-
1
-
-
84876194792
-
Improving diabetes management with mobile health technology
-
Sieverdes JC, Treiber F, Jenkins C. Improving diabetes management with mobile health technology. Am J Med Sci 2013;345:289-295.
-
(2013)
Am J Med Sci
, vol.345
, pp. 289-295
-
-
Sieverdes, J.C.1
Treiber, F.2
Jenkins, C.3
-
3
-
-
33846899286
-
Diabetes mellitus and heart failure: Epidemiology, mechanisms, and pharmacotherapy
-
Masoudi FA, Inzucchi SE. Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol 2007;99:113B-132B.
-
(2007)
Am J Cardiol
, vol.99
, pp. 113B-132B
-
-
Masoudi, F.A.1
Inzucchi, S.E.2
-
4
-
-
33645280925
-
Diabetic cardiomyopathy: The search for a unifying hypothesis
-
Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 2006;98:596-605.
-
(2006)
Circ Res
, vol.98
, pp. 596-605
-
-
Poornima, I.G.1
Parikh, P.2
Shannon, R.P.3
-
5
-
-
84877862792
-
Management of the patient with diabetes and coronary artery disease: A contemporary review
-
Raymond T, Raymond R, Lincoff AM. Management of the patient with diabetes and coronary artery disease: a contemporary review. Future Cardiol 2013;9:387-403.
-
(2013)
Future Cardiol
, vol.9
, pp. 387-403
-
-
Raymond, T.1
Raymond, R.2
Lincoff, A.M.3
-
6
-
-
84864286004
-
Cardiovascular risk in double diabetes mellitus: When two worlds collide
-
Cleland SJ. Cardiovascular risk in double diabetes mellitus: when two worlds collide. Nat Rev Endocrinol 2012;8:476-485.
-
(2012)
Nat Rev Endocrinol
, vol.8
, pp. 476-485
-
-
Cleland, S.J.1
-
7
-
-
33748776056
-
Metabolic syndrome and risk of cardiovascular disease: A meta-analysis
-
Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med 2006;119:812-819.
-
(2006)
Am J Med
, vol.119
, pp. 812-819
-
-
Galassi, A.1
Reynolds, K.2
He, J.3
-
8
-
-
84867499597
-
Cardiovascular risk factors in a patient with diabetes mellitus and coronary artery disease: Therapeutic approaches to improve outcomes: Perspectives of a preventive cardiologist
-
Davidson MH. Cardiovascular risk factors in a patient with diabetes mellitus and coronary artery disease: therapeutic approaches to improve outcomes: perspectives of a preventive cardiologist. Am J Cardiol 2012;110:43B-49B.
-
(2012)
Am J Cardiol
, vol.110
, pp. 43B-49B
-
-
Davidson, M.H.1
-
9
-
-
84885375626
-
The increasing detection of asymptomatic left ventricular dysfunction in patients with type 2 diabetes mellitus without overt cardiac disease: Data from the SHORTWAVE study
-
Faden G, Faganello G, De Feo S, Berlinghieri N, Tarantini L, Di Lenarda, et al. The increasing detection of asymptomatic left ventricular dysfunction in patients with type 2 diabetes mellitus without overt cardiac disease: data from the SHORTWAVE study. Diabetes Res Clin Pract 2013;101:309-316.
-
(2013)
Diabetes Res Clin Pract
, vol.101
, pp. 309-316
-
-
Faden, G.1
Faganello, G.2
De Feo, S.3
Berlinghieri, N.4
Tarantini, L.5
Lenarda, D.6
-
10
-
-
84867537189
-
Acute coronary syndrome in patients with diabetes mellitus: Perspectives of an interventional cardiologist
-
Sanon S, Patel R, Eshelbrenner C, Sanon VP, Alhaddad M, Oliveros R, et al. Acute coronary syndrome in patients with diabetes mellitus: perspectives of an interventional cardiologist. Am J Cardiol 2012;110:13B-23B.
-
(2012)
Am J Cardiol
, vol.110
, pp. 13B-23B
-
-
Sanon, S.1
Patel, R.2
Eshelbrenner, C.3
Sanon, V.P.4
Alhaddad, M.5
Oliveros, R.6
-
11
-
-
84872716878
-
The multiple origins of type 1 diabetes
-
Pugliese A. The multiple origins of type 1 diabetes. Diabet Med 2013;30:135-146.
-
(2013)
Diabet Med
, vol.30
, pp. 135-146
-
-
Pugliese, A.1
-
13
-
-
84885922148
-
Adipose tissue inflammation: Feeding the development of type 2 diabetes mellitus
-
Richardson VR, Smith KA, Carter AM. Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus. Immunobiology 2013;218:1497-1504.
-
(2013)
Immunobiology
, vol.218
, pp. 1497-1504
-
-
Richardson, V.R.1
Smith, K.A.2
Carter, A.M.3
-
14
-
-
65549153242
-
Low-grade inflammation can partly explain the association between the metabolic syndrome and either coronary artery disease or severity of peripheral arterial disease: The CODAM study
-
Jacobs M, van Greevenbroek MM, van der Kallen CJ, Ferreira I, Blaak EE, Feskens EJ, et al. Low-grade inflammation can partly explain the association between the metabolic syndrome and either coronary artery disease or severity of peripheral arterial disease: the CODAM study. Eur J Clin Invest 2009;39:437-444.
-
(2009)
Eur J Clin Invest
, vol.39
, pp. 437-444
-
-
Jacobs, M.1
Van Greevenbroek, M.M.2
Van Der Kallen, C.J.3
Ferreira, I.4
Blaak, E.E.5
Feskens, E.J.6
-
15
-
-
34248143836
-
The heterogeneity of diabetes: Unraveling a dispute: Is systemic inflammation related to islet autoimmunity?
-
Pietropaolo M, Barinas-Mitchell E, Kuller LH. The heterogeneity of diabetes: unraveling a dispute: is systemic inflammation related to islet autoimmunity? Diabetes 2007;56:1189-1197.
-
(2007)
Diabetes
, vol.56
, pp. 1189-1197
-
-
Pietropaolo, M.1
Barinas-Mitchell, E.2
Kuller, L.H.3
-
16
-
-
84878469691
-
Obesityassociated low-grade inflammation in type 2 diabetes mellitus: Causes and consequences
-
van Greevenbroek MM, Schalkwijk CG, Stehouwer CD. Obesityassociated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth J Med 2013;71:174-187.
-
(2013)
Neth J Med
, vol.71
, pp. 174-187
-
-
Van Greevenbroek, M.M.1
Schalkwijk, C.G.2
Stehouwer, C.D.3
-
17
-
-
2942649189
-
Low grade inflammation in juvenile obesity and type 1 diabetes associated with early signs of atherosclerosis
-
Mangge H, Schauenstein K, Stroedter L, Griesl A, Maerz W, Borkenstein M, et al. Low grade inflammation in juvenile obesity and type 1 diabetes associated with early signs of atherosclerosis. Exp Clin Endocrinol Diabetes 2004;112:378-382.
