메뉴 건너뛰기




Volumn 125, Issue 10, 2015, Pages 3847-3860

Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells

(30)  Ferdaoussi, Mourad a,b   Dai, Xiaoqing a,b   Jensen, Mette V c   Wang, Runsheng d   Peterson, Brett S c   Huang, Chao d   Ilkayeva, Olga c   Smith, Nancy a,b   Miller, Nathanael e   Hajmrle, Catherine a,b   Spigelman, Aliya F a,b   Wright, Robert C a,b   Plummer, Gregory a,b   Suzuki, Kunimasa a   Mackay, James P b   Van De Bunt, Martijn f   Gloyn, Anna L f,g   Ryan, Terence E h   Norquay, Lisa D i,j   Brosnan, M Julia j   more..


Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; ALANINE AMINOTRANSFERASE; ASPARTATE AMINOTRANSFERASE; CRE RECOMBINASE; CYCLIC AMP; GLUCOSE; GLUTATHIONE; GLUTATHIONE DISULFIDE; GLUTATHIONE REDUCTASE; INSULIN; ISOCITRATE DEHYDROGENASE; MESSENGER RNA; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SUMO PROTEIN; SUMO SPECIFIC PROTEASE 1; UNCLASSIFIED DRUG; HYBRID PROTEIN; ISOCITRIC ACID; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; PROTEINASE; SENP1 PROTEIN, HUMAN; SENP1 PROTEIN, MOUSE;

EID: 84943311794     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI82498     Document Type: Article
Times cited : (151)

References (75)
  • 1
    • 84896495719 scopus 로고    scopus 로고
    • Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future
    • Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068-1083.
    • (2014) Lancet , vol.383 , Issue.9922 , pp. 1068-1083
    • Kahn, S.E.1    Cooper, M.E.2    Del Prato, S.3
  • 2
    • 64149126546 scopus 로고    scopus 로고
    • Regulation of insulin secretion: A matter of phase control and amplitude modulation
    • Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. 2009;52(5):739-751.
    • (2009) Diabetologia , vol.52 , Issue.5 , pp. 739-751
    • Henquin, J.C.1
  • 3
    • 0021741559 scopus 로고
    • Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells
    • Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature. 1984;312(5993):446-448.
    • (1984) Nature , vol.312 , Issue.5993 , pp. 446-448
    • Ashcroft, F.M.1    Harrison, D.E.2    Ashcroft, S.J.3
  • 4
    • 0022375444 scopus 로고
    • +-channels in pancreatic β-cells are regulated by intracellular ATP
    • Rorsman P, Trube G. Glucose dependent K+-channels in pancreatic β-cells are regulated by intracellular ATP. Pflugers Arch. 1985;405(4):305-309.
    • (1985) Pflugers Arch , vol.405 , Issue.4 , pp. 305-309
    • Rorsman, P.1    Trube, G.2
  • 5
    • 0014432182 scopus 로고
    • Electrical activity in pancreatic islet cells
    • Dean PM, Matthews EK. Electrical activity in pancreatic islet cells. Nature. 1968;219(5152):389-390.
    • (1968) Nature , vol.219 , Issue.5152 , pp. 389-390
    • Dean, P.M.1    Matthews, E.K.2
  • 6
    • 0022103995 scopus 로고
    • 2+ current in pancreatic B-cells
    • Satin LS, Cook DL. Voltage-gated Ca2+ current in pancreatic B-cells. Pflugers Arch. 1985;404(4):385-387.
    • (1985) Pflugers Arch , vol.404 , Issue.4 , pp. 385-387
    • Satin, L.S.1    Cook, D.L.2
  • 7
    • 0015914462 scopus 로고
    • Insulin release by emiocytosis: Demonstration with freeze-etching technique
    • Orci L, Amherdt M, Malaisse-Lagae F, Rouiller C, Renold AE. Insulin release by emiocytosis: demonstration with freeze-etching technique. Science. 1973;179(4068):82-84.
    • (1973) Science , vol.179 , Issue.4068 , pp. 82-84
    • Orci, L.1    Amherdt, M.2    Malaisse-Lagae, F.3    Rouiller, C.4    Renold, A.E.5
  • 8
    • 0019255843 scopus 로고
    • Use of a high voltage technique to determine the molecular requirements for exocytosis in islet cells
    • Pace CS, Tarvin JT, Neighbors AS, Pirkle JA, Greider MH. Use of a high voltage technique to determine the molecular requirements for exocytosis in islet cells. Diabetes. 1980;29(11):911-918.
