-
1
-
-
84856290771
-
The centrosome in cells and organisms
-
Bornens, M. The centrosome in cells and organisms. Science 335, 422-426 (2012
-
(2012)
Science
, vol.335
, pp. 422-426
-
-
Bornens, M.1
-
2
-
-
0028342949
-
The centrosome and cellular organization
-
Kellogg, D. R., Moritz, M., & Alberts, B. M. The centrosome and cellular organization. Annu. Rev. Biochem. 63, 639-674 (1994
-
(1994)
Annu. Rev. Biochem
, vol.63
, pp. 639-674
-
-
Kellogg, D.R.1
Moritz, M.2
Alberts, B.M.3
-
3
-
-
84904548401
-
Exploring the evolutionary history of centrosomes
-
Azimzadeh, J. Exploring the evolutionary history of centrosomes. Philos. Trans. R. Soc. Lond. B 369, 20130453 (2014
-
(2014)
Philos. Trans. R. Soc. Lond
, vol.B369
, pp. 20130453
-
-
Azimzadeh, J.1
-
4
-
-
84925883794
-
Centrosomes as signalling centres
-
Arquint, C., Gabryjonczyk, A. M., & Nigg, E. A. Centrosomes as signalling centres. Philos. Trans. R. Soc. Lond. B 369, 20130464 (2014
-
(2014)
Philos. Trans. R. Soc. Lond
, vol.B369
, pp. 20130464
-
-
Arquint, C.1
Gabryjonczyk, A.M.2
Nigg, E.A.3
-
5
-
-
74049135504
-
Concerning the origin of malignant tumours by theodor boveri translated and annotated by henry harris
-
Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121 (Suppl. 1), 1-84 (2008
-
(2008)
J. Cell Sci
, vol.121
, pp. 1-84
-
-
Boveri, T.1
-
6
-
-
84904551854
-
How do cilia organize signalling cascades
-
Nachury, M. V. How do cilia organize signalling cascades? Philos. Trans. R. Soc. Lond. B 369, 20130465 (2014
-
(2014)
Philos. Trans. R. Soc. Lond
, vol.B369
, pp. 20130465
-
-
Nachury, M.V.1
-
7
-
-
84901432213
-
The primary cilium: Guardian of organ development and homeostasis
-
Fry, A. M., Leaper, M. J., & Bayliss, R. The primary cilium: guardian of organ development and homeostasis. Organogenesis 10, 62-68 (2014
-
(2014)
Organogenesis
, vol.10
, pp. 62-68
-
-
Fry, A.M.1
Leaper, M.J.2
Bayliss, R.3
-
8
-
-
84947899465
-
Recent advances in primary ciliary dyskinesia genetics
-
Kurkowiak, M., Zietkiewicz, E., & Witt, M. Recent advances in primary ciliary dyskinesia genetics. J. Med. Genet. 52, 1-9 (2015
-
(2015)
J. Med. Genet
, vol.52
, pp. 1-9
-
-
Kurkowiak, M.1
Zietkiewicz, E.2
Witt, M.3
-
9
-
-
0346874342
-
Proteomic characterization of the human centrosome by protein correlation profiling
-
Andersen, J. S., et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570-574 (2003
-
(2003)
Nature
, vol.426
, pp. 570-574
-
-
Andersen, J.S.1
-
10
-
-
84891816918
-
Centrosomedb: A new generation of the centrosomal proteins database for human and drosophila melanogaster
-
Alves-Cruzeiro, J. M., Nogales-Cadenas, R., & Pascual-Montano, A. D. CentrosomeDB: a new generation of the centrosomal proteins database for Human and Drosophila melanogaster. Nucleic Acids Res. 42, D430-D436 (2013
-
(2013)
Nucleic Acids Res
, vol.42
, pp. D430-D436
-
-
Alves-Cruzeiro, J.M.1
Nogales-Cadenas, R.2
Pascual-Montano, A.D.3
-
11
-
-
0035478337
-
The centrosome in vertebrates: More than a microtubule-organizing center
-
Rieder, C. L., Faruki, S., & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 11, 413-419 (2001
-
(2001)
Trends Cell Biol
, vol.11
, pp. 413-419
-
-
Rieder, C.L.1
Faruki, S.2
Khodjakov, A.3
-
13
-
-
34247643941
-
Centrosome duplication: Of rules and licenses
-
Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215-221 (2007
-
(2007)
Trends Cell Biol
, vol.17
, pp. 215-221
-
-
Nigg, E.A.1
-
14
-
-
80053553994
-
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries
-
Nigg, E. A. E., & Stearns, T. T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154-1160 (2011
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 1154-1160
-
-
Nigg, E.A.E.1
Stearns, T.T.2
-
15
-
-
0002768045
-
Experiments concerning the cleavage stimulus in sand dollar eggs
-
Rappaport, R. Experiments concerning the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 148, 81-89 (1961
-
(1961)
J. Exp. Zool
, vol.148
, pp. 81-89
-
-
Rappaport, R.1
-
16
-
-
84860431066
-
Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis
-
Dumont, J., & Desai, A. Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol. 22, 241-249 (2012
-
(2012)
Trends Cell Biol
, vol.22
, pp. 241-249
-
-
Dumont, J.1
Desai, A.2
-
17
-
-
84879900092
-
Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells
-
Masoud, K., Herzog, E., Chabouté, M. E., & Schmit, A. C. Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. Plant J. 75, 245-257 (2013
-
(2013)
Plant J.