-
(2004)
Exp Clin Endocrinol Diabetes
, vol.112
, pp. 378-382
-
-
Mangge, H.1
Schauenstein, K.2
Stroedter, L.3
Griesl, A.4
Maerz, W.5
Borkenstein, M.6
-
18
-
-
84868205307
-
Compensatory recovery of blood glucose levels in KKA (y) mice fed a high-fat diet: Insulin-sparing effects of PACAP overexpression in beta cells
-
Sakurai Y, Inoue H, Shintani N, Arimori A, Hamagami K, Hayata-Takano A, et al. Compensatory recovery of blood glucose levels in KKA (y) mice fed a high-fat diet: insulin-sparing effects of PACAP overexpression in beta cells. J Mol Neurosci 2012;48:647-653.
-
(2012)
J Mol Neurosci
, vol.48
, pp. 647-653
-
-
Sakurai, Y.1
Inoue, H.2
Shintani, N.3
Arimori, A.4
Hamagami, K.5
Hayata-Takano, A.6
-
19
-
-
84896491806
-
The many faces of diabetes: A disease with increasing heterogeneity
-
Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L, et al. The many faces of diabetes: a disease with increasing heterogeneity. Lancet 2014;383:1084-1094.
-
(2014)
Lancet
, vol.383
, pp. 1084-1094
-
-
Tuomi, T.1
Santoro, N.2
Caprio, S.3
Cai, M.4
Weng, J.5
Groop, L.6
-
20
-
-
84894109257
-
Mammalian target of rapamycin signaling in cardiac physiology and disease
-
Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 2014;114:549-564.
-
(2014)
Circ Res
, vol.114
, pp. 549-564
-
-
Sciarretta, S.1
Volpe, M.2
Sadoshima, J.3
-
21
-
-
34548418134
-
Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart
-
Sharma S, Guthrie PH, Chan SS, Haq S, Taegtmeyer H, et al. Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart. Cardiovasc Res 2007;76:71-80.
-
(2007)
Cardiovasc Res
, vol.76
, pp. 71-80
-
-
Sharma, S.1
Guthrie, P.H.2
Chan, S.S.3
Haq, S.4
Taegtmeyer, H.5
-
22
-
-
84871988002
-
The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling
-
Wang RH, He JP, Su ML, Luo J, Xu M, Du XD, et al. The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling. EMBO Mol Med 2013;5:137-148.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 137-148
-
-
Wang, R.H.1
He, J.P.2
Su, M.L.3
Luo, J.4
Xu, M.5
Du, X.D.6
-
23
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
24
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010;40:310-322.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
25
-
-
80053640248
-
Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities
-
Pulakat L, De Marco VG, Ardhanari S, Chockalingam A, Gul R, Whaley-Connell A, Sowers JR, et al. Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities. Am J Physiol Regul Integr Comp Physiol 2011;301:R885-R895.
-
(2011)
Am J Physiol Regul Integr Comp Physiol
, vol.301
, pp. R885-R895
-
-
Pulakat, L.1
De Marco, V.G.2
Ardhanari, S.3
Chockalingam, A.4
Gul, R.5
Whaley-Connell, A.6
Sowers, J.R.7
-
27
-
-
79953033875
-
Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice
-
Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F, et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 2011;123:1073-1082.
-
(2011)
Circulation
, vol.123
, pp. 1073-1082
-
-
Shende, P.1
Plaisance, I.2
Morandi, C.3
Pellieux, C.4
Berthonneche, C.5
Zorzato, F.6
-
28
-
-
77955290360
-
MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice
-
Zhang D, Contu R, Latronico MV, Zhang J, Rizzi R, Catalucci D, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 2010;120:2805-2816.
-
(2010)
J Clin Invest
, vol.120
, pp. 2805-2816
-
-
Zhang, D.1
Contu, R.2
Latronico, M.V.3
Zhang, J.4
Rizzi, R.5
Catalucci, D.6
-
29
-
-
84894027054
-
Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus
-
Ludwig B, Barthel A, Reichel A, Block NL, Ludwig S, Schally AV, Bornstein SR. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus. Vitam Horm 2014;95:195-222.
-
(2014)
Vitam Horm
, vol.95
, pp. 195-222
-
-
Ludwig, B.1
Barthel, A.2
Reichel, A.3
Block, N.L.4
Ludwig, S.5
Schally, A.V.6
Bornstein, S.R.7
-
30
-
-
84894655097
-
Regulation of overnutrition-induced cardiac inflammatory mechanisms
-
Gul R, Demarco VG, Sowers JR, Whaley-Connell A, Pulakat L, et al. Regulation of overnutrition-induced cardiac inflammatory mechanisms. Cardiorenal Med 2012;2:225-233.
-
(2012)
Cardiorenal Med
, vol.2
, pp. 225-233
-
-
Gul, R.1
Demarco, V.G.2
Sowers, J.R.3
Whaley-Connell, A.4
Pulakat, L.5
-
31
-
-
84879181979
-
Mechanism of miRNA-mediated repression of mRNA translation
-
Dalmay T. Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem 2013;54:29-38.
-
(2013)
Essays Biochem
, vol.54
, pp. 29-38
-
-
Dalmay, T.1
-
32
-
-
84882693149
-
Circulating microRNAs as novel biomarkers for diabetes mellitus
-
Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 2013;9:513-521.
-
(2013)
Nat Rev Endocrinol
, vol.9
, pp. 513-521
-
-
Guay, C.1
Regazzi, R.2
-
33
-
-
84856695673
-
Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease?
-
Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 2012;110:483-495.
-
(2012)
Circ Res
, vol.110
, pp. 483-495
-
-
Creemers, E.E.1
Tijsen, A.J.2
Pinto, Y.M.3
-
34
-
-
84905504653
-
Small molecules, big effects: The role of microRNAs in regulation of cardiomyocyte death
-
Skommer J, Rana I, Marques FZ, Zhu W, Du Z, Charchar FJ, et al. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis 2014;5:e1325.
-
(2014)
Cell Death Dis
, vol.5
, pp. e1325
-
-
Skommer, J.1
Rana, I.2
Marques, F.Z.3
Zhu, W.4
Du, Z.5
Charchar, F.J.6
-
35
-
-
84952944829
-
The microRNA-132/212 family fine-tunes multiple targets in angiotensin II signalling in cardiac fibroblasts
-
Jul. 16, Epub ahead of print
-
Eskildsen TV, Schneider M, Sandberg MB, Skov V, Brønnum H, Thomassen M, et al. The microRNA-132/212 family fine-tunes multiple targets in angiotensin II signalling in cardiac fibroblasts. J Renin Angiotensin Aldosterone Syst 2014; Jul. 16. pii: 1470320314539367. [Epub ahead of print].