    • (1980) Diabetes , vol.29 , Issue.11 , pp. 911-918
    • Pace, C.S.1    Tarvin, J.T.2    Neighbors, A.S.3    Pirkle, J.A.4    Greider, M.H.5
  • 9
    • 0026632641 scopus 로고
    • + channels in mouse B cells
    • Gembal M, Gilon P, Henquin JC. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest. 1992;89(4):1288-1295.
    • (1992) J Clin Invest , vol.89 , Issue.4 , pp. 1288-1295
    • Gembal, M.1    Gilon, P.2    Henquin, J.C.3
  • 10
    • 0026740141 scopus 로고
    • 2+ influx in rat pancreatic B-cell
    • Sato Y, Aizawa T, Komatsu M, Okada N, Yamada T. Dual functional role of membrane depolarization/Ca2+ influx in rat pancreatic B-cell. Diabetes. 1992;41(4):438-443.
    • (1992) Diabetes , vol.41 , Issue.4 , pp. 438-443
    • Sato, Y.1    Aizawa, T.2    Komatsu, M.3    Okada, N.4    Yamada, T.5
  • 11
    • 0033760442 scopus 로고    scopus 로고
    • Triggering and amplifying pathways of regulation of insulin secretion by glucose
    • Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49(11):1751-1760.
    • (2000) Diabetes , vol.49 , Issue.11 , pp. 1751-1760
    • Henquin, J.C.1
  • 12
    • 82355183988 scopus 로고    scopus 로고
    • Signal integration at the level of ion channel and exocytotic function in pancreatic β-cells
    • Macdonald PE. Signal integration at the level of ion channel and exocytotic function in pancreatic β-cells. Am J Physiol Endocrinol Metab. 2011;301(6):E1065-E1069.
    • (2011) Am J Physiol Endocrinol Metab , vol.301 , Issue.6 , pp. E1065-E1069
    • MacDonald, P.E.1
  • 13
    • 84881367782 scopus 로고    scopus 로고
    • Metabolic signaling in fuel-induced insulin secretion
    • Prentki M, Matschinsky FM, Madiraju SRM. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013;18(2):162-185.
    • (2013) Cell Metab , vol.18 , Issue.2 , pp. 162-185
    • Prentki, M.1    Matschinsky, F.M.2    Madiraju, S.R.M.3
  • 14
    • 84860400102 scopus 로고    scopus 로고
    • The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells
    • Henquin JC. The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Res Clin Pract. 2011;93(suppl 1):S27-S31.
    • (2011) Diabetes Res Clin Pract , vol.93 , pp. S27-S31
    • Henquin, J.C.1
  • 15
    • 84857788916 scopus 로고    scopus 로고
    • Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes
    • Prentki M, Madiraju SRM. Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes. Mol Cell Endocrinol. 2012;353(1-2):88-100.
    • (2012) Mol Cell Endocrinol , vol.353 , Issue.1-2 , pp. 88-100
    • Prentki, M.1    Madiraju, S.R.M.2
  • 16
    • 84902270757 scopus 로고    scopus 로고
    • α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion
    • Zhao S, et al. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab. 2014;19(6):993-1007.
    • (2014) Cell Metab , vol.19 , Issue.6 , pp. 993-1007
    • Zhao, S.1
  • 18
    • 70350374347 scopus 로고    scopus 로고
    • Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion
    • Stark R, et al. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem. 2009;284(39):26578-26590.
    • (2009) J Biol Chem , vol.284 , Issue.39 , pp. 26578-26590
    • Stark, R.1
  • 20
    • 0037022527 scopus 로고    scopus 로고
    • 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)
    • Lu D, et al. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc Natl Acad Sci U S A. 2002;99(5):2708-2713.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , Issue.5 , pp. 2708-2713
    • Lu, D.1
  • 21
    • 84885402048 scopus 로고    scopus 로고
    • A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic β-cells
    • Guay C, et al. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic β-cells. PLoS One. 2013;8(10):e77097.
    • (2013) PLoS One , vol.8 , Issue.10 , pp. e77097
    • Guay, C.1
  • 22
    • 33845971563 scopus 로고    scopus 로고
    • The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion
    • Joseph JW, et al. The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J Biol Chem. 2006;281(47):35624-35632.