, vol.75
, pp. 245-257
-
-
Masoud, K.1
Herzog, E.2
Chabouté, M.E.3
Schmit, A.C.4
-
18
-
-
0029836330
-
Self-organization of microtubules into bipolar spindles around artificial chromosomes in xenopus egg extracts
-
Heald, R., et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420-425 (1996
-
(1996)
Nature
, vol.382
, pp. 420-425
-
-
Heald, R.1
-
19
-
-
0030059247
-
Morphogenetic properties of microtubules and mitotic spindle assembly
-
Hyman, A. A., & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401-410 (1996
-
(1996)
Cell
, vol.84
, pp. 401-410
-
-
Hyman, A.A.1
Karsenti, E.2
-
20
-
-
0035913964
-
The mitotic spindle: A self-made machine
-
Karsenti, E., & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543-547 (2001
-
(2001)
Science
, vol.294
, pp. 543-547
-
-
Karsenti, E.1
Vernos, I.2
-
21
-
-
4644233153
-
The mechanism of spindle assembly: Functions of ran and its target tpx2
-
Gruss, O. J., & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949-955 (2004
-
(2004)
J Cell Biol
, vol.166
, pp. 949-955
-
-
Gruss, O.J.1
Vernos, I.2
-
22
-
-
34250640194
-
Cooperative mechanisms of mitotic spindle formation
-
O'Connell, C. B., & Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717-1722 (2007
-
(2007)
J. Cell Sci
, vol.120
, pp. 1717-1722
-
-
O'Connell, C.B.1
Khodjakov, A.L.2
-
23
-
-
43149120217
-
Augmin: A protein complex required for centrosome-independent microtubule generation within the spindle
-
Goshima, G., Mayer, M., Zhang, N., Stuurman, N., & Vale, R. D. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181, 421-429 (2008
-
(2008)
J. Cell Biol
, vol.181
, pp. 421-429
-
-
Goshima, G.1
Mayer, M.2
Zhang, N.3
Stuurman, N.4
Vale, R.D.5
-
24
-
-
75749147658
-
New look inside the spindle: Microtubule-dependent microtubule generation within the spindle
-
Goshima, G., & Kimura, A. New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr. Opin. Cell Biol. 22, 6-6 (2010
-
(2010)
Curr. Opin. Cell Biol
, vol.22
, pp. 6-6
-
-
Goshima, G.1
Kimura, A.2
-
25
-
-
84932608701
-
The augmin connection in the geometry of microtubule networks
-
Sánchez-Huertas, C., & Lüders, J. The augmin connection in the geometry of microtubule networks. Curr. Biol. 25, R294-R299 (2015
-
(2015)
Curr. Biol
, vol.25
, pp. R294-R299
-
-
Sánchez-Huertas, C.1
Lüders, J.2
-
26
-
-
67349230854
-
Haus, the 8 subunit human augmin complex, regulates centrosome and spindle integrity
-
Lawo, S. S., et al. HAUS, the 8 subunit human augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 19, 11-11 (2009
-
(2009)
Curr. Biol
, vol.19
, pp. 11-11
-
-
Lawo, S.S.1
-
27
-
-
34547611878
-
Self-organization of mtocs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes
-
Schuh, M., & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484-498 (2007
-
(2007)
Cell
, vol.130
, pp. 484-498
-
-
Schuh, M.1
Ellenberg, J.2
-
28
-
-
84930795923
-
Dissecting the function and assembly of acentriolar microtubule organizing centers in drosophila cells in vivo
-
Baumbach, J., Novak, Z. A., Raff, J. W., & Wainman, A. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo. PLoS Genet. 11, e1005261 (2015
-
(2015)
PLoS Genet
, vol.11
, pp. e1005261
-
-
Baumbach, J.1
Novak, Z.A.2
Raff, J.W.3
Wainman, A.4
-
29
-
-
66349093062
-
Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in drosophila somatic cells
-