-
(2014)
J Renin Angiotensin Aldosterone Syst
-
-
Eskildsen, T.V.1
Schneider, M.2
Sandberg, M.B.3
Skov, V.4
Brønnum, H.5
Thomassen, M.6
-
36
-
-
84904998181
-
Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers
-
Akat KM, Moore-McGriff D, Morozov P, Brown M, Gogakos T, Correa Da, Rosa J, et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci U S A 2014;111:11151-11156.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 11151-11156
-
-
Akat, K.M.1
Moore-McGriff, D.2
Morozov, P.3
Brown, M.4
Gogakos, T.5
Da, C.6
Rosa, J.7
-
37
-
-
84928481442
-
MiRiad roles for microRNAs in cardiac development and regeneration
-
Fuller AM, Qian L. MiRiad roles for microRNAs in cardiac development and regeneration. Cells 2014;3:724-750.
-
(2014)
Cells
, vol.3
, pp. 724-750
-
-
Fuller, A.M.1
Qian, L.2
-
38
-
-
84906976964
-
Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction
-
Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One 2014;9:e105734.
-
(2014)
PLoS One
, vol.9
, pp. e105734
-
-
Wang, F.1
Long, G.2
Zhao, C.3
Li, H.4
Chaugai, S.5
Wang, Y.6
Chen, C.7
Wang, D.W.8
-
39
-
-
84906227119
-
MicroRNAs in diabetic cardiomyopathy and clinical perspectives
-
Zhou Q, Lv D, Chen P, Xu T, Fu S, Li J, Bei Y. MicroRNAs in diabetic cardiomyopathy and clinical perspectives. Front Genet 2014;5:185.
-
(2014)
Front Genet
, vol.5
, pp. 185
-
-
Zhou, Q.1
Lv, D.2
Chen, P.3
Xu, T.4
Fu, S.5
Li, J.6
Bei, Y.7
-
40
-
-
77957259803
-
Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes
-
Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010;107:810-817.
-
(2010)
Circ Res
, vol.107
, pp. 810-817
-
-
Zampetaki, A.1
Kiechl, S.2
Drozdov, I.3
Willeit, P.4
Mayr, U.5
Prokopi, M.6
-
41
-
-
79953327099
-
Significance of serum microRNAs in prediabetes and newly diagnosed type 2 diabetes: A clinical study
-
Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in prediabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011;48:61-69.
-
(2011)
Acta Diabetol
, vol.48
, pp. 61-69
-
-
Kong, L.1
Zhu, J.2
Han, W.3
Jiang, X.4
Xu, M.5
Zhao, Y.6
-
42
-
-
84891916141
-
Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients
-
Peng H, Zhong M, Zhao W, Wang C, Zhang J, Liu X, et al. Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PLoS One 2013;8:e82607.
-
(2013)
PLoS One
, vol.8
, pp. e82607
-
-
Peng, H.1
Zhong, M.2
Zhao, W.3
Wang, C.4
Zhang, J.5
Liu, X.6
-
43
-
-
35649011441
-
Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes
-
He A, Zhu L, Gupta N, Chang Y, Fang F, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007;21:2785-2794.
-
(2007)
Mol Endocrinol
, vol.21
, pp. 2785-2794
-
-
He, A.1
Zhu, L.2
Gupta, N.3
Chang, Y.4
Fang, F.5
-
44
-
-
78650523982
-
MiR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells
-
Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK, Datta M, et al. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol 2011;332:125-133.
-
(2011)
Mol Cell Endocrinol
, vol.332
, pp. 125-133
-
-
Pandey, A.K.1
Verma, G.2
Vig, S.3
Srivastava, S.4
Srivastava, A.K.5
Datta, M.6
-
45
-
-
84879179401
-
Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction
-
Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S, et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 2013;27:1351-1364.
-
(2013)
Genes Dev
, vol.27
, pp. 1351-1364
-
-
Wang, X.1
Bathina, M.2
Lynch, J.3
Koss, B.4
Calabrese, C.5
Frase, S.6
-
46
-
-
84879138938
-
Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure
-
Thomas RL, Roberts DJ, Kubli DA, Lee Y, Quinsay MN, Owens JB, et al. Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev 2013;27:1365-1377.
-
(2013)
Genes Dev
, vol.27
, pp. 1365-1377
-
-
Thomas, R.L.1
Roberts, D.J.2
Kubli, D.A.3
Lee, Y.4
Quinsay, M.N.5
Owens, J.B.6
-
47
-
-
84905014949
-
Regulation of cardiac expression of the diabetic marker microRNA miR-29
-
Arnold N, Koppula P, Gul R, Pulakat L. Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One 2014;25:e103284.
-
(2014)
PLoS One
, vol.25
, pp. e103284
-
-
Arnold, N.1
Koppula, P.2
Gul, R.3
Pulakat, L.4
-
48
-
-
84856552278
-
Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development
-
Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest 2012;122:497-506.
-
(2012)
J Clin Invest
, vol.122
, pp. 497-506
-
-
Maegdefessel, L.1
Azuma, J.2
Toh, R.3
Merk, D.R.4
Deng, A.5
Chin, J.T.6
-
49
-
-
84890803353
-
MicroRNA-29b regulation of abdominal aortic aneurysm development
-
Maegdefessel L, Azuma J, Tsao PS. MicroRNA-29b regulation of abdominal aortic aneurysm development. Trends Cardiovasc Med 2014;24:1-6.
-
(2014)
Trends Cardiovasc Med
, vol.24
, pp. 1-6
-
-
Maegdefessel, L.1
Azuma, J.2
Tsao, P.S.3
-
50
-
-
84856029029
-
MiR-29b participates in early aneurysm development in Marfan syndrome
-
Merk DR, Chin JT, Dake BA, Maegdefessel L, Miller MO, Kimura N, et al. miR-29b participates in early aneurysm development in Marfan syndrome. Circ Res 2012;110:312-324.
-
(2012)
Circ Res
, vol.110
, pp. 312-324
-
-
Merk, D.R.1
Chin, J.T.2
Dake, B.A.3
Maegdefessel, L.4
Miller, M.O.5
Kimura, N.6
-
51
-
-
84863228519
-
Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice
-
Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, Regazzi R. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 2012;61:1742-1751.
-
(2012)
Diabetes
, vol.61
, pp. 1742-1751
-
-
Roggli, E.1
Gattesco, S.2
Caille, D.3
Briet, C.4
Boitard, C.5
Meda, P.6
Regazzi, R.7
-
52
-
-
84863230332
-
The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury
-
Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M, et al. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics 2012;44:237-244.
-
(2012)
Physiol Genomics
, vol.44
, pp. 237-244
-
-
Kriegel, A.J.1
Liu, Y.2
Fang, Y.3
Ding, X.4
Liang, M.5
-
53
-
-
37549008310
-
Widespread microRNA repression by Myc contributes to tumorigenesis
-
Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008;40:43-50.