    • (2006) J Biol Chem , vol.281 , Issue.47 , pp. 35624-35632
    • Joseph, J.W.1
  • 23
    • 33750053271 scopus 로고    scopus 로고
    • A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucosestimulated insulin secretion
    • Ronnebaum SM, et al. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucosestimulated insulin secretion. J Biol Chem. 2006;281(41):30593-30602.
    • (2006) J Biol Chem , vol.281 , Issue.41 , pp. 30593-30602
    • Ronnebaum, S.M.1
  • 24
    • 66449119411 scopus 로고    scopus 로고
    • Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion
    • Reinbothe TM, et al. Glutaredoxin-1 mediates NADPH-dependent stimulation of calcium-dependent insulin secretion. Mol Endocrinol. 2009;23(6):893-900.
    • (2009) Mol Endocrinol , vol.23 , Issue.6 , pp. 893-900
    • Reinbothe, T.M.1
  • 25
    • 21344456969 scopus 로고    scopus 로고
    • Redox control of exocytosis: Regulatory role of NADPH, thioredoxin, and glutaredoxin
    • Ivarsson R, et al. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes. 2005;54(7):2132-2142.
    • (2005) Diabetes , vol.54 , Issue.7 , pp. 2132-2142
    • Ivarsson, R.1
  • 26
    • 8744272467 scopus 로고    scopus 로고
    • Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin
    • Marchetti P, et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab. 2004;89(11):5535-5541.
    • (2004) J Clin Endocrinol Metab , vol.89 , Issue.11 , pp. 5535-5541
    • Marchetti, P.1
  • 27
    • 20044390365 scopus 로고    scopus 로고
    • Functional and molecular defects of pancreatic islets in human type 2 diabetes
    • Del Guerra S, et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes. 2005;54(3):727-735.
    • (2005) Diabetes , vol.54 , Issue.3 , pp. 727-735
    • Del Guerra, S.1
  • 28
    • 20244376316 scopus 로고    scopus 로고
    • Functional and morphological alterations of mitochondria in pancreatic β cells from type 2 diabetic patients
    • Anello M, et al. Functional and morphological alterations of mitochondria in pancreatic β cells from type 2 diabetic patients. Diabetologia. 2005;48(2):282-289.
    • (2005) Diabetologia , vol.48 , Issue.2 , pp. 282-289
    • Anello, M.1
  • 29
    • 63549129144 scopus 로고    scopus 로고
    • SUMOylation and De-SUMOylation: Wrestling with life's processes
    • Yeh ET. SUMOylation and De-SUMOylation: wrestling with life's processes. J Biol Chem. 2009;284(13):8223-8227.
    • (2009) J Biol Chem , vol.284 , Issue.13 , pp. 8223-8227
    • Yeh, E.T.1
  • 30
    • 79952392469 scopus 로고    scopus 로고
    • SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans
    • Dai XQ, et al. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes. 2011;60(3):838-847.
    • (2011) Diabetes , vol.60 , Issue.3 , pp. 838-847
    • Dai, X.Q.1
  • 31
    • 38049185042 scopus 로고    scopus 로고
    • Molecular basis of the redox regulation of SUMO proteases: A protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation
    • Xu Z, Lam LS, Lam LH, Chau SF, Ng TB, Au SW. Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB J. 2008;22(1):127-137.
    • (2008) FASEB J , vol.22 , Issue.1 , pp. 127-137
    • Xu, Z.1    Lam, L.S.2    Lam, L.H.3    Chau, S.F.4    Ng, T.B.5    Au, S.W.6
  • 32
    • 85016380899 scopus 로고    scopus 로고
    • DeSUMOylation controls insulin exocytosis in response to metabolic signals
    • Vergari E, Plummer G, Dai XQ, MacDonald PE. DeSUMOylation controls insulin exocytosis in response to metabolic signals. Biomolecules. 2012;2(2):269-281.
    • (2012) Biomolecules , vol.2 , Issue.2 , pp. 269-281
    • Vergari, E.1    Plummer, G.2    Dai, X.Q.3    MacDonald, P.E.4
  • 33
    • 84870664554 scopus 로고    scopus 로고
    • Novel roles of SUMO in pancreatic β-cells: Thinking outside the nucleus
    • Manning Fox JE, Hajmrle C, Macdonald PE. Novel roles of SUMO in pancreatic β-cells: thinking outside the nucleus. Can J Physiol Pharmacol. 2012;90(6):765-770.
