|
Volumn 7, Issue , 2006, Pages
|
Detecting outliers when fitting data with nonlinear regression - A new method based on robust nonlinear regression and the false discovery rate
|
Author keywords
[No Author keywords available]
|
Indexed keywords
FALSE DISCOVERY RATE;
LEAST SQUARES REGRESSION;
LORENTZIAN DISTRIBUTIONS;
MULTIPLE COMPARISON;
NON-LINEAR REGRESSION;
NONLINEAR CURVE FIT;
OUTLIER IDENTIFICATION;
ROBUST REGRESSIONS;
CURVE FITTING;
NORMAL DISTRIBUTION;
REGRESSION ANALYSIS;
STATISTICS;
NONLINEAR ANALYSIS;
ACCURACY;
ANALYTICAL ERROR;
ARTICLE;
COMPUTER SIMULATION;
DATA ANALYSIS;
FALSE POSITIVE RESULT;
LINEAR REGRESSION ANALYSIS;
MATHEMATICAL ANALYSIS;
MATHEMATICAL COMPUTING;
NONLINEAR SYSTEM;
NORMAL DISTRIBUTION;
PLOTS AND CURVES;
PROBABILITY;
BIOLOGICAL MODEL;
LABORATORY DIAGNOSIS;
REGRESSION ANALYSIS;
STATISTICAL ANALYSIS;
STATISTICAL MODEL;
LORENTZIA;
COMPUTER SIMULATION;
DATA INTERPRETATION, STATISTICAL;
FALSE POSITIVE REACTIONS;
MODELS, BIOLOGICAL;
MODELS, STATISTICAL;
NONLINEAR DYNAMICS;
NUMERICAL ANALYSIS, COMPUTER-ASSISTED;
REGRESSION ANALYSIS;
|
EID: 33744513096
PISSN: 14712105
EISSN: 14712105
Source Type: Journal
DOI: 10.1186/1471-2105-7-123 Document Type: Article |
Times cited : (1075)
|
References (16)
|