-
(2008)
Nat Genet
, vol.40
, pp. 43-50
-
-
Chang, T.C.1
Yu, D.2
Lee, Y.S.3
Wentzel, E.A.4
Arking, D.E.5
West, K.M.6
-
54
-
-
77954647669
-
The tumoursuppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML
-
Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T, et al. The tumoursuppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer 2010;103:275-284.
-
(2010)
Br J Cancer
, vol.103
, pp. 275-284
-
-
Eyholzer, M.1
Schmid, S.2
Wilkens, L.3
Mueller, B.U.4
Pabst, T.5
-
55
-
-
77954950168
-
Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB
-
Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME, et al. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010;110:1155-1164.
-
(2010)
J Cell Biochem
, vol.110
, pp. 1155-1164
-
-
Mott, J.L.1
Kurita, S.2
Cazanave, S.C.3
Bronk, S.F.4
Werneburg, N.W.5
Fernandez-Zapico, M.E.6
-
56
-
-
84884254164
-
MiR-29 acts as a decoy in sarcomas to protect the tumor suppressor A20 mRNA from degradation by HuR
-
Balkhi MY, Iwenofu OH, Bakkar N, Ladner KJ, Chandler DS, Houghton PJ, et al. miR-29 acts as a decoy in sarcomas to protect the tumor suppressor A20 mRNA from degradation by HuR. Sci Signal 2013;6:ra63.
-
(2013)
Sci Signal
, vol.6
, pp. ra63
-
-
Balkhi, M.Y.1
Iwenofu, O.H.2
Bakkar, N.3
Ladner, K.J.4
Chandler, D.S.5
Houghton, P.J.6
-
57
-
-
84868326494
-
A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers
-
Plaisier CL, Pan M, Baliga NS. A miRNA-regulatory network explains how dysregulated miRNAs perturb oncogenic processes across diverse cancers. Genome Res 2012;22:2302-2314.
-
(2012)
Genome Res
, vol.22
, pp. 2302-2314
-
-
Plaisier, C.L.1
Pan, M.2
Baliga, N.S.3
-
58
-
-
84863012417
-
Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia
-
Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG, Keating MJ. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood 2012;119:1162-1172.
-
(2012)
Blood
, vol.119
, pp. 1162-1172
-
-
Sampath, D.1
Liu, C.2
Vasan, K.3
Sulda, M.4
Puduvalli, V.K.5
Wierda, W.G.6
Keating, M.J.7
-
59
-
-
69249143283
-
MiR-29 suppression of osteonectin in osteoblasts: Regulation during differentiation and by canonical Wnt signaling
-
Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 2009;108:216-224.
-
(2009)
J Cell Biochem
, vol.108
, pp. 216-224
-
-
Kapinas, K.1
Kessler, C.B.2
Delany, A.M.3
-
60
-
-
77955492538
-
MiR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop
-
Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM, et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 2010;285:25221-25231.
-
(2010)
J Biol Chem
, vol.285
, pp. 25221-25231
-
-
Kapinas, K.1
Kessler, C.2
Ricks, T.3
Gronowicz, G.4
Delany, A.M.5
-
62
-
-
84878858306
-
Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer
-
Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, et al. Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2013;2:e84.
-
(2013)
Mol Ther Nucleic Acids
, vol.2
, pp. e84
-
-
Wu, Y.1
Crawford, M.2
Mao, Y.3
Lee, R.J.4
Davis, I.C.5
Elton, T.S.6
-
63
-
-
84871694384
-
DNA-demethylating and antitumor activity of synthetic miR-29b mimics in multiple myeloma
-
Amodio N, Leotta M, Bellizzi D, Di Martino MT, D'Aquila P, Lionetti M, et al. DNA-demethylating and antitumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget 2012;3:1246-1258.
-
(2012)
Oncotarget
, vol.3
, pp. 1246-1258
-
-
Amodio, N.1
Leotta, M.2
Bellizzi, D.3
Di Martino, M.T.4
D'Aquila, P.5
Lionetti, M.6
-
65
-
-
84876717265
-
MiRNA-29: A microRNA family with tumor-suppressing and immune-modulating properties
-
Schmitt MJ, Margue C, Behrmann I, Kreis S. MiRNA-29: a microRNA family with tumor-suppressing and immune-modulating properties. Curr Mol Med 2013;13:572-585.
-
(2013)
Curr Mol Med
, vol.13
, pp. 572-585
-
-
Schmitt, M.J.1
Margue, C.2
Behrmann, I.3
Kreis, S.4
-
66
-
-
84938934841
-
C-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in nonsmall cell lung cancer by targeting FHIT
-
Epub ahead of print
-
Wu DW, Hsu NY, Wang YC, Lee MC, Cheng YW, Chen CY, Lee H. c-Myc suppresses microRNA-29b to promote tumor aggressiveness and poor outcomes in nonsmall cell lung cancer by targeting FHIT. Oncogene 2014. 10.1038/onc.2014.152; [Epub ahead of print].
-
(2014)
Oncogene
-
-
Wu, D.W.1
Hsu, N.Y.2
Wang, Y.C.3
Lee, M.C.4
Cheng, Y.W.5
Chen, C.Y.6
Lee, H.7
-
67
-
-
84942883028
-
-
Deshmukh M, Kole A, Swahari V, Hammond S. Use of miR-29 for cell protection. 2013. Patient No. US 8618073 B2. https://www.google.com/patents/US8618073?dq=Deshmukh+M,+Kole+A,+Swahari+V,+Hammond+S.+Use+of+miR29+for+cell+protection.+2013&hl=en&sa=X&ei=UEF-VIOyDsaMyAS1joGABw&ved=0CB8Q6AEwAA
-
(2013)
Use of MiR-29 for Cell Protection
-
-
Deshmukh, M.1
Kole, A.2
Swahari, V.3
Hammond, S.4
-
68
-
-
33846190181
-
Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181
-
Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006;66:11590-11593.
-
(2006)
Cancer Res
, vol.66
, pp. 11590-11593
-
-
Pekarsky, Y.1
Santanam, U.2
Cimmino, A.3
Palamarchuk, A.4
Efanov, A.5
Maximov, V.6
-
69
-
-
35649020283
-
MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B
-
Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S Am 2007;104:15805-15810.
-
(2007)
Proc Natl Acad Sci U S Am
, vol.104
, pp. 15805-15810
-
-
Fabbri, M.1
Garzon, R.2
Cimmino, A.3
-
70
-
-
84865515982
-
Identification of novel targets for miR-29a using miRNA proteomics
-
Bargaje R, Gupta S, Sarkeshik A, et al. Identification of novel targets for miR-29a using miRNA proteomics. PLoS One 2012;7:e43243.