Moutinho-Pereira, S., Debec, A., & Maiato, H. Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in Drosophila somatic cells. Mol. Biol. Cell 20, 2796-2808 (2009
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 2796-2808
-
-
Moutinho-Pereira, S.1
Debec, A.2
Maiato, H.3
-
30
-
-
84873536985
-
Acentrosomal spindle organization renders cancer cells dependent on the kinesin hset
-
Kleylein-Sohn, J., et al. Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J. Cell Sci. 125, 5391-5402 (2012
-
(2012)
J. Cell Sci
, vol.125
, pp. 5391-5402
-
-
Kleylein-Sohn, J.1
-
31
-
-
84892443919
-
Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation
-
Hayward, D., Metz, J., Pellacani, C., & Wakefield, J. G. Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation. Dev. Cell 28, 81-93 (2014
-
(2014)
Dev. Cell
, vol.28
, pp. 81-93
-
-
Hayward, D.1
Metz, J.2
Pellacani, C.3
Wakefield, J.G.4
-
32
-
-
0022579418
-
A centriole-free drosophila cell line a high voltage em study
-
Szöllösi, A., Ris, H., Szöllösi, D., & Debec, A. A centriole-free Drosophila cell line. A high voltage EM study. Eur. J. Cell Biol. 40, 100-104 (1986
-
(1986)
Eur. J. Cell Biol
, vol.40
, pp. 100-104
-
-
Szöllösi, A.1
Ris, H.2
Szöllösi, D.3
Debec, A.4
-
33
-
-
0033971720
-
Centrosome-independent mitotic spindle formation in vertebrates
-
Khodjakov, A., Cole, R. W., Oakley, B. R., & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59-67 (2000
-
(2000)
Curr. Biol
, vol.10
, pp. 59-67
-
-
Khodjakov, A.1
Cole, R.W.2
Oakley, B.R.3
Rieder, C.L.4
-
34
-
-
0030751640
-
Spindle assembly in xenopus egg extracts: Respective roles of centrosomes and microtubule self-organization
-
Heald, R., Tournebize, R., Habermann, A., Karsenti, E., & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615-628 (1997
-
(1997)
J. Cell Biol
, vol.138
, pp. 615-628
-
-
Heald, R.1
Tournebize, R.2
Habermann, A.3
Karsenti, E.4
Hyman, A.5
-
35
-
-
84890838332
-
Loss of centrioles causes chromosomal instability in vertebrate somatic cells
-
Sir, J. H., et al. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J. Cell Biol. 203, 747-756 (2013
-
(2013)
J. Cell Biol
, vol.203
, pp. 747-756
-
-
Sir, J.H.1
-
36
-
-
33745255998
-
Flies without centrioles
-
Basto, R., et al. Flies without centrioles. Cell 125, 1375-1386 (2006
-
(2006)
Cell
, vol.125
, pp. 1375-1386
-
-
Basto, R.1
-
37
-
-
34548280759
-
From stem cell to embryo without centrioles
-
Stevens, N. R., Raposo, A. A., Basto, R., St Johnston, D., & Raff, J. W. From stem cell to embryo without centrioles. Curr. Biol. 17, 1498-1503 (2007
-
(2007)
Curr. Biol
, vol.17
, pp. 1498-1503
-
-
Stevens, N.R.1
Raposo, A.A.2
Basto, R.3
St Johnston, D.4
Raff, J.W.5
-
38
-
-
35348889541
-
Asterless is a centriolar protein required for centrosome function and embryo development in drosophila
-
Varmark, H., et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol. 17, 1735-1745 (2007
-
(2007)
Curr. Biol
, vol.17
, pp. 1735-1745
-
-
Varmark, H.1
-
39
-
-
84964912874
-
Centrosome loss or amplification does not dramatically perturb global gene expression in drosophila
-
Baumbach, J., Levesque, M. P., & Raff, J. W. Centrosome loss or amplification does not dramatically perturb global gene expression in Drosophila. Biol. Open 1, 983-993 (2012
-
(2012)
Biol. Open
, vol.1
, pp. 983-993
-
-
Baumbach, J.1
Levesque, M.P.2
Raff, J.W.3
-
40
-
-
84856259713
-
Centrosome loss in the evolution of planarians
-