    • (2012) Can J Physiol Pharmacol , vol.90 , Issue.6 , pp. 765-770
    • Manning Fox, J.E.1    Hajmrle, C.2    MacDonald, P.E.3
  • 34
    • 84874294413 scopus 로고    scopus 로고
    • SUMOylation of pancreatic glucokinase regulates its cellular stability and activity
    • Aukrust I, et al. SUMOylation of pancreatic glucokinase regulates its cellular stability and activity. J Biol Chem. 2013;288(8):5951-5962.
    • (2013) J Biol Chem , vol.288 , Issue.8 , pp. 5951-5962
    • Aukrust, I.1
  • 35
  • 36
    • 66949157288 scopus 로고    scopus 로고
    • SUMOylation regulates Kv2.1 and modulates pancreatic β-cell excitability
    • Dai XQ, Kolic J, Marchi P, Sipione S, Macdonald PE. SUMOylation regulates Kv2.1 and modulates pancreatic β-cell excitability. J Cell Sci. 2009;122(pt 6):775-779.
    • (2009) J Cell Sci , vol.122 , pp. 775-779
    • Dai, X.Q.1    Kolic, J.2    Marchi, P.3    Sipione, S.4    MacDonald, P.E.5
  • 37
    • 84908050954 scopus 로고    scopus 로고
    • SUMOylation protects against IL-1β-induced apoptosis in INS-1 832/13 and human islets
    • Hajmrle C, et al. SUMOylation protects against IL-1β-induced apoptosis in INS-1 832/13 and human islets. Am J Physiol Endocrinol Metab. 2014;307(8):E664-E673.
    • (2014) Am J Physiol Endocrinol Metab , vol.307 , Issue.8 , pp. E664-E673
    • Hajmrle, C.1
  • 38
    • 0030874610 scopus 로고    scopus 로고
    • Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells
    • Eliasson L, Renström E, Ding WG, Proks P, Rorsman P. Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells. J Physiol (Lond). 1997;503(pt 2):399-412.
    • (1997) J Physiol (Lond) , vol.503 , pp. 399-412
    • Eliasson, L.1    Renström, E.2    Ding, W.G.3    Proks, P.4    Rorsman, P.5
  • 39
    • 0017165455 scopus 로고
    • Glutathione reductase from human erythrocytes. Catalytic properties and aggregation
    • Worthington DJ, Rosemeyer MA. Glutathione reductase from human erythrocytes. Catalytic properties and aggregation. Eur J Biochem. 1976;67(1):231-238.
    • (1976) Eur J Biochem , vol.67 , Issue.1 , pp. 231-238
    • Worthington, D.J.1    Rosemeyer, M.A.2
  • 40
    • 0014668080 scopus 로고
    • The reaction mechanism of glutathione reductase from human erythrocytes
    • Staal GE, Veeger C. The reaction mechanism of glutathione reductase from human erythrocytes. Biochim Biophys Acta. 1969;185(1):49-62.
    • (1969) Biochim Biophys Acta , vol.185 , Issue.1 , pp. 49-62
    • Staal, G.E.1    Veeger, C.2
  • 41
    • 84901714175 scopus 로고    scopus 로고
    • Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic β-cells
    • Takahashi HK, et al. Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic β-cells. Biochem J. 2014;460(3):411-423.
    • (2014) Biochem J , vol.460 , Issue.3 , pp. 411-423
    • Takahashi, H.K.1
  • 42
    • 0033540037 scopus 로고    scopus 로고
    • Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis
    • Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999;402(6762):685-689.
    • (1999) Nature , vol.402 , Issue.6762 , pp. 685-689
    • Maechler, P.1    Wollheim, C.B.2
  • 43
    • 0346422441 scopus 로고    scopus 로고
    • Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1
    • Bailey D, O'Hare P. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem. 2004;279(1):692-703.
    • (2004) J Biol Chem , vol.279 , Issue.1 , pp. 692-703
    • Bailey, D.1    O'Hare, P.2
  • 44
    • 70349611130 scopus 로고    scopus 로고
    • Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules
    • Hoppa MB, et al. Chronic palmitate exposure inhibits insulin secretion by dissociation of Ca(2+) channels from secretory granules. Cell Metab. 2009;10(6):455-465.