-
(2012)
PLoS One
, vol.7
, pp. e43243
-
-
Bargaje, R.1
Gupta, S.2
Sarkeshik, A.3
-
71
-
-
84887207559
-
Extracellular matrix secretion by cardiac fibroblasts: Role of microRNA-29b and microRNA-30c
-
Abonnenc M, Nabeebaccus AA, Mayr U, et al. Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ Res 2013;113:1138-1147.
-
(2013)
Circ Res
, vol.113
, pp. 1138-1147
-
-
Abonnenc, M.1
Nabeebaccus, A.A.2
Mayr, U.3
-
72
-
-
51349141401
-
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
-
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008;105:13027-13032.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 13027-13032
-
-
Van Rooij, E.1
Sutherland, L.B.2
Thatcher, J.E.3
-
73
-
-
80051655553
-
MiR-29 is a major regulator of genes associated with pulmonary fibrosis
-
Cushing L, Kuang PP, Qian J, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 2011;45:287-294.
-
(2011)
Am J Respir Cell Mol Biol
, vol.45
, pp. 287-294
-
-
Cushing, L.1
Kuang, P.P.2
Qian, J.3
-
74
-
-
84899982846
-
MiR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling
-
Zhang Y, Ru Huang X, Wei LH, et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol Ther 2014;22:974-985.
-
(2014)
Mol Ther
, vol.22
, pp. 974-985
-
-
Zhang, Y.1
Ru Huang, X.2
Wei, L.H.3
-
75
-
-
84901309585
-
Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen
-
Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes 2014;63:2120-2131.
-
(2014)
Diabetes
, vol.63
, pp. 2120-2131
-
-
Kanasaki, K.1
Shi, S.2
Kanasaki, M.3
-
76
-
-
78751476297
-
Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis
-
Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011;53:209-218.
-
(2011)
Hepatology
, vol.53
, pp. 209-218
-
-
Roderburg, C.1
Urban, G.W.2
Bettermann, K.3
-
77
-
-
84874113046
-
MicroRNA-29a-c decrease fasting blood glucose levels by negatively regulating hepatic gluconeogenesis
-
Liang J, Liu C, Qiao A, et al. MicroRNA-29a-c decrease fasting blood glucose levels by negatively regulating hepatic gluconeogenesis. J Hepatol 2013;58:535-542.
-
(2013)
J Hepatol
, vol.58
, pp. 535-542
-
-
Liang, J.1
Liu, C.2
Qiao, A.3
-
78
-
-
84866373881
-
MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion
-
Bagge A, Clausen TR, Larsen S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun 2012;426:266-272.
-
(2012)
Biochem Biophys Res Commun
, vol.426
, pp. 266-272
-
-
Bagge, A.1
Clausen, T.R.2
Larsen, S.3
-
79
-
-
79953215711
-
MicroRNA-29c is a signature microRNA under high glucose conditions that targets sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy
-
Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 2011;286:11837-11848.
-
(2011)
J Biol Chem
, vol.286
, pp. 11837-11848
-
-
Long, J.1
Wang, Y.2
Wang, W.3
-
80
-
-
84864981566
-
Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: Evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression
-
Nielsen LB, Wang C, Sørensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012;2012:896362.
-
(2012)
Exp Diabetes Res
, vol.2012
, pp. 896362
-
-
Nielsen, L.B.1
Wang, C.2
Sørensen, K.3
Bang-Berthelsen, C.H.4
Hansen, L.5
Andersen, M.L.6
-
81
-
-
84880906480
-
MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease
-
Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 2013;100:7-18.
-
(2013)
Cardiovasc Res
, vol.100
, pp. 7-18
-
-
Hulsmans, M.1
Holvoet, P.2
-
82
-
-
77954766181
-
Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury
-
Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR, et al. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010;87:535-544.
-
(2010)
Cardiovasc Res
, vol.87
, pp. 535-544
-
-
Ye, Y.1
Hu, Z.2
Lin, Y.3
Zhang, C.4
Perez-Polo, J.R.5
-
83
-
-
84857558503
-
Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels: Brief report
-
Zhang P, Huang A, Ferruzzi J, Mecham RP, Starcher BC, Tellides G, et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels: brief report. Arterioscler Thromb Vasc Biol 2012;32:756-759.
-
(2012)
Arterioscler Thromb Vasc Biol
, vol.32
, pp. 756-759
-
-
Zhang, P.1
Huang, A.2
Ferruzzi, J.3
Mecham, R.P.4
Starcher, B.C.5
Tellides, G.6
-
84
-
-
79551617526
-
MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 30 UTR and coding-sequence binding sites
-
Ott CE, Grunhagen J, Jäger M, Horbelt D, Schwill S, Kallenbach K, et al. MicroRNAs differentially expressed in postnatal aortic development downregulate elastin via 30 UTR and coding-sequence binding sites. PLoS One 2011;6:e16250.
-
(2011)
PLoS One
, vol.6
, pp. e16250
-
-
Ott, C.E.1
Grunhagen, J.2
Jäger, M.3
Horbelt, D.4
Schwill, S.5
Kallenbach, K.6
-
85
-
-
84874855386
-
MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage
-
Pandi G, Nakka VP, Dharap A, Roopra A, Vemuganti R, et al. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One 2013;8:e58039.
-
(2013)
PLoS One
, vol.8
, pp. e58039
-
-
Pandi, G.1
Nakka, V.P.2
Dharap, A.3
Roopra, A.4
Vemuganti, R.5
-
86
-
-
77649270362
-
High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells
-
Du B, Ma LM, Huang MB, Zhou H, Huang HL, Shao P, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett 2010;584:811-816.
-
(2010)
FEBS Lett
, vol.584
, pp. 811-816
-
-
Du, B.1
Ma, L.M.2
Huang, M.B.3
Zhou, H.4
Huang, H.L.5
Shao, P.6
-
87
-
-
62549165393
-
Sex-different and growth hormone-regulated expression of microRNA in rat liver
-
Cheung L, Gustavsson C, Norstedt G, Tollet-Egnell P. Sex-different and growth hormone-regulated expression of microRNA in rat liver. BMC Mol Biol 2009;10:13.
-
(2009)
BMC Mol Biol
, vol.10
, pp. 13
-
-
Cheung, L.1
Gustavsson, C.2
Norstedt, G.3
Tollet-Egnell, P.4
-
88
-
-
84858776574
-
MicroRNAs in metabolism and metabolic disorders
-
Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012;13:239-250.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 239-250
-
-
Rottiers, V.1
Naar, A.M.2
-
89
-
-
84879473059
-
Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation
-
Hoeke L, Sharbati J, Pawar K, Keller A, Einspanier R, Sharbati S, et al. Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 2013;8:e67300.