Azimzadeh, J., Wong, M. L., Downhour, D. M., Alvarado, A. S., & Marshall, W. F. Centrosome loss in the evolution of planarians. Science 335, 461-463 (2012
-
(2012)
Science
, vol.335
, pp. 461-463
-
-
Azimzadeh, J.1
Wong, M.L.2
Downhour, D.M.3
Alvarado, A.S.4
Marshall, W.F.5
-
41
-
-
42449118549
-
Mechanisms of asymmetric cell division: Flies and worms pave the way
-
Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355-366 (2008
-
(2008)
Nat. Rev. Mol. Cell Biol
, vol.9
, pp. 355-366
-
-
Gönczy, P.1
-
42
-
-
78649439321
-
Asymmetric cell division: Recent developments and their implications for tumour biology
-
Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11, 849-860 (2010
-
(2010)
Nat. Rev. Mol. Cell Biol
, vol.11
, pp. 849-860
-
-
Knoblich, J.A.1
-
43
-
-
84908210152
-
Acentrosomal drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation
-
Poulton, J. S., Cuningham, J. C., & Peifer, M. Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation. Dev. Cell 30, 731-745 (2014
-
(2014)
Dev. Cell
, vol.30
, pp. 731-745
-
-
Poulton, J.S.1
Cuningham, J.C.2
Peifer, M.3
-
44
-
-
0035936898
-
Requirement of a centrosomal activity for cell cycle progression through g1 into s phase
-
Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A., & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547-1550 (2001
-
(2001)
Science
, vol.291
, pp. 1547-1550
-
-
Hinchcliffe, E.H.1
Miller, F.J.2
Cham, M.3
Khodjakov, A.4
Sluder, G.5
-
45
-
-
0035795415
-
Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression
-
Khodjakov, A., & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237-242 (2001
-
(2001)
J. Cell Biol
, vol.153
, pp. 237-242
-
-
Khodjakov, A.1
Rieder, C.L.2
-
46
-
-
31144463968
-
The polo kinase plk4 functions in centriole duplication
-
Habedanck, R., Stierhof, Y. D., Wilkinson, C. J., & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nat. Cell Biol. 7, 1140-1146 (2005
-
(2005)
Nat. Cell Biol
, vol.7
, pp. 1140-1146
-
-
Habedanck, R.1
Stierhof, Y.D.2
Wilkinson, C.J.3
Nigg, E.A.4
-
47
-
-
29044431521
-
Sak/plk4 is required for centriole duplication and flagella development
-
Bettencourt-Dias, M., et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199-2207 (2005
-
(2005)
Curr. Biol
, vol.15
, pp. 2199-2207
-
-
Bettencourt-Dias, M.1
-
48
-
-
54749133489
-
A genome-wide rnai screen to dissect centriole duplication and centrosome maturation in drosophila
-
Dobbelaere, J., et al. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol. 6, e224 (2008
-
(2008)
PLoS Biol
, vol.6
, pp. e224
-
-
Dobbelaere, J.1
-
49
-
-
84898780186
-
Acentriolar mitosis activates a p53 dependent apoptosis pathway in the mouse embryo
-
Bazzi, H., & Anderson, K. V. Acentriolar mitosis activates a p53 dependent apoptosis pathway in the mouse embryo. Proc. Natl Acad. Sci. USA 111, E1491-E1500 (2014
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E1491-E1500
-
-
Bazzi, H.1
Anderson, K.V.2
-
50
-
-
84923085802
-
Lack of centrioles and primary cilia in stil-/-mouse embryos
-
David, A., et al. Lack of centrioles and primary cilia in STIL-/-mouse embryos. Cell Cycle 13, 2859-2868 (2014
-
(2014)
Cell Cycle
, vol.13
, pp. 2859-2868
-
-
David, A.1
-
51
-
-
84908576305
-
Cortical neurogenesis in the absence of centrioles
-
Insolera, R., Bazzi, H., Shao, W., Anderson, K. V., & Shi, S. H. Cortical neurogenesis in the absence of centrioles. Nat. Neurosci. 17, 1528-1535 (2014
-
(2014)