    • (2009) Cell Metab , vol.10 , Issue.6 , pp. 455-465
    • Hoppa, M.B.1
  • 45
    • 77951839161 scopus 로고    scopus 로고
    • Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles
    • Collins SC, et al. Progression of diet-induced diabetes in C57BL6J mice involves functional dissociation of Ca2(+) channels from secretory vesicles. Diabetes. 2010;59(5):1192-1201.
    • (2010) Diabetes , vol.59 , Issue.5 , pp. 1192-1201
    • Collins, S.C.1
  • 46
    • 33644772589 scopus 로고    scopus 로고
    • Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients
    • Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T. Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes. 2006;55(2):435-440.
    • (2006) Diabetes , vol.55 , Issue.2 , pp. 435-440
    • Ostenson, C.G.1    Gaisano, H.2    Sheu, L.3    Tibell, A.4    Bartfai, T.5
  • 47
    • 0028057533 scopus 로고
    • Enzymatic, metabolic and secretory patterns in human islets of type 2 (non-insulin-dependent) diabetic patients
    • Fernandez-Alvarez J, Conget I, Rasschaert J, Sener A, Gomis R, Malaisse WJ. Enzymatic, metabolic and secretory patterns in human islets of type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1994;37(2):177-181.
    • (1994) Diabetologia , vol.37 , Issue.2 , pp. 177-181
    • Fernandez-Alvarez, J.1    Conget, I.2    Rasschaert, J.3    Sener, A.4    Gomis, R.5    Malaisse, W.J.6
  • 48
    • 84876262194 scopus 로고    scopus 로고
    • β-Cell metabolic alterations under chronic nutrient overload in rat and human islets
    • Vernier S, et al. β-Cell metabolic alterations under chronic nutrient overload in rat and human islets. Islets. 2012;4(6):379-392.
    • (2012) Islets , vol.4 , Issue.6 , pp. 379-392
    • Vernier, S.1
  • 49
    • 9144266295 scopus 로고    scopus 로고
    • Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
    • Hingorani SR, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437-450.
    • (2003) Cancer Cell , vol.4 , Issue.6 , pp. 437-450
    • Hingorani, S.R.1
  • 50
    • 0036340074 scopus 로고    scopus 로고
    • Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors
    • Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447-2457.
    • (2002) Development , vol.129 , Issue.10 , pp. 2447-2457
    • Gu, G.1    Dubauskaite, J.2    Melton, D.A.3
  • 51
    • 48249083049 scopus 로고    scopus 로고
    • Voltage-gated ion channels in human pancreatic β-cells: Electrophysiological characterization and role in insulin secretion
    • Braun M, et al. Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes. 2008;57(6):1618-1628.
    • (2008) Diabetes , vol.57 , Issue.6 , pp. 1618-1628
    • Braun, M.1
  • 52
    • 33845541249 scopus 로고    scopus 로고
    • Nutrient control of insulin secretion in isolated normal human islets
    • Henquin JC, Dufrane D, Nenquin M. Nutrient control of insulin secretion in isolated normal human islets. Diabetes. 2006;55(12):3470-3477.
    • (2006) Diabetes , vol.55 , Issue.12 , pp. 3470-3477
    • Henquin, J.C.1    Dufrane, D.2    Nenquin, M.3
  • 53
    • 0021952031 scopus 로고
    • Properties of isolated human islets of Langerhans: Insulin secretion, glucose oxidation and protein phosphorylation
    • Harrison DE, Christie MR, Gray DW. Properties of isolated human islets of Langerhans: insulin secretion, glucose oxidation and protein phosphorylation. Diabetologia. 1985;28(2):99-103.
    • (1985) Diabetologia , vol.28 , Issue.2 , pp. 99-103
    • Harrison, D.E.1    Christie, M.R.2    Gray, D.W.3
  • 54
    • 83455197122 scopus 로고    scopus 로고
    • Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics
    • Doliba NM, et al. Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab. 2012;302(1):E87-E102.
    • (2012) Am J Physiol Endocrinol Metab , vol.302 , Issue.1 , pp. E87-E102
    • Doliba, N.M.1
  • 55
    • 0032775102 scopus 로고    scopus 로고
    • 2+ regulation prevail over changes in insulin content
    • Anello M, Gilon P, Henquin JC. Alterations of insulin secretion from mouse islets treated with sulphonylureas: perturbations of Ca2+ regulation prevail over changes in insulin content. Br J Pharmacol. 1999;127(8):1883-1891.