-
(2013)
PLoS One
, vol.8
, pp. e67300
-
-
Hoeke, L.1
Sharbati, J.2
Pawar, K.3
Keller, A.4
Einspanier, R.5
Sharbati, S.6
-
90
-
-
79960322580
-
MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
-
Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011;31:3182-3194.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 3182-3194
-
-
Pullen, T.J.1
Da Silva Xavier, G.2
Kelsey, G.3
Rutter, G.A.4
-
91
-
-
84885803796
-
MiR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells
-
Okamoto K, Miyoshi K, Murawaki Y. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PLoS One 2013;8:e77623.
-
(2013)
PLoS One
, vol.8
, pp. e77623
-
-
Okamoto, K.1
Miyoshi, K.2
Murawaki, Y.3
-
92
-
-
34548687035
-
Mir-29 regulates Mcl-1 protein expression and apoptosis
-
Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007;26:6133-6140.
-
(2007)
Oncogene
, vol.26
, pp. 6133-6140
-
-
Mott, J.L.1
Kobayashi, S.2
Bronk, S.F.3
Gores, G.J.4
-
93
-
-
77954175674
-
Mcl-1; the molecular regulation of protein function
-
Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function. FEBS Lett 2010;584:2981-2989.
-
(2010)
FEBS Lett
, vol.584
, pp. 2981-2989
-
-
Thomas, L.W.1
Lam, C.2
Edwards, S.W.3
-
94
-
-
69249226222
-
MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and induces mitochondrial cell death
-
Kim JH, Sim SH, Ha HJ, Ko JJ, Lee K, Bae J, et al. MCL-1ES, a novel variant of MCL-1, associates with MCL-1L and induces mitochondrial cell death. FEBS Lett 2009;583:2758-2764.
-
(2009)
FEBS Lett
, vol.583
, pp. 2758-2764
-
-
Kim, J.H.1
Sim, S.H.2
Ha, H.J.3
Ko, J.J.4
Lee, K.5
Bae, J.6
-
95
-
-
0034698122
-
Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death
-
Bingle CD, Craig RW, Swales BM, Singleton V, Zhou P, Whyte MK, et al. Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J Biol Chem 2000;275:22136-22146.
-
(2000)
J Biol Chem
, vol.275
, pp. 22136-22146
-
-
Bingle, C.D.1
Craig, R.W.2
Swales, B.M.3
Singleton, V.4
Zhou, P.5
Whyte, M.K.6
-
96
-
-
0034682837
-
MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain
-
Bae J, Leo CP, Hsu SY, Hsueh AJ. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 2000;275:25255-25261.
-
(2000)
J Biol Chem
, vol.275
, pp. 25255-25261
-
-
Bae, J.1
Leo, C.P.2
Hsu, S.Y.3
Hsueh, A.J.4
-
97
-
-
67349136004
-
Mcl-1 is a potential therapeutic target in multiple types of cancer
-
Akgul C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci 2009;66:1326-1336.
-
(2009)
Cell Mol Life Sci
, vol.66
, pp. 1326-1336
-
-
Akgul, C.1
-
98
-
-
33747821745
-
RegRNA: An integrated web server for identifying regulatory RNA motifs and elements
-
Huang HY, Chien CH, Jen KH, Huang HD. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 2006;34:W429-W434.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. W429-W434
-
-
Huang, H.Y.1
Chien, C.H.2
Jen, K.H.3
Huang, H.D.4
-
99
-
-
14044251458
-
Human microRNA targets
-
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS, et al. Human microRNA targets. PLoS Biol 2004;2:e363.
-
(2004)
PLoS Biol
, vol.2
, pp. e363
-
-
John, B.1
Enright, A.J.2
Aravin, A.3
Tuschl, T.4
Sander, C.5
Marks, D.S.6
-
100
-
-
84871923117
-
Defining the role of sirolimus in the management of graft-versus-host disease: From prophylaxis to treatment
-
Abouelnasr A, Roy J, Cohen S, Kiss T, Lachance S, et al. Defining the role of sirolimus in the management of graft-versus-host disease: from prophylaxis to treatment. Biol Blood Marrow Transplant 2013;19:12-21.
-
(2013)
Biol Blood Marrow Transplant
, vol.19
, pp. 12-21
-
-
Abouelnasr, A.1
Roy, J.2
Cohen, S.3
Kiss, T.4
Lachance, S.5
-
101
-
-
34249854140
-
Sirolimus-eluting coronary stents: A review
-
Abizaid A. Sirolimus-eluting coronary stents: a review. Vasc Health Risk Manag 2007;3:191-201.
-
(2007)
Vasc Health Risk Manag
, vol.3
, pp. 191-201
-
-
Abizaid, A.1
-
102
-
-
24644445998
-
Rapamycin: An anticancer immunosuppressant?
-
Law BK. Rapamycin: an anticancer immunosuppressant? Crit Rev Oncol Hematol 2005;56:47-60.
-
(2005)
Crit Rev Oncol Hematol
, vol.56
, pp. 47-60
-
-
Law, B.K.1
-
103
-
-
57549106616
-
Conversion to sirolimus in kidney-pancreas and pancreas transplantation
-
Matias P, Araujo MR, Romaõ JE Jr, Abensur H, Noronha IL, et al. Conversion to sirolimus in kidney-pancreas and pancreas transplantation. Transplant Proc 2008;40:3601-3605.
-
(2008)
Transplant Proc
, vol.40
, pp. 3601-3605
-
-
Matias, P.1
Araujo, M.R.2
Romaõ, J.E.3
Abensur, H.4
Noronha, I.L.5
-
104
-
-
80054993002
-
Vascular inflammation and repair: Implications for re-endothelialization, restenosis, and stent thrombosis
-
Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI, et al. Vascular inflammation and repair: implications for re-endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc Interv 2011;4:1057-1066.
-
(2011)
JACC Cardiovasc Interv
, vol.4
, pp. 1057-1066
-
-
Inoue, T.1
Croce, K.2
Morooka, T.3
Sakuma, M.4
Node, K.5
Simon, D.I.6
-
105
-
-
37349074757
-
Sirolimus and cardiac transplantation: Is it the 'magic bullet'?
-
Mudge GH Jr. Sirolimus and cardiac transplantation: is it the 'magic bullet'? Circulation 2007;116:2666-2668.
-
(2007)
Circulation
, vol.116
, pp. 2666-2668
-
-
Mudge, G.H.1
-
106
-
-
0031801642
-
Antifungal activities of rapamycin and its derivatives, prolylrapamycin, 32-desmethylrapamycin, and 32-desmethoxyrapamycin
-
Wong GK, Griffith S, Kojima I, Demain AL. Antifungal activities of rapamycin and its derivatives, prolylrapamycin, 32-desmethylrapamycin, and 32-desmethoxyrapamycin. J Antibiot (Tokyo) 1998;51:487-491.
