-
1
-
-
84858442444
-
Mechanisms of deadenylation-dependent decay
-
Chen, C.Y. & Shyu, A.B. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167-183 (2011).
-
(2011)
Wiley Interdiscip. Rev. RNA
, vol.2
, pp. 167-183
-
-
Chen, C.Y.1
Shyu, A.B.2
-
2
-
-
33745869788
-
RNA-quality control by the exosome
-
Houseley, J., LaCava, J. & Tollervey, D. RNA-quality control by the exosome. Nat. Rev. Mol. Cell Biol. 7, 529-539 (2006).
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 529-539
-
-
Houseley, J.1
Lacava, J.2
Tollervey, D.3
-
3
-
-
80053910875
-
Structural and functional insights into eukaryotic mRNA decapping
-
Ling, S.H., Qamra, R. & Song, H. Structural and functional insights into eukaryotic mRNA decapping. Wiley Interdiscip Rev. RNA 2, 193-208 (2011).
-
(2011)
Wiley Interdiscip Rev. RNA
, vol.2
, pp. 193-208
-
-
Ling, S.H.1
Qamra, R.2
Song, H.3
-
4
-
-
77956540817
-
Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
-
Nissan, T., Rajyaguru, P., She, M., Song, H. & Parker, R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol. Cell 39, 773-783 (2010).
-
(2010)
Mol. Cell
, vol.39
, pp. 773-783
-
-
Nissan, T.1
Rajyaguru, P.2
She, M.3
Song, H.4
Parker, R.5
-
5
-
-
29144481702
-
Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
-
Fenger-Grøn, M., Fillman, C., Norrild, B. & Lykke-Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905-915 (2005).
-
(2005)
Mol. Cell
, vol.20
, pp. 905-915
-
-
Fenger-Grøn, M.1
Fillman, C.2
Norrild, B.3
Lykke-Andersen, J.4
-
6
-
-
0027214097
-
Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure
-
Hsu, C.L. & Stevens, A. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13, 4826-4835 (1993).
-
(1993)
Mol. Cell. Biol.
, vol.13
, pp. 4826-4835
-
-
Hsu, C.L.1
Stevens, A.2
-
7
-
-
0028202495
-
Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript
-
Muhlrad, D., Decker, C.J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8, 855-866 (1994).
-
(1994)
Genes Dev.
, vol.8
, pp. 855-866
-
-
Muhlrad, D.1
Decker, C.J.2
Parker, R.3
-
8
-
-
0034599976
-
A Sm-like protein complex that participates in mRNA degradation
-
Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M. & Seraphin, B. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 19, 1661-1671 (2000).
-
(2000)
EMBO J.
, vol.19
, pp. 1661-1671
-
-
Bouveret, E.1
Rigaut, G.2
Shevchenko, A.3
Wilm, M.4
Seraphin, B.5
-
9
-
-
77956642517
-
Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies
-
Ozgur, S., Chekulaeva, M. & Stoecklin, G. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol. Cell. Biol. 30, 4308-4323 (2010).
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 4308-4323
-
-
Ozgur, S.1
Chekulaeva, M.2
Stoecklin, G.3
-
10
-
-
33749199129
-
Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins
-
Fromont-Racine, M. et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17, 95-110 (2000).
-
(2000)
Yeast
, vol.17
, pp. 95-110
-
-
Fromont-Racine, M.1
-
11
-
-
33847417585
-
P bodies and the control of mRNA translation and degradation
-
Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635-646 (2007).
-
(2007)
Mol. Cell
, vol.25
, pp. 635-646
-
-
Parker, R.1
Sheth, U.2
-
12
-
-
0037138362
-
EVH1 domains: Structure, function and interactions
-
Ball, L.J., Jarchau, T., Oschkinat, H. & Walter, U. EVH1 domains: structure, function and interactions. FEBS Lett. 513, 45-52 (2002).
-
(2002)
FEBS Lett.
, vol.513
, pp. 45-52
-
-
Ball, L.J.1
Jarchau, T.2
Oschkinat, H.3
Walter, U.4
-
13
-
-
63849217132
-
Diversity of polyproline recognition by EVH1 domains
-
Peterson, F.C. & Volkman, B.F. Diversity of polyproline recognition by EVH1 domains. Front. Biosci. 14, 833-846 (2009).