    • (1999) Br J Pharmacol , vol.127 , Issue.8 , pp. 1883-1891
    • Anello, M.1    Gilon, P.2    Henquin, J.C.3
  • 56
    • 3042591440 scopus 로고    scopus 로고
    • Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue
    • Boucher A, et al. Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. J Biol Chem. 2004;279(26):27263-27271.
    • (2004) J Biol Chem , vol.279 , Issue.26 , pp. 27263-27271
    • Boucher, A.1
  • 57
    • 77955930431 scopus 로고    scopus 로고
    • SUMOylation negatively regulates transcriptional and oncogenic activities of MafA
    • Kanai K, et al. SUMOylation negatively regulates transcriptional and oncogenic activities of MafA. Genes Cells. 2010;15(9):971-982.
    • (2010) Genes Cells , vol.15 , Issue.9 , pp. 971-982
    • Kanai, K.1
  • 58
    • 0037376447 scopus 로고    scopus 로고
    • Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation
    • Kishi A, Nakamura T, Nishio Y, Maegawa H, Kashiwagi A. Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab. 2003;284(4):E830-E840.
    • (2003) Am J Physiol Endocrinol Metab , vol.284 , Issue.4 , pp. E830-E840
    • Kishi, A.1    Nakamura, T.2    Nishio, Y.3    Maegawa, H.4    Kashiwagi, A.5
  • 60
    • 84890234317 scopus 로고    scopus 로고
    • RIM1α SUMOylation is required for fast synaptic vesicle exocytosis
    • Girach F, Craig TJ, Rocca DL, Henley JM. RIM1α SUMOylation is required for fast synaptic vesicle exocytosis. Cell Rep. 2013;5(5):1294-1301.
    • (2013) Cell Rep , vol.5 , Issue.5 , pp. 1294-1301
    • Girach, F.1    Craig, T.J.2    Rocca, D.L.3    Henley, J.M.4
  • 61
    • 78149280470 scopus 로고    scopus 로고
    • SUMOylation of the GTPase Rac1 is required for optimal cell migration
    • Castillo-Lluva S, et al. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol. 2010;12(11):1078-1085.
    • (2010) Nat Cell Biol , vol.12 , Issue.11 , pp. 1078-1085
    • Castillo-Lluva, S.1
  • 62
    • 79956122661 scopus 로고    scopus 로고
    • SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons
    • Plant LD, Dowdell EJ, Dementieva IS, Marks JD, Goldstein SA. SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons. J Gen Physiol. 2011;137(5):441-454.
    • (2011) J Gen Physiol , vol.137 , Issue.5 , pp. 441-454
    • Plant, L.D.1    Dowdell, E.J.2    Dementieva, I.S.3    Marks, J.D.4    Goldstein, S.A.5
  • 63
    • 77957360796 scopus 로고    scopus 로고
    • Surgical aspects of human islet isolation
    • Kin T, Shapiro AM. Surgical aspects of human islet isolation. Islets. 2010;2(5):265-273.
    • (2010) Islets , vol.2 , Issue.5 , pp. 265-273
    • Kin, T.1    Shapiro, A.M.2
  • 64
    • 8344271936 scopus 로고    scopus 로고
    • Cell lines derived from pancreatic islets
    • Hohmeier HE, Newgard CB. Cell lines derived from pancreatic islets. Mol Cell Endocrinol. 2004;228(1-2):121-128.
    • (2004) Mol Cell Endocrinol , vol.228 , Issue.1-2 , pp. 121-128
    • Hohmeier, H.E.1    Newgard, C.B.2
  • 65
    • 57349189962 scopus 로고    scopus 로고
    • Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets
    • Ronnebaum SM, et al. Silencing of cytosolic or mitochondrial isoforms of malic enzyme has no effect on glucose-stimulated insulin secretion from rodent islets. J Biol Chem. 2008;283(43):28909-28917.
    • (2008) J Biol Chem , vol.283 , Issue.43 , pp. 28909-28917
    • Ronnebaum, S.M.1
  • 66
    • 84866129127 scopus 로고    scopus 로고
    • G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1
    • Ferdaoussi M, et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55(10):2682-2692.