-
(1998)
J Antibiot (Tokyo)
, vol.51
, pp. 487-491
-
-
Wong, G.K.1
Griffith, S.2
Kojima, I.3
Demain, A.L.4
-
107
-
-
78149357205
-
Rapamycin inhibits cell proliferation in type I and type II endometrial carcinomas: A search for biomarkers of sensitivity to treatment
-
Bae-Jump VL, Zhou C, Boggess JF, Whang YE, Barroilhet L, Gehrig PA, et al. Rapamycin inhibits cell proliferation in type I and type II endometrial carcinomas: a search for biomarkers of sensitivity to treatment. Gynecol Oncol 2010;119:579-585.
-
(2010)
Gynecol Oncol
, vol.119
, pp. 579-585
-
-
Bae-Jump, V.L.1
Zhou, C.2
Boggess, J.F.3
Whang, Y.E.4
Barroilhet, L.5
Gehrig, P.A.6
-
108
-
-
41549098401
-
Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition
-
Zhao YM, Zhou Q, Xu Y, Lai XY, Huang H, et al. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition. Acta Pharmacol Sin 2008;29:481-488.
-
(2008)
Acta Pharmacol Sin
, vol.29
, pp. 481-488
-
-
Zhao, Y.M.1
Zhou, Q.2
Xu, Y.3
Lai, X.Y.4
Huang, H.5
-
109
-
-
0036691215
-
Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients
-
Morrisett JD, Abdel-Fattah G, Hoogeveen R, Mitchell E, Ballantyne CM, Pownall HJ, et al. Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 2002;43:1170-1180.
-
(2002)
J Lipid Res
, vol.43
, pp. 1170-1180
-
-
Morrisett, J.D.1
Abdel-Fattah, G.2
Hoogeveen, R.3
Mitchell, E.4
Ballantyne, C.M.5
Pownall, H.J.6
-
110
-
-
48149112155
-
Sirolimus is associated with new-onset diabetes in kidney transplant recipients
-
Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 2008;19:1411-1418.
-
(2008)
J Am Soc Nephrol
, vol.19
, pp. 1411-1418
-
-
Johnston, O.1
Rose, C.L.2
Webster, A.C.3
Gill, J.S.4
-
111
-
-
79959483515
-
Sirolimus therapy predisposes to newonset diabetes mellitus after renal transplantation: A long-term analysis of various treatment regimens
-
Gyurus E, Kaposztas Z, Kahan BD. Sirolimus therapy predisposes to newonset diabetes mellitus after renal transplantation: a long-term analysis of various treatment regimens. Transplant Proc 2011;43:1583-1592.
-
(2011)
Transplant Proc
, vol.43
, pp. 1583-1592
-
-
Gyurus, E.1
Kaposztas, Z.2
Kahan, B.D.3
-
112
-
-
42449104351
-
MTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes
-
Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008;57:945-957.
-
(2008)
Diabetes
, vol.57
, pp. 945-957
-
-
Fraenkel, M.1
Ketzinel-Gilad, M.2
Ariav, Y.3
Pappo, O.4
Karaca, M.5
Castel, J.6
-
113
-
-
68949215897
-
Longterm administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HIJ mice
-
Chang GR, Wu YY, Chiu YS, Chen WY, Liao JW, Hsu HM, et al. Longterm administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HIJ mice. Basic Clin Pharmacol Toxicol 2009;105:188-198.
-
(2009)
Basic Clin Pharmacol Toxicol
, vol.105
, pp. 188-198
-
-
Chang, G.R.1
Wu, Y.Y.2
Chiu, Y.S.3
Chen, W.Y.4
Liao, J.W.5
Hsu, H.M.6
-
114
-
-
77953218866
-
Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue
-
Houde VP, Brûlé S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, Marette A. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 2010;59:1338-1348.
-
(2010)
Diabetes
, vol.59
, pp. 1338-1348
-
-
Houde, V.P.1
Brûlé, S.2
Festuccia, W.T.3
Blanchard, P.G.4
Bellmann, K.5
Deshaies, Y.6
Marette, A.7
-
116
-
-
0842283309
-
Myocardial hypertrophy and enhanced left ventricular contractility in Zucker diabetic fatty rats
-
Fredersdorf S, Thumann C, Ulucan C, Griese DP, Luchner A, Riegger GA, et al. Myocardial hypertrophy and enhanced left ventricular contractility in Zucker diabetic fatty rats. Cardiovasc Pathol 2004;13:11-19.
-
(2004)
Cardiovasc Pathol
, vol.13
, pp. 11-19
-
-
Fredersdorf, S.1
Thumann, C.2
Ulucan, C.3
Griese, D.P.4
Luchner, A.5
Riegger, G.A.6
-
117
-
-
44149089532
-
FKBP12.6 disruption impairs glucose-induced insulin secretion
-
Noguchi N, Yoshikawa T, Ikeda T, Takahashi I, Shervani NJ, Uruno A, et al. FKBP12.6 disruption impairs glucose-induced insulin secretion. Biochem Biophys Res Commun 2008;371:735-744.
-
(2008)
Biochem Biophys Res Commun
, vol.371
, pp. 735-744
-
-
Noguchi, N.1
Yoshikawa, T.2
Ikeda, T.3
Takahashi, I.4
Shervani, N.J.5
Uruno, A.6
-
118
-
-
84883864620
-
Tailoring mTOR-based therapy: Molecular evidence and clinical challenges
-
Santulli G, Totary-Jain H. Tailoring mTOR-based therapy: molecular evidence and clinical challenges. Pharmacogenomics 2013;14:1517-1526.
-
(2013)
Pharmacogenomics
, vol.14
, pp. 1517-1526
-
-
Santulli, G.1
Totary-Jain, H.2
-
119
-
-
84891719799
-
Evidence for rapamycin toxicity in pancreatic beta-cells and a review of the underlying molecular mechanisms
-
Barlow AD, Nicholson ML, Herbert TP. Evidence for rapamycin toxicity in pancreatic beta-cells and a review of the underlying molecular mechanisms. Diabetes 2013;62:2674-2682.
-
(2013)
Diabetes
, vol.62
, pp. 2674-2682
-
-
Barlow, A.D.1
Nicholson, M.L.2
Herbert, T.P.3
-
120
-
-
78751616780
-
Mammalian target of rapamycin (mTOR) inhibitors: Potential uses and a review of haematological adverse effects
-
Sofroniadou S, Goldsmith D. Mammalian target of rapamycin (mTOR) inhibitors: potential uses and a review of haematological adverse effects. Drug Saf 2011;34:97-115.
-
(2011)
Drug Saf
, vol.34
, pp. 97-115
-
-
Sofroniadou, S.1
Goldsmith, D.2
-
121
-
-
84857041021
-
The effects of immunosuppressants on vascular function, systemic oxidative stress and inflammation in rats
-
Shing CM, Fassett RG, Brown L, Coombes JS. The effects of immunosuppressants on vascular function, systemic oxidative stress and inflammation in rats. Transpl Int 2012;25:337-346.
