    • Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N. 2014. Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA 20: 1398-1409.
    • (2014) RNA , vol.20 , pp. 1398-1409
    • Rouya, C.1    Siddiqui, N.2    Morita, M.3    Duchaine, T.F.4    Fabian, M.R.5    Sonenberg, N.6
  • 50
    • 79960928455 scopus 로고    scopus 로고
    • Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin
    • Sandler H, Kreth J, Timmers HT, Stoecklin G. 2011. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39: 4373-4386.
    • (2011) Nucleic Acids Res , vol.39 , pp. 4373-4386
    • Sandler, H.1    Kreth, J.2    Timmers, H.T.3    Stoecklin, G.4
  • 51
    • 77649252314 scopus 로고    scopus 로고
    • NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs
    • Suzuki A, Igarashi K, Aisaki K, Kanno J, Saga Y. 2010. NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc Natl Acad Sci 107: 3594-3599.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 3594-3599
    • Suzuki, A.1    Igarashi, K.2    Aisaki, K.3    Kanno, J.4    Saga, Y.5
  • 52
    • 84926378656 scopus 로고    scopus 로고
    • Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells
    • Suzuki A, Niimi Y, Saga Y. 2014. Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells. Biol Open 3: 1207-1216.
    • (2014) Biol Open , vol.3 , pp. 1207-1216
    • Suzuki, A.1    Niimi, Y.2    Saga, Y.3
  • 53
    • 84905671047 scopus 로고    scopus 로고
    • Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: Molecular and developmental aspects
    • Temme C, Simonelig M, Wahle E. 2014. Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Front Genet 5: 143.
    • (2014) Front Genet , vol.5 , pp. 143
    • Temme, C.1    Simonelig, M.2    Wahle, E.3
  • 54
    • 84877801967 scopus 로고    scopus 로고
    • RNA decay machines: Deadenylation by the Ccr4-not and Pan2-Pan3 complexes
    • Wahle E, Winkler GS. 2013. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829: 561-570.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 561-570
    • Wahle, E.1    Winkler, G.S.2
  • 56
    • 84905672506 scopus 로고    scopus 로고
    • Insights into the structure and architecture of the CCR4-NOT complex
    • Xu K, Bai Y, Zhang A, Zhang Q, Bartlam MG. 2014. Insights into the structure and architecture of the CCR4-NOT complex. Front Genet 5: 137.
    • (2014) Front Genet , vol.5 , pp. 137
    • Xu, K.1    Bai, Y.2    Zhang, A.3    Zhang, Q.4    Bartlam, M.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.