    • (2012) Diabetologia , vol.55 , Issue.10 , pp. 2682-2692
    • Ferdaoussi, M.1
  • 67
    • 77955551862 scopus 로고    scopus 로고
    • Voltagedependent K(+) channels are positive regulators of alpha cell action potential generation and glucagon secretion in mice and humans
    • Spigelman AF, Dai X, Macdonald PE. Voltagedependent K(+) channels are positive regulators of alpha cell action potential generation and glucagon secretion in mice and humans. Diabetologia. 2010;53(9):1917-1926.
    • (2010) Diabetologia , vol.53 , Issue.9 , pp. 1917-1926
    • Spigelman, A.F.1    Dai, X.2    MacDonald, P.E.3
  • 68
    • 84875853629 scopus 로고    scopus 로고
    • Functional plasticity of the human infant β-cell exocytotic phenotype
    • Manning Fox JE, et al. Functional plasticity of the human infant β-cell exocytotic phenotype. Endocrinology. 2013;154(4):1392-1399.
    • (2013) Endocrinology , vol.154 , Issue.4 , pp. 1392-1399
    • Manning Fox, J.E.1
  • 69
    • 44449090114 scopus 로고    scopus 로고
    • Real-time imaging of the intracellular glutathione redox potential
    • Gutscher M, et al. Real-time imaging of the intracellular glutathione redox potential. Nat Methods. 2008;5(6):553-559.
    • (2008) Nat Methods , vol.5 , Issue.6 , pp. 553-559
    • Gutscher, M.1
  • 70
    • 33847102790 scopus 로고    scopus 로고
    • Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection
    • Kand'ár R, Záková P, Lotková H, Kucera O, Cervinková Z. Determination of reduced and oxidized glutathione in biological samples using liquid chromatography with fluorimetric detection. J Pharm Biomed Anal. 2007;43(4):1382-1387.
    • (2007) J Pharm Biomed Anal , vol.43 , Issue.4 , pp. 1382-1387
    • Kand'ár, R.1    Záková, P.2    Lotková, H.3    Kucera, O.4    Cervinková, Z.5
  • 71
    • 84883383166 scopus 로고    scopus 로고
    • Analysis of GSH and GSSG after derivatization with N-ethylmaleimide
    • Giustarini D, Dalle-Donne I, Milzani A, Fanti P, Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat Protoc. 2013;8(9):1660-1669.
    • (2013) Nat Protoc , vol.8 , Issue.9 , pp. 1660-1669
    • Giustarini, D.1    Dalle-Donne, I.2    Milzani, A.3    Fanti, P.4    Rossi, R.5
  • 72
    • 2342509057 scopus 로고    scopus 로고
    • Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance
    • An J, et al. Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med. 2004;10(3):268-274.
    • (2004) Nat Med , vol.10 , Issue.3 , pp. 268-274
    • An, J.1
  • 73
    • 85047690932 scopus 로고    scopus 로고
    • ENU mutagenesis identifies mice with mitochondrial branched-chain aminotransferase deficiency resembling human maple syrup urine disease
    • Wu JY, et al. ENU mutagenesis identifies mice with mitochondrial branched-chain aminotransferase deficiency resembling human maple syrup urine disease. J Clin Invest. 2004;113(3):434-440.
    • (2004) J Clin Invest , vol.113 , Issue.3 , pp. 434-440
    • Wu, J.Y.1
  • 74
    • 84863853969 scopus 로고    scopus 로고
    • Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2
    • Chow KH, Elgort S, Dasso M, Ullman KS. Two distinct sites in Nup153 mediate interaction with the SUMO proteases SENP1 and SENP2. Nucleus. 2012;3(4):349-358.
    • (2012) Nucleus , vol.3 , Issue.4 , pp. 349-358
    • Chow, K.H.1    Elgort, S.2    Dasso, M.3    Ullman, K.S.4
  • 75
    • 33744513096 scopus 로고    scopus 로고
    • Detecting outliers when fitting data with nonlinear regression-a new method based on robust nonlinear regression and the false discovery rate
    • Motulsky HJ, Brown RE. Detecting outliers when fitting data with nonlinear regression-a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics. 2006;7:123.
    • (2006) BMC Bioinformatics , vol.7 , pp. 123
    • Motulsky, H.J.1    Brown, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.