-
(2012)
Transpl Int
, vol.25
, pp. 337-346
-
-
Shing, C.M.1
Fassett, R.G.2
Brown, L.3
Coombes, J.S.4
-
122
-
-
79952107428
-
The double-faced metabolic and inflammatory effects of standard drug therapy in patients after percutaneous treatment with drug-eluting stent
-
Wu Y, Zhang W, Liu W, Zhuo X, Zhao Z, Yuan Z, et al. The double-faced metabolic and inflammatory effects of standard drug therapy in patients after percutaneous treatment with drug-eluting stent. Atherosclerosis 2011;215:170-175.
-
(2011)
Atherosclerosis
, vol.215
, pp. 170-175
-
-
Wu, Y.1
Zhang, W.2
Liu, W.3
Zhuo, X.4
Zhao, Z.5
Yuan, Z.6
-
123
-
-
84858272602
-
Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats
-
Deblon N, Bourgoin L, Veyrat-Durebex C, Peyrou M, Vinciguerra M, Caillon A, et al. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol 2012;165:2325-2340.
-
(2012)
Br J Pharmacol
, vol.165
, pp. 2325-2340
-
-
Deblon, N.1
Bourgoin, L.2
Veyrat-Durebex, C.3
Peyrou, M.4
Vinciguerra, M.5
Caillon, A.6
-
124
-
-
73949116946
-
Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism
-
Shimodahira M, Fujimoto S, Mukai E, Nakamura Y, Nishi Y, Sasaki M, et al. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism. J Endocrinol 2010;204:37-46.
-
(2010)
J Endocrinol
, vol.204
, pp. 37-46
-
-
Shimodahira, M.1
Fujimoto, S.2
Mukai, E.3
Nakamura, Y.4
Nishi, Y.5
Sasaki, M.6
-
125
-
-
58149330978
-
Rapamycin inhibits growth factor-induced cell cycle regulation in pancreatic beta cells
-
Aronovitz A, Josefson J, Fisher A, Newman M, Hughes E, Chen F, et al. Rapamycin inhibits growth factor-induced cell cycle regulation in pancreatic beta cells. J Investig Med 2008;56:985-996.
-
(2008)
J Investig Med
, vol.56
, pp. 985-996
-
-
Aronovitz, A.1
Josefson, J.2
Fisher, A.3
Newman, M.4
Hughes, E.5
Chen, F.6
-
126
-
-
79954723182
-
Rapamycin impairs proliferation of transplanted islet beta cells
-
Niclauss N, Bosco D, Morel P, Giovannoni L, Berney T, Parnaud G, et al. Rapamycin impairs proliferation of transplanted islet beta cells. Transplantation 2011;91:714-722.
-
(2011)
Transplantation
, vol.91
, pp. 714-722
-
-
Niclauss, N.1
Bosco, D.2
Morel, P.3
Giovannoni, L.4
Berney, T.5
Parnaud, G.6
-
127
-
-
40949117668
-
Rapamycin impairs beta-cell proliferation in vivo
-
Zahr E, Molano RD, Pileggi A, Ichii H, San Jose S, Bocca N, et al. Rapamycin impairs beta-cell proliferation in vivo. Transplant Proc 2008;40:436-437.
-
(2008)
Transplant Proc
, vol.40
, pp. 436-437
-
-
Zahr, E.1
Molano, R.D.2
Pileggi, A.3
Ichii, H.4
San Jose, S.5
Bocca, N.6
-
128
-
-
37549045308
-
Rapamycin impairs in vivo proliferation of islet beta-cells
-
Zahr E, Molano RD, Pileggi A, Ichii H, Jose SS, Bocca N, et al. Rapamycin impairs in vivo proliferation of islet beta-cells. Transplantation 2007;84:1576-1583.
-
(2007)
Transplantation
, vol.84
, pp. 1576-1583
-
-
Zahr, E.1
Molano, R.D.2
Pileggi, A.3
Ichii, H.4
Jose, S.S.5
Bocca, N.6
-
129
-
-
84876116399
-
MicroRNA29: A mechanistic contributor and potential biomarker in atrial fibrillation
-
Dawson K, Wakili R, Ordög B, Clauss S, Chen Y, Iwasaki Y, et al. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 2013;127:1466-1475.
-
(2013)
Circulation
, vol.127
, pp. 1466-1475
-
-
Dawson, K.1
Wakili, R.2
Ordög, B.3
Clauss, S.4
Chen, Y.5
Iwasaki, Y.6
-
130
-
-
84893489424
-
Atrial fibrillation and microRNAs
-
Santulli G, Iaccarino G, De Luca N, Trimarco B, Condorelli G, et al. Atrial fibrillation and microRNAs. Front Physiol 2014;5:15.
-
(2014)
Front Physiol
, vol.5
, pp. 15
-
-
Santulli, G.1
Iaccarino, G.2
De Luca, N.3
Trimarco, B.4
Condorelli, G.5
-
131
-
-
79151484549
-
Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: A crucial role for Krüppel-like factor 2
-
van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF, et al. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis 2011;214:345-349.
-
(2011)
Atherosclerosis
, vol.214
, pp. 345-349
-
-
Van Tits, L.J.1
Stienstra, R.2
Van Lent, P.L.3
Netea, M.G.4
Joosten, L.A.5
Stalenhoef, A.F.6
-
132
-
-
79955654219
-
OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: A novel mechanism for cardiovascular diseases
-
Chen KC, Wang YS, Hu CY, Chang WC, Liao YC, Dai CY, Juo SH. OxLDL up-regulates microRNA-29b, leading to epigenetic modifications of MMP-2/MMP-9 genes: a novel mechanism for cardiovascular diseases. FASEB J 2011;25:1718-1728.
-
(2011)
FASEB J
, vol.25
, pp. 1718-1728
-
-
Chen, K.C.1
Wang, Y.S.2
Hu, C.Y.3
Chang, W.C.4
Liao, Y.C.5
Dai, C.Y.6
Juo, S.H.7
-
133
-
-
84857639209
-
New insights into microRNA-29 regulation: A new key player in cardiovascular disease
-
Suárez Y, Fernández-Hernando C. New insights into microRNA-29 regulation: a new key player in cardiovascular disease. J Mol Cell Cardiol 2012;52:584-586.
-
(2012)
J Mol Cell Cardiol
, vol.52
, pp. 584-586
-
-
Suárez, Y.1
Fernández-Hernando, C.2
-
134
-
-
84906657316
-
MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes
-
Kurtz CL, Peck BC, Fannin EE, Beysen C, Miao J, Landstreet SR, et al. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes 2014;63:3141-3148.
-
(2014)
Diabetes
, vol.63
, pp. 3141-3148
-
-
Kurtz, C.L.1
Peck, B.C.2
Fannin, E.E.3
Beysen, C.4
Miao, J.5
Landstreet, S.R.6
|