메뉴 건너뛰기




Volumn 19, Issue 12, 2012, Pages 1324-1331

A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation

Author keywords

[No Author keywords available]

Indexed keywords

DCP1 PROTEIN; MESSENGER RNA; PHOSPHODIESTERASE I; PROLINE; PROTEIN; UNCLASSIFIED DRUG; XRN1 PROTEIN;

EID: 84870790194     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2413     Document Type: Article
Times cited : (134)

References (50)
  • 1
    • 84858442444 scopus 로고    scopus 로고
    • Mechanisms of deadenylation-dependent decay
    • Chen, C.Y. & Shyu, A.B. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167-183 (2011).
    • (2011) Wiley Interdiscip. Rev. RNA , vol.2 , pp. 167-183
    • Chen, C.Y.1    Shyu, A.B.2
  • 3
    • 80053910875 scopus 로고    scopus 로고
    • Structural and functional insights into eukaryotic mRNA decapping
    • Ling, S.H., Qamra, R. & Song, H. Structural and functional insights into eukaryotic mRNA decapping. Wiley Interdiscip Rev. RNA 2, 193-208 (2011).
    • (2011) Wiley Interdiscip Rev. RNA , vol.2 , pp. 193-208
    • Ling, S.H.1    Qamra, R.2    Song, H.3
  • 4
    • 77956540817 scopus 로고    scopus 로고
    • Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
    • Nissan, T., Rajyaguru, P., She, M., Song, H. & Parker, R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol. Cell 39, 773-783 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 773-783
    • Nissan, T.1    Rajyaguru, P.2    She, M.3    Song, H.4    Parker, R.5
  • 5
    • 29144481702 scopus 로고    scopus 로고
    • Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
    • Fenger-Grøn, M., Fillman, C., Norrild, B. & Lykke-Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905-915 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 905-915
    • Fenger-Grøn, M.1    Fillman, C.2    Norrild, B.3    Lykke-Andersen, J.4
  • 6
    • 0027214097 scopus 로고
    • Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure
    • Hsu, C.L. & Stevens, A. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13, 4826-4835 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 4826-4835
    • Hsu, C.L.1    Stevens, A.2
  • 7
    • 0028202495 scopus 로고
    • Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript
    • Muhlrad, D., Decker, C.J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8, 855-866 (1994).
    • (1994) Genes Dev. , vol.8 , pp. 855-866
    • Muhlrad, D.1    Decker, C.J.2    Parker, R.3
  • 8
    • 0034599976 scopus 로고    scopus 로고
    • A Sm-like protein complex that participates in mRNA degradation
    • Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M. & Seraphin, B. A Sm-like protein complex that participates in mRNA degradation. EMBO J. 19, 1661-1671 (2000).
    • (2000) EMBO J. , vol.19 , pp. 1661-1671
    • Bouveret, E.1    Rigaut, G.2    Shevchenko, A.3    Wilm, M.4    Seraphin, B.5
  • 9
    • 77956642517 scopus 로고    scopus 로고
    • Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies
    • Ozgur, S., Chekulaeva, M. & Stoecklin, G. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol. Cell. Biol. 30, 4308-4323 (2010).
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 4308-4323
    • Ozgur, S.1    Chekulaeva, M.2    Stoecklin, G.3
  • 10
    • 33749199129 scopus 로고    scopus 로고
    • Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins
    • Fromont-Racine, M. et al. Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17, 95-110 (2000).
    • (2000) Yeast , vol.17 , pp. 95-110
    • Fromont-Racine, M.1
  • 11
    • 33847417585 scopus 로고    scopus 로고
    • P bodies and the control of mRNA translation and degradation
    • Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635-646 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 635-646
    • Parker, R.1    Sheth, U.2
  • 12
    • 0037138362 scopus 로고    scopus 로고
    • EVH1 domains: Structure, function and interactions
    • Ball, L.J., Jarchau, T., Oschkinat, H. & Walter, U. EVH1 domains: structure, function and interactions. FEBS Lett. 513, 45-52 (2002).
    • (2002) FEBS Lett. , vol.513 , pp. 45-52