-
(2009)
Front. Biosci.
, vol.14
, pp. 833-846
-
-
Peterson, F.C.1
Volkman, B.F.2
-
14
-
-
1442360375
-
Crystal structure of Dcp1p and its functional implications in mRNA decapping
-
She, M. et al. Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat. Struct. Mol. Biol. 11, 249-256 (2004).
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 249-256
-
-
She, M.1
-
15
-
-
38949156197
-
Structural basis of Dcp2 recognition and activation by Dcp1
-
She, M. et al. Structural basis of Dcp2 recognition and activation by Dcp1. Mol. Cell 29, 337-349 (2008).
-
(2008)
Mol. Cell
, vol.29
, pp. 337-349
-
-
She, M.1
-
16
-
-
76049117054
-
DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa
-
Tritschler, F. et al. DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa. Proc. Natl. Acad. Sci. USA 106, 21591-21596 (2009).
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 21591-21596
-
-
Tritschler, F.1
-
17
-
-
84857192910
-
The structural basis of Edc3-and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex
-
Fromm, S.A. et al. The structural basis of Edc3-and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J. 31, 279-290 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 279-290
-
-
Fromm, S.A.1
-
18
-
-
79951969817
-
Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay
-
Jinek, M., Coyle, S.M. & Doudna, J.A. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell 41, 600-608 (2011).
-
(2011)
Mol. Cell
, vol.41
, pp. 600-608
-
-
Jinek, M.1
Coyle, S.M.2
Doudna, J.A.3
-
19
-
-
79952362044
-
Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1
-
Chang, J.H., Xiang, S., Xiang, K., Manley, J.L. & Tong, L. Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1. Nat. Struct. Mol. Biol. 18, 270-276 (2011).
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 270-276
-
-
Chang, J.H.1
Xiang, S.2
Xiang, K.3
Manley, J.L.4
Tong, L.5
-
20
-
-
0037112347
-
Structure of the N-WASP EVH1 domain-WIP complex: Insight into the molecular basis of Wiskott-Aldrich Syndrome
-
Volkman, B.F., Prehoda, K.E., Scott, J.A., Peterson, F.C. & Lim, W.A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111, 565-576 (2002).
-
(2002)
Cell
, vol.111
, pp. 565-576
-
-
Volkman, B.F.1
Prehoda, K.E.2
Scott, J.A.3
Peterson, F.C.4
Lim, W.A.5
-
21
-
-
0033553508
-
Structure of the enabled/VASP homology 1 domain-peptide complex: A key component in the spatial control of actin assembly
-
Prehoda, K.E., Lee, D.J. & Lim, W.A. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97, 471-480 (1999).
-
(1999)
Cell
, vol.97
, pp. 471-480
-
-
Prehoda, K.E.1
Lee, D.J.2
Lim, W.A.3
-
22
-
-
0033031122
-
Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function
-
Fedorov, A.A., Fedorov, E., Gertler, F. & Almo, S.C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Biol. 6, 661-665 (1999).
-
(1999)
Nat. Struct. Biol.
, vol.6
, pp. 661-665
-
-
Fedorov, A.A.1
Fedorov, E.2
Gertler, F.3
Almo, S.C.4
-
23
-
-
0033166687
-
Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands
-
Carl, U.D. et al. Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. Curr. Biol. 9, 715-718 (1999).
-
(1999)
Curr. Biol.
, vol.9
, pp. 715-718
-
-
Carl, U.D.1
-
24
-
-
0034665266
-
Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity
-
Ball, L.J. et al. Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity. EMBO J. 19, 4903-4914 (2000).
-
(2000)
EMBO J.
, vol.19
, pp. 4903-4914
-
-
Ball, L.J.1
-
25
-
-
0033679292
-
Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition
-
Beneken, J. et al. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 26, 143-154 (2000).
-
(2000)
Neuron
, vol.26
, pp. 143-154
-
-
Beneken, J.1
-
26
-
-
0035946916
-
The N-terminal domain of Homer/Vesl is a new class II EVH1 domain
-
Barzik, M. et al. The N-terminal domain of Homer/Vesl is a new class II EVH1 domain. J. Mol. Biol. 309, 155-169 (2001).