Nat. Neurosci
, vol.17
, pp. 1528-1535
-
-
Insolera, R.1
Bazzi, H.2
Shao, W.3
Anderson, K.V.4
Shi, S.H.5
-
52
-
-
84908356949
-
Stabilization of cartwheel-less centrioles for duplication requires cep295 mediated centriole-To centrosome conversion
-
Izquierdo, D., Wang, W. J., Uryu, K., & Tsou, M. F. B. Stabilization of cartwheel-less centrioles for duplication requires CEP295 mediated centriole-To centrosome conversion. Cell Rep. 8, 957-965 (2014
-
(2014)
Cell Rep
, vol.8
, pp. 957-965
-
-
Izquierdo, D.1
Wang, W.J.2
Uryu, K.3
Tsou, M.F.B.4
-
53
-
-
84930625795
-
Reversible centriole depletion with an inhibitor of polo-like kinase 4
-
Wong, Y L., et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155-1160 (2015
-
(2015)
Science
, vol.348
, pp. 1155-1160
-
-
Wong, Y.L.1
-
54
-
-
84942293631
-
P53 protects against genome instability following centriole duplication failure
-
Lambrus, B. G., et al. p53 protects against genome instability following centriole duplication failure. J. Cell Biol. 210, 63-77 (2015
-
(2015)
J. Cell Biol
, vol.210
, pp. 63-77
-
-
Lambrus, B.G.1
-
55
-
-
67649654451
-
Centrosome function in cancer: Guilty or innocent
-
Zyss, D., & Gergely, F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol. 19, 334-346 (2009
-
(2009)
Trends Cell Biol
, vol.19
, pp. 334-346
-
-
Zyss, D.1
Gergely, F.2
-
56
-
-
80054814528
-
A clinical overview of centrosome amplification in human cancers
-
Chan, J. Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7, 1122-1144 (2011
-
(2011)
Int. J. Biol. Sci
, vol.7
, pp. 1122-1144
-
-
Chan, J.Y.1
-
57
-
-
84904548348
-
Causes and consequences of centrosome abnormalities in cancer
-
Godinho, S. A., & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. Lond. B 369, 20130467 (2014
-
(2014)
Philos. Trans. R. Soc. Lond
, vol.B369
, pp. 20130467
-
-
Godinho, S.A.1
Pellman, D.2
-
58
-
-
44649117902
-
Centrosome amplification can initiate tumorigenesis in flies
-
Basto, R., et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032-1042 (2008
-
(2008)
Cell
, vol.133
, pp. 1032-1042
-
-
Basto, R.1
-
59
-
-
49649092093
-
Centrosome dysfunction in drosophila neural stem cells causes tumors that are not due to genome instability
-
Castellanos, E. E., Dominguez, P. P., & Gonzalez, C. C. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18, 1209-1214 (2008
-
(2008)
Curr. Biol
, vol.18
, pp. 1209-1214
-
-
Castellanos, E.E.1
Dominguez, P.P.2
Gonzalez, C.C.3
-
60
-
-
0032539868
-
Centrosome hypertrophy in human breast tumors: Implications for genomic stability and cell polarity
-
Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J., & Salisbury, J. L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl Acad. Sci. USA 95, 2950-2955 (1998
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 2950-2955
-
-
Lingle, W.L.1
Lutz, W.H.2
Ingle, J.N.3
Maihle, N.J.4
Salisbury, J.L.5
-
61
-
-
0037133211
-
Centrosome amplification drives chromosomal instability in breast tumor development
-
Lingle, W. L., et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl Acad. Sci. USA 99, 1978-1983 (2002
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 1978-1983
-
-
Lingle, W.L.1
-
62
-
-
0032170033
-
Centrosome defects and genetic instability in malignant tumors
-
Pihan, G. A., et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974-3985 (1998
-
(1998)
Cancer Res
, vol.58
, pp. 3974-3985
-
-
