메뉴 건너뛰기




Volumn 63, Issue 9, 2014, Pages 3141-3148

MicroRNA-29 fine-tunes the expression of key foxa2- Activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes

Author keywords

[No Author keywords available]

Indexed keywords

HEPATOCYTE NUCLEAR FACTOR 3BETA; MESSENGER RNA; MICRORNA 29; PIOGLITAZONE;

EID: 84906657316     PISSN: 00121797     EISSN: 1939327X     Source Type: Journal    
DOI: 10.2337/db13-1015     Document Type: Article
Times cited : (103)

References (53)
  • 1
    • 0033849842 scopus 로고    scopus 로고
    • Insights into insulin resistance and type 2 diabetes from knockout mouse models
    • Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000;106:459-465
    • (2000) J Clin Invest , vol.106 , pp. 459-465
    • Kadowaki, T.1
  • 2
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-233
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 3
    • 84863521940 scopus 로고    scopus 로고
    • Post-transcriptional regulation in metabolic diseases
    • Kim W, Kyung Lee E. Post-transcriptional regulation in metabolic diseases. RNA Biol 2012;9:772-780
    • (2012) RNA Biol , vol.9 , pp. 772-780
    • Kim, W.1    Kyung Lee, E.2
  • 4
    • 48749122914 scopus 로고    scopus 로고
    • Circulating microRNAs as stable blood-based markers for cancer detection
    • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105: 10513-10518
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 10513-10518
    • Mitchell, P.S.1    Parkin, R.K.2    Kroh, E.M.3
  • 6
    • 41349098339 scopus 로고    scopus 로고
    • MicroRNAs make big impression in disease after disease
    • Couzin J. MicroRNAs make big impression in disease after disease. Science 2008;319:1782-1784
    • (2008) Science , vol.319 , pp. 1782-1784
    • Couzin, J.1
  • 8
    • 84865434716 scopus 로고    scopus 로고
    • Developing microRNA therapeutics: Approaching the unique complexities
    • Jackson AL, Levin AA. Developing microRNA therapeutics: Approaching the unique complexities. Nucleic Acid Ther 2012;22:213-225
    • (2012) Nucleic Acid Ther , vol.22 , pp. 213-225
    • Jackson, A.L.1    Levin, A.A.2
  • 9
    • 80052099673 scopus 로고    scopus 로고
    • MicroRNAs in b-cell biology, insulin resistance, diabetes and its complications
    • Fernandez-Valverde SL, Taft RJ, Mattick JS. MicroRNAs in b-cell biology, insulin resistance, diabetes and its complications. Diabetes 2011;60:1825-1831
    • (2011) Diabetes , vol.60 , pp. 1825-1831
    • Fernandez-Valverde, S.L.1    Taft, R.J.2    Mattick, J.S.3
  • 10
    • 84873817376 scopus 로고    scopus 로고
    • MicroRNAs in cardiovascular disease: From pathogenesis to prevention and treatment
    • Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest 2013;123:11-18
    • (2013) J Clin Invest , vol.123 , pp. 11-18
    • Quiat, D.1    Olson, E.N.2
  • 11
    • 84864984120 scopus 로고    scopus 로고
    • MicroRNAs in insulin resistance and obesity
    • Williams MD, Mitchell GM. MicroRNAs in insulin resistance and obesity. Exp Diabetes Res 2012;2012:484696
    • (2012) Exp Diabetes Res , vol.2012 , pp. 484696
    • Williams, M.D.1    Mitchell, G.M.2
  • 12
    • 84873294316 scopus 로고    scopus 로고
    • MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia
    • Vickers KC, Shoucri BM, Levin MG, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 2013;57:533-542
    • (2013) Hepatology , vol.57 , pp. 533-542
    • Vickers, K.C.1    Shoucri, B.M.2    Levin, M.G.3
  • 13
    • 77953787211 scopus 로고    scopus 로고
    • MiR-33 contributes to the regulation of cholesterol homeostasis
    • Rayner KJ, Suárez Y, Dávalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010;328:1570-1573
    • (2010) Science , vol.328 , pp. 1570-1573
    • Rayner, K.J.1    Suárez, Y.2    Dávalos, A.3
  • 14
    • 77953780835 scopus 로고    scopus 로고
    • MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
    • Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010;328:1566-1569
    • (2010) Science , vol.328 , pp. 1566-1569
    • Najafi-Shoushtari, S.H.1    Kristo, F.2    Li, Y.3
  • 15
  • 16
    • 78049295975 scopus 로고    scopus 로고
    • MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
    • Horie T, Ono K, Horiguchi M, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 2010;107:17321-17326
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 17321-17326
    • Horie, T.1    Ono, K.2    Horiguchi, M.3
  • 17
    • 79960015327 scopus 로고    scopus 로고
    • Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
    • Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 2011;121:2921-2931
    • (2011) J Clin Invest , vol.121 , pp. 2921-2931
    • Rayner, K.J.1    Sheedy, F.J.2    Esau, C.C.3
  • 18
    • 80054971110 scopus 로고    scopus 로고
    • Inhibition of miR-33a/b in nonhuman primates raises plasma HDL and lowers VLDL triglycerides
    • Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in nonhuman primates raises plasma HDL and lowers VLDL triglycerides. Nature 2011; 478:404-407
    • (2011) Nature , vol.478 , pp. 404-407
    • Rayner, K.J.1    Esau, C.C.2    Hussain, F.N.3
  • 19
    • 79959326172 scopus 로고    scopus 로고
    • MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
    • Dávalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 2011;108:9232-9237
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 9232-9237
    • Dávalos, A.1    Goedeke, L.2    Smibert, P.3
  • 20
    • 84874715061 scopus 로고    scopus 로고
    • Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b
    • Kornfeld JW, Baitzel C, Könner AC, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013; 494:111-115
    • (2013) Nature , vol.494 , pp. 111-115
    • Kornfeld, J.W.1    Baitzel, C.2    Könner, A.C.3
  • 21
    • 79959845414 scopus 로고    scopus 로고
    • MicroRNAs 103 and 107 regulate insulin sensitivity
    • Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011;474:649-653
    • (2011) Nature , vol.474 , pp. 649-653
    • Trajkovski, M.1    Hausser, J.2    Soutschek, J.3
  • 22
    • 78651511540 scopus 로고    scopus 로고
    • MiR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis
    • Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev 2011;25:125-130
    • (2011) Genes Dev , vol.25 , pp. 125-130
    • Kole, A.J.1    Swahari, V.2    Hammond, S.M.3    Deshmukh, M.4
  • 23
    • 51349141401 scopus 로고    scopus 로고
    • Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis
    • van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A 2008;105:13027-13032
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 13027-13032
    • Van Rooij, E.1    Sutherland, L.B.2    Thatcher, J.E.3
  • 24
    • 77949518018 scopus 로고    scopus 로고
    • MicroRNA-29a induces aberrant selfrenewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia
    • Han YC, Park CY, Bhagat G, et al. microRNA-29a induces aberrant selfrenewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 2010;207:475-489
    • (2010) J Exp Med , vol.207 , pp. 475-489
    • Han, Y.C.1    Park, C.Y.2    Bhagat, G.3
  • 26
    • 80052033649 scopus 로고    scopus 로고
    • The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ
    • Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol 2011;12:861-869
    • (2011) Nat Immunol , vol.12 , pp. 861-869
    • Ma, F.1    Xu, S.2    Liu, X.3
  • 27
    • 84883651731 scopus 로고    scopus 로고
    • Beta cell 59-shifted isomiRs are candidate regulatory hubs in type 2 diabetes
    • Baran-Gale J, Fannin EE, Kurtz CL, Sethupathy P. Beta cell 59-shifted isomiRs are candidate regulatory hubs in type 2 diabetes. PLoS One 2013;8: e73240
    • (2013) PLoS One , vol.8
    • Baran-Gale, J.1    Fannin, E.E.2    Kurtz, C.L.3    Sethupathy, P.4
  • 28