-
(2001)
J. Mol. Biol.
, vol.309
, pp. 155-169
-
-
Barzik, M.1
-
27
-
-
28344456221
-
Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body
-
Yu, J.H., Yang, W.H., Gulick, T., Bloch, K.D. & Bloch, D.B. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11, 1795-1802 (2005).
-
(2005)
RNA
, vol.11
, pp. 1795-1802
-
-
Yu, J.H.1
Yang, W.H.2
Gulick, T.3
Bloch, K.D.4
Bloch, D.B.5
-
28
-
-
52949146385
-
The C-terminal region of Ge-1 presents conserved structural features required for P-body localization
-
Jinek, M. et al. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA 14, 1991-1998 (2008).
-
(2008)
RNA
, vol.14
, pp. 1991-1998
-
-
Jinek, M.1
-
29
-
-
79960838430
-
Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay
-
Bloch, D.B., Nobre, R.A., Bernstein, G.A. & Yang, W.H. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay. Exp. Cell Res. 317, 2183-2199 (2011).
-
(2011)
Exp. Cell Res.
, vol.317
, pp. 2183-2199
-
-
Bloch, D.B.1
Nobre, R.A.2
Bernstein, G.A.3
Yang, W.H.4
-
30
-
-
33746055678
-
MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes
-
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885-1898 (2006).
-
(2006)
Genes Dev.
, vol.20
, pp. 1885-1898
-
-
Behm-Ansmant, I.1
-
31
-
-
35348962568
-
Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing
-
Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558-2570 (2007).
-
(2007)
Genes Dev.
, vol.21
, pp. 2558-2570
-
-
Eulalio, A.1
-
32
-
-
80555131046
-
MiRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs
-
Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218-1226 (2011).
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1218-1226
-
-
Chekulaeva, M.1
-
33
-
-
33947540895
-
Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development
-
Xu, J., Yang, J.Y., Niu, Q.W. & Chua, N.H. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18, 3386-3398 (2006).
-
(2006)
Plant Cell
, vol.18
, pp. 3386-3398
-
-
Xu, J.1
Yang, J.Y.2
Niu, Q.W.3
Chua, N.H.4
-
34
-
-
78751543984
-
Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition
-
Borja, M.S., Piotukh, K., Freund, C. & Gross, J.D. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA 17, 278-290 (2011).
-
(2011)
RNA
, vol.17
, pp. 278-290
-
-
Borja, M.S.1
Piotukh, K.2
Freund, C.3
Gross, J.D.4
-
35
-
-
82655175482
-
Attributes of short linear motifs
-
Davey, N.E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268-281 (2012).
-
(2012)
Mol. Biosyst.
, vol.8
, pp. 268-281
-
-
Davey, N.E.1
-
36
-
-
38949215732
-
MRNA decapping is promoted by an RNA-binding channel in Dcp2
-
Deshmukh, M.V. et al. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol. Cell 29, 324-336 (2008).
-
(2008)
Mol. Cell
, vol.29
, pp. 324-336
-
-
Deshmukh, M.V.1
-
37
-
-
84857433862
-
Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan
-
Floor, S.N., Borja, M.S. & Gross, J.D. Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc. Natl. Acad. Sci. USA 109, 2872-2877 (2012).
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 2872-2877
-
-
Floor, S.N.1
Borja, M.S.2
Gross, J.D.3
-
38
-
-
77951199701
-
HPat provides a link between deadenylation and decapping in metazoa
-
Haas, G. et al. HPat provides a link between deadenylation and decapping in metazoa. J. Cell Biol. 189, 289-302 (2010).
-
(2010)
J. Cell Biol.
, vol.189
, pp. 289-302
-
-
Haas, G.1
-
39
-
-
80053580757
-
GW182 proteins recruit cytoplasmic deadenylase complexes to miRNA targets
-
Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120-133 (2011).