    • Ball, L.J.1    Jarchau, T.2    Oschkinat, H.3    Walter, U.4
  • 13
    • 63849217132 scopus 로고    scopus 로고
    • Diversity of polyproline recognition by EVH1 domains
    • Peterson, F.C. & Volkman, B.F. Diversity of polyproline recognition by EVH1 domains. Front. Biosci. 14, 833-846 (2009).
    • (2009) Front. Biosci. , vol.14 , pp. 833-846
    • Peterson, F.C.1    Volkman, B.F.2
  • 14
    • 1442360375 scopus 로고    scopus 로고
    • Crystal structure of Dcp1p and its functional implications in mRNA decapping
    • She, M. et al. Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat. Struct. Mol. Biol. 11, 249-256 (2004).
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 249-256
    • She, M.1
  • 15
    • 38949156197 scopus 로고    scopus 로고
    • Structural basis of Dcp2 recognition and activation by Dcp1
    • She, M. et al. Structural basis of Dcp2 recognition and activation by Dcp1. Mol. Cell 29, 337-349 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 337-349
    • She, M.1
  • 16
    • 76049117054 scopus 로고    scopus 로고
    • DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa
    • Tritschler, F. et al. DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa. Proc. Natl. Acad. Sci. USA 106, 21591-21596 (2009).
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 21591-21596
    • Tritschler, F.1
  • 17
    • 84857192910 scopus 로고    scopus 로고
    • The structural basis of Edc3-and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex
    • Fromm, S.A. et al. The structural basis of Edc3-and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J. 31, 279-290 (2012).
    • (2012) EMBO J. , vol.31 , pp. 279-290
    • Fromm, S.A.1
  • 18
    • 79951969817 scopus 로고    scopus 로고
    • Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay
    • Jinek, M., Coyle, S.M. & Doudna, J.A. Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol. Cell 41, 600-608 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 600-608
    • Jinek, M.1    Coyle, S.M.2    Doudna, J.A.3
  • 19
    • 79952362044 scopus 로고    scopus 로고
    • Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1
    • Chang, J.H., Xiang, S., Xiang, K., Manley, J.L. & Tong, L. Structural and biochemical studies of the 5′→3′ exoribonuclease Xrn1. Nat. Struct. Mol. Biol. 18, 270-276 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 270-276
    • Chang, J.H.1    Xiang, S.2    Xiang, K.3    Manley, J.L.4    Tong, L.5
  • 20
    • 0037112347 scopus 로고    scopus 로고
    • Structure of the N-WASP EVH1 domain-WIP complex: Insight into the molecular basis of Wiskott-Aldrich Syndrome
    • Volkman, B.F., Prehoda, K.E., Scott, J.A., Peterson, F.C. & Lim, W.A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111, 565-576 (2002).
    • (2002) Cell , vol.111 , pp. 565-576
    • Volkman, B.F.1    Prehoda, K.E.2    Scott, J.A.3    Peterson, F.C.4    Lim, W.A.5
  • 21
    • 0033553508 scopus 로고    scopus 로고
    • Structure of the enabled/VASP homology 1 domain-peptide complex: A key component in the spatial control of actin assembly
    • Prehoda, K.E., Lee, D.J. & Lim, W.A. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97, 471-480 (1999).
    • (1999) Cell , vol.97 , pp. 471-480
    • Prehoda, K.E.1    Lee, D.J.2    Lim, W.A.3
  • 22
    • 0033031122 scopus 로고    scopus 로고
    • Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function
    • Fedorov, A.A., Fedorov, E., Gertler, F. & Almo, S.C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Biol. 6, 661-665 (1999).
    • (1999) Nat. Struct. Biol. , vol.6 , pp. 661-665
    • Fedorov, A.A.1    Fedorov, E.2    Gertler, F.3    Almo, S.C.4
  • 23
    • 0033166687 scopus 로고    scopus 로고
    • Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands
    • Carl, U.D. et al. Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. Curr. Biol. 9, 715-718 (1999).
    • (1999) Curr. Biol. , vol.9 , pp. 715-718
    • Carl, U.D.1
  • 24
    • 0034665266 scopus 로고    scopus 로고
    • Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity
    • Ball, L.J. et al. Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity. EMBO J. 19, 4903-4914 (2000).
    • (2000) EMBO J. , vol.19 , pp. 4903-4914
    • Ball, L.J.1
  • 25
    • 0033679292 scopus 로고    scopus 로고
    • Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition
    • Beneken, J. et al. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Neuron 26, 143-154 (2000).
    • (2000) Neuron , vol.26 , pp. 143-154
    • Beneken, J.1
  • 26
    • 0035946916 scopus 로고    scopus 로고
    • The N-terminal domain of Homer/Vesl is a new class II EVH1 domain
    • Barzik, M. et al. The N-terminal domain of Homer/Vesl is a new class II EVH1 domain. J. Mol. Biol. 309, 155-169 (2001).
    • (2001) J. Mol. Biol. , vol.309 , pp. 155-169
    • Barzik, M.1
  • 27
    • 28344456221 scopus 로고    scopus 로고
    • Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body
    • Yu, J.H., Yang, W.H., Gulick, T., Bloch, K.D. & Bloch, D.B. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11, 1795-1802 (2005).
    • (2005) RNA , vol.11 , pp. 1795-1802
    • Yu, J.H.1    Yang, W.H.2    Gulick, T.3    Bloch, K.D.4    Bloch, D.B.5
  • 28
    • 52949146385 scopus 로고    scopus 로고
    • The C-terminal region of Ge-1 presents conserved structural features required for P-body localization
    • Jinek, M. et al. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA 14, 1991-1998 (2008).
    • (2008) RNA , vol.14 , pp. 1991-1998
    • Jinek, M.1
  • 29
    • 79960838430 scopus 로고    scopus 로고
    • Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay
    • Bloch, D.B., Nobre, R.A., Bernstein, G.A. & Yang, W.H. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay. Exp. Cell Res. 317, 2183-2199 (2011).
    • (2011) Exp. Cell Res. , vol.317 , pp. 2183-2199
    • Bloch, D.B.1    Nobre, R.A.2    Bernstein, G.A.3    Yang, W.H.4
  • 30
    • 33746055678 scopus 로고    scopus 로고
    • MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes
    • Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885-1898 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 1885-1898
    • Behm-Ansmant, I.1
  • 31
    • 35348962568 scopus 로고    scopus 로고
    • Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing
    • Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558-2570 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 2558-2570
    • Eulalio, A.1
  • 32
    • 80555131046 scopus 로고    scopus 로고
    • MiRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs
    • Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218-1226 (2011).
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1218-1226
    • Chekulaeva, M.1
  • 33
    • 33947540895 scopus 로고    scopus 로고
    • Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development
    • Xu, J., Yang, J.Y., Niu, Q.W. & Chua, N.H. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18, 3386-3398 (2006).
    • (2006) Plant Cell , vol.18 , pp. 3386-3398
    • Xu, J.1    Yang, J.Y.2    Niu, Q.W.3    Chua, N.H.4
  • 34
    • 78751543984 scopus 로고    scopus 로고
    • Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition
    • Borja, M.S., Piotukh, K., Freund, C. & Gross, J.D. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA 17, 278-290 (2011).
    • (2011) RNA , vol.17 , pp. 278-290
    • Borja, M.S.1    Piotukh, K.2    Freund, C.3    Gross, J.D.4
  • 35
    • 82655175482 scopus 로고    scopus 로고
    • Attributes of short linear motifs
    • Davey, N.E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268-281 (2012).
    • (2012) Mol. Biosyst. , vol.8 , pp. 268-281
    • Davey, N.E.1
  • 36
    • 38949215732 scopus 로고    scopus 로고
    • MRNA decapping is promoted by an RNA-binding channel in Dcp2
    • Deshmukh, M.V. et al. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol. Cell 29, 324-336 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 324-336
    • Deshmukh, M.V.1
  • 37
    • 84857433862 scopus 로고    scopus 로고
    • Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan
    • Floor, S.N., Borja, M.S. & Gross, J.D. Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc. Natl. Acad. Sci. USA 109, 2872-2877 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 2872-2877
    • Floor, S.N.1    Borja, M.S.2    Gross, J.D.3
  • 38
    • 77951199701 scopus 로고    scopus 로고
    • HPat provides a link between deadenylation and decapping in metazoa
    • Haas, G. et al. HPat provides a link between deadenylation and decapping in metazoa. J. Cell Biol. 189, 289-302 (2010).
    • (2010) J. Cell Biol. , vol.189 , pp. 289-302
    • Haas, G.1
  • 39
    • 80053580757 scopus 로고    scopus 로고
    • GW182 proteins recruit cytoplasmic deadenylase complexes to miRNA targets
    • Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120-133 (2011).
    • (2011) Mol. Cell , vol.44 , pp. 120-133
    • Braun, J.E.1    Huntzinger, E.2    Fauser, M.3    Izaurralde, E.4
  • 40
    • 79959992840 scopus 로고    scopus 로고
    • Deciphering correct strategies for multiprotein complex assembly by co-expression: Application to complexes as large as the histone octamer
    • Diebold, M.L., Fribourg, S., Koch, M., Metzger, T. & Romier, C. Deciphering correct strategies for multiprotein complex assembly by co-expression: application to complexes as large as the histone octamer. J. Struct. Biol. 175, 178-188 (2011).
    • (2011) J. Struct. Biol. , vol.175 , pp. 178-188
    • Diebold, M.L.1    Fribourg, S.2    Koch, M.3    Metzger, T.4    Romier, C.5
  • 41
    • 31044436029 scopus 로고    scopus 로고
    • Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments
    • Diercks, T., Daniels, M. & Kaptein, R. Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments. J. Biomol. NMR 33, 243-259 (2005).
    • (2005) J. Biomol. NMR , vol.33 , pp. 243-259
    • Diercks, T.1    Daniels, M.2    Kaptein, R.3
  • 42
    • 0000612671 scopus 로고    scopus 로고
    • PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to C(α),C′ transfer and C (β),C (aromatic) correlations
    • Carlomagno, T. et al. PLUSH TACSY: homonuclear planar TACSY with two-band selective shaped pulses applied to C(α),C′ transfer and C (β),C (aromatic) correlations. J. Biomol. NMR 8, 161-170 (1996).
    • (1996) J. Biomol. NMR , vol.8 , pp. 161-170
    • Carlomagno, T.1
  • 43
    • 0032694547 scopus 로고    scopus 로고
    • An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments
    • Diercks, T., Coles, M. & Kessler, H. An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J. Biomol. NMR 15, 177-180 (1999).
    • (1999) J. Biomol. NMR , vol.15 , pp. 177-180
    • Diercks, T.1    Coles, M.2    Kessler, H.3
  • 44
    • 0033003335 scopus 로고    scopus 로고
    • Protein backbone angle restraints from searching a database for chemical shift and sequence homology
    • Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289-302 (1999).
    • (1999) J. Biomol. NMR , vol.13 , pp. 289-302
    • Cornilescu, G.1    Delaglio, F.2    Bax, A.3
  • 45
    • 61549095002 scopus 로고    scopus 로고
    • SimShiftDB; Local conformational restraints derived from chemical shift similarity searches on a large synthetic database
    • Ginzinger, S.W. & Coles, M. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database. J. Biomol. NMR 43, 179-185 (2009).
    • (2009) J. Biomol. NMR , vol.43 , pp. 179-185
    • Ginzinger, S.W.1    Coles, M.2
  • 46
    • 0035875869 scopus 로고    scopus 로고
    • The solution structure of the N-terminal domain of riboflavin synthase
    • Truffault, V. et al. The solution structure of the N-terminal domain of riboflavin synthase. J. Mol. Biol. 309, 949-960 (2001).
    • (2001) J. Mol. Biol. , vol.309 , pp. 949-960
    • Truffault, V.1
  • 49
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 12-21
    • Chen, V.B.1
  • 50
    • 34547592557 scopus 로고    scopus 로고
    • MolProbity: All-atom contacts and structure validation for proteins and nucleic acids
    • Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375-W383 (2007).
    • (2007) Nucleic Acids Res. , vol.35
    • Davis, I.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.