    • 84866373881 scopus 로고    scopus 로고
    • MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion
    • Bagge A, Clausen TR, Larsen S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun 2012;426:266-272
    • (2012) Biochem Biophys Res Commun , vol.426 , pp. 266-272
    • Bagge, A.1    Clausen, T.R.2    Larsen, S.3
  • 29
    • 79960322580 scopus 로고    scopus 로고
    • MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
    • Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 2011;31:3182-3194
    • (2011) Mol Cell Biol , vol.31 , pp. 3182-3194
    • Pullen, T.J.1    Da Silva Xavier, G.2    Kelsey, G.3    Rutter, G.A.4
  • 30
    • 77955149398 scopus 로고    scopus 로고
    • Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver
    • Hoffman BG, Robertson G, Zavaglia B, et al. Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Res 2010;20:1037-1051
    • (2010) Genome Res , vol.20 , pp. 1037-1051
    • Hoffman, B.G.1    Robertson, G.2    Zavaglia, B.3
  • 31
    • 84888257054 scopus 로고    scopus 로고
    • Illuminating microRNA Transcription from the Epigenome
    • Sethupathy P. Illuminating microRNA Transcription from the Epigenome. Curr Genomics 2013;14:68-77
    • (2013) Curr Genomics , vol.14 , pp. 68-77
    • Sethupathy, P.1
  • 32
    • 84879324940 scopus 로고    scopus 로고
    • A novel rat model of type 2 diabetes: The Zucker fatty diabetes mellitus ZFDM rat
    • Yokoi N, Hoshino M, Hidaka S, et al. A novel rat model of type 2 diabetes: the Zucker fatty diabetes mellitus ZFDM rat. J Diabetes Res 2013;2013:103731
    • (2013) J Diabetes Res , vol.2013 , pp. 103731
    • Yokoi, N.1    Hoshino, M.2    Hidaka, S.3
  • 33
    • 0141705364 scopus 로고    scopus 로고
    • Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization
    • Wolfrum C, Besser D, Luca E, Stoffel M. Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci U S A 2003;100:11624-11629
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 11624-11629
    • Wolfrum, C.1    Besser, D.2    Luca, E.3    Stoffel, M.4
  • 34
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001;413:131-138
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1    Puigserver, P.2    Chen, G.3
  • 35
    • 30044452661 scopus 로고    scopus 로고
    • Foxa2, a novel transcriptional regulator of insulin sensitivity
    • Puigserver P, Rodgers JT. Foxa2, a novel transcriptional regulator of insulin sensitivity. Nat Med 2006;12:38-39
    • (2006) Nat Med , vol.12 , pp. 38-39
    • Puigserver, P.1    Rodgers, J.T.2
  • 36
    • 32444451567 scopus 로고    scopus 로고
    • Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion
    • Wolfrum C, Stoffel M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab 2006;3:99-110
    • (2006) Cell Metab , vol.3 , pp. 99-110
    • Wolfrum, C.1    Stoffel, M.2
  • 37
    • 79952302623 scopus 로고    scopus 로고
    • The role of incoherent microRNAmediated feedforward loops in noise buffering
    • Osella M, Bosia C, Corá D, Caselle M. The role of incoherent microRNAmediated feedforward loops in noise buffering. PLOS Comput Biol 2011;7: e1001101
    • (2011) PLOS Comput Biol , vol.7
    • Osella, M.1    Bosia, C.2    Corá, D.3    Caselle, M.4
  • 38
    • 84863011285 scopus 로고    scopus 로고
    • CGI-58/ABHD5-derived signaling lipids regulate systemic inflammation and insulin action
    • Lord CC, Betters JL, Ivanova PT, et al. CGI-58/ABHD5-derived signaling lipids regulate systemic inflammation and insulin action. Diabetes 2012;61:355-363
    • (2012) Diabetes , vol.61 , pp. 355-363
    • Lord, C.C.1    Betters, J.L.2    Ivanova, P.T.3
  • 39
    • 79957992155 scopus 로고    scopus 로고
    • Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line
    • Vilà-Brau A, De Sousa-Coelho AL, Mayordomo C, Haro D, Marrero PF. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line. J Biol Chem 2011;286:20423-20430