-
(2011)
Mol. Cell
, vol.44
, pp. 120-133
-
-
Braun, J.E.1
Huntzinger, E.2
Fauser, M.3
Izaurralde, E.4
-
40
-
-
79959992840
-
Deciphering correct strategies for multiprotein complex assembly by co-expression: Application to complexes as large as the histone octamer
-
Diebold, M.L., Fribourg, S., Koch, M., Metzger, T. & Romier, C. Deciphering correct strategies for multiprotein complex assembly by co-expression: application to complexes as large as the histone octamer. J. Struct. Biol. 175, 178-188 (2011).
-
(2011)
J. Struct. Biol.
, vol.175
, pp. 178-188
-
-
Diebold, M.L.1
Fribourg, S.2
Koch, M.3
Metzger, T.4
Romier, C.5
-
41
-
-
31044436029
-
Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments
-
Diercks, T., Daniels, M. & Kaptein, R. Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments. J. Biomol. NMR 33, 243-259 (2005).
-
(2005)
J. Biomol. NMR
, vol.33
, pp. 243-259
-
-
Diercks, T.1
Daniels, M.2
Kaptein, R.3
-
42
-
-
0000612671
-
PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to C(α),C′ transfer and C (β),C (aromatic) correlations
-
Carlomagno, T. et al. PLUSH TACSY: homonuclear planar TACSY with two-band selective shaped pulses applied to C(α),C′ transfer and C (β),C (aromatic) correlations. J. Biomol. NMR 8, 161-170 (1996).
-
(1996)
J. Biomol. NMR
, vol.8
, pp. 161-170
-
-
Carlomagno, T.1
-
43
-
-
0032694547
-
An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments
-
Diercks, T., Coles, M. & Kessler, H. An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J. Biomol. NMR 15, 177-180 (1999).
-
(1999)
J. Biomol. NMR
, vol.15
, pp. 177-180
-
-
Diercks, T.1
Coles, M.2
Kessler, H.3
-
44
-
-
0033003335
-
Protein backbone angle restraints from searching a database for chemical shift and sequence homology
-
Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289-302 (1999).
-
(1999)
J. Biomol. NMR
, vol.13
, pp. 289-302
-
-
Cornilescu, G.1
Delaglio, F.2
Bax, A.3
-
45
-
-
61549095002
-
SimShiftDB; Local conformational restraints derived from chemical shift similarity searches on a large synthetic database
-
Ginzinger, S.W. & Coles, M. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database. J. Biomol. NMR 43, 179-185 (2009).
-
(2009)
J. Biomol. NMR
, vol.43
, pp. 179-185
-
-
Ginzinger, S.W.1
Coles, M.2
-
46
-
-
0035875869
-
The solution structure of the N-terminal domain of riboflavin synthase
-
Truffault, V. et al. The solution structure of the N-terminal domain of riboflavin synthase. J. Mol. Biol. 309, 949-960 (2001).
-
(2001)
J. Mol. Biol.
, vol.309
, pp. 949-960
-
-
Truffault, V.1
-
47
-
-
33645868288
-
Using Xplor-NIH for NMR molecular structure determination
-
Schwieters, C.D., Kuszewski, J.J. & Clore, G.M. Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47-62 (2006).
-
(2006)
Prog. Nucl. Magn. Reson. Spectrosc.
, vol.48
, pp. 47-62
-
-
Schwieters, C.D.1
Kuszewski, J.J.2
Clore, G.M.3
-
48
-
-
0013293280
-
Xplor-NIH NMR molecular structure determination package
-
Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65-73 (2003).
-
(2003)
J. Magn. Reson.
, vol.160
, pp. 65-73
-
-
Schwieters, C.D.1
Kuszewski, J.J.2
Tjandra, N.3
Clore, G.M.4
-
49
-
-
74549178560
-
MolProbity: All-atom structure validation for macromolecular crystallography
-
Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21 (2010).
-
(2010)
Acta Crystallogr. D Biol. Crystallogr.
, vol.66
, pp. 12-21
-
-
Chen, V.B.1
-
50
-
-
34547592557
-
MolProbity: All-atom contacts and structure validation for proteins and nucleic acids
-
Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375-W383 (2007).
-
(2007)
Nucleic Acids Res.
, vol.35
-
-
Davis, I.W.1
|