    • (2011) J Biol Chem , vol.286 , pp. 20423-20430
    • Vilà-Brau, A.1    De Sousa-Coelho, A.L.2    Mayordomo, C.3    Haro, D.4    Marrero, P.F.5
  • 40
    • 78650523982 scopus 로고    scopus 로고
    • MiR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells
    • Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK, Datta M. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol 2011;332:125-133
    • (2011) Mol Cell Endocrinol , vol.332 , pp. 125-133
    • Pandey, A.K.1    Verma, G.2    Vig, S.3    Srivastava, S.4    Srivastava, A.K.5    Datta, M.6
  • 41
    • 77957259803 scopus 로고    scopus 로고
    • Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes
    • Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010;107:810-817
    • (2010) Circ Res , vol.107 , pp. 810-817
    • Zampetaki, A.1    Kiechl, S.2    Drozdov, I.3
  • 42
    • 79953327099 scopus 로고    scopus 로고
    • Significance of serum microRNAs in prediabetes and newly diagnosed type 2 diabetes: A clinical study
    • Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in prediabetes and newly diagnosed type 2 diabetes: A clinical study. Acta Diabetol 2011;48:61-69
    • (2011) Acta Diabetol , vol.48 , pp. 61-69
    • Kong, L.1    Zhu, J.2    Han, W.3
  • 44
    • 84858783222 scopus 로고    scopus 로고
    • Lipid-based carriers of microRNAs and intercellular communication
    • Vickers KC, Remaley AT. Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol 2012;23:91-97
    • (2012) Curr Opin Lipidol , vol.23 , pp. 91-97
    • Vickers, K.C.1    Remaley, A.T.2
  • 46
    • 79953202200 scopus 로고    scopus 로고
    • Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
    • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 2011;108:5003-5008
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 5003-5008
    • Arroyo, J.D.1    Chevillet, J.R.2    Kroh, E.M.3
  • 47
    • 84856695673 scopus 로고    scopus 로고
    • Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease?
    • Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 2012;110: 483-495
    • (2012) Circ Res , vol.110 , pp. 483-495
    • Creemers, E.E.1    Tijsen, A.J.2    Pinto, Y.M.3
  • 48
    • 84862908547 scopus 로고    scopus 로고
    • Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes
    • Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 2012; 119:756-766
    • (2012) Blood , vol.119 , pp. 756-766
    • Montecalvo, A.1    Larregina, A.T.2    Shufesky, W.J.3
  • 49
    • 79955070767 scopus 로고    scopus 로고
    • Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells
    • Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Comm 2011;2:282
    • (2011) Nat Comm , vol.2 , pp. 282
    • Mittelbrunn, M.1    Gutierrez-Vazquez, C.2    Villarroya-Beltri, C.3
  • 50
    • 79953301730 scopus 로고    scopus 로고
    • MicroRNAs are transported in plasma and delivered to recipient cells by highdensity lipoproteins
    • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by highdensity lipoproteins. Nat Cell Biol 2011;13:423-433
    • (2011) Nat Cell Biol , vol.13 , pp. 423-433
    • Vickers, K.C.1    Palmisano, B.T.2    Shoucri, B.M.3    Shamburek, R.D.4    Remaley, A.T.5
  • 51
    • 84872833195 scopus 로고    scopus 로고
    • The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis
    • van de Bunt M, Gaulton KJ, Parts L, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 2013;8:e55272
    • (2013) PLoS One , vol.8
    • Van De Bunt, M.1    Gaulton, K.J.2    Parts, L.3
  • 52
    • 34249819336 scopus 로고    scopus 로고
    • MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals
    • Tsang J, Zhu J, van Oudenaarden A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 2007;26: 753-767
    • (2007) Mol Cell , vol.26 , pp. 753-767
    • Tsang, J.1    Zhu, J.2    Van Oudenaarden, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.