Pihan, G.A.1
-
63
-
-
84871935248
-
Centrosomes chromosome instability (cin) and aneuploidy
-
Vitre, B. D., & Cleveland, D. W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 24, 809-815 (2012
-
(2012)
Curr. Opin. Cell Biol
, vol.24
, pp. 809-815
-
-
Vitre, B.D.1
Cleveland, D.W.2
-
64
-
-
33846065784
-
Aneuploidy acts both oncogenically and as a tumor suppressor
-
Weaver, B. A. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25-36 (2007
-
(2007)
Cancer Cell
, vol.11
, pp. 25-36
-
-
Weaver, B.A.A.1
Silk, A.D.2
Montagna, C.3
Verdier-Pinard, P.4
Cleveland, D.W.5
-
65
-
-
75149140916
-
Mitotic chromosomal instability and cancer: Mouse modelling of the human disease
-
Schvartzman, J. M., Sotillo, R., & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102-115 (2010
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 102-115
-
-
Schvartzman, J.M.1
Sotillo, R.2
Benezra, R.3
-
66
-
-
11844289563
-
Spindle multipolarity is prevented by centrosomal clustering
-
Quintyne, N. J., Reing, J. E., Hoffelder, D. R., Gollin, S. M., & Saunders, W. S. Spindle multipolarity is prevented by centrosomal clustering. Science 307, 127-129 (2005
-
(2005)
Science
, vol.307
, pp. 127-129
-
-
Quintyne, N.J.1
Reing, J.E.2
Hoffelder, D.R.3
Gollin, S.M.4
Saunders, W.S.5
-
67
-
-
50049085789
-
Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes
-
Kwon, M. M., et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189-2203 (2008
-
(2008)
Genes Dev
, vol.22
, pp. 2189-2203
-
-
Kwon, M.M.1
-
68
-
-
67649467032
-
A mechanism linking extra centrosomes to chromosomal instability
-
Ganem, N. J. N., Godinho, S. A. S., & Pellman, D. D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282 (2009
-
(2009)
Nature
, vol.460
, pp. 278-282
-
-
Ganem, N.J.N.1
Godinho, S.A.S.2
Pellman, D.D.3
-
69
-
-
68749084849
-
Multipolar spindle pole coalescence is a major source of kinetochore mis-Attachment and chromosome mis-segregation in cancer cells
-
Silkworth, W. T., Nardi, I. K., Scholl, L. M., & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-Attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009
-
(2009)
PLoS ONE
, vol.4
, pp. e6564
-
-
Silkworth, W.T.1
Nardi, I.K.2
Scholl, L.M.3
Cimini, D.4
-
70
-
-
84880332168
-
Centrosome amplification causes microcephaly
-
Marthiens, V., et al. Centrosome amplification causes microcephaly. Nat. Cell Biol. 15, 731-740 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 731-740
-
-
Marthiens, V.1
-
71
-
-
84871552330
-
The autoregulated instability of polo-like kinase 4 limits centrosome duplication to once per cell cycle
-
Holland, A. J., et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684-2689 (2012
-
(2012)
Genes Dev
, vol.26
, pp. 2684-2689
-
-
Holland, A.J.1
-
72
-
-
84907510557
-
Cytokinesis failure triggers hippo tumor suppressor pathway activation
-
Ganem, N. J., et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848 (2014
-
(2014)
Cell
, vol.158
, pp. 833-848
-
-
Ganem, N.J.1
-
73
-
-
36448987217
-
Oncogenes and tumour suppressors take on centrosomes
-
Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nat. Rev. Cancer 7, 911-924 (2007
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 911-924
-
-
Fukasawa, K.1
-
74
-
-
84901979739
-
Oncogene-like induction of cellular invasion from centrosome amplification
-
Godinho, S. A., et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167-171 (2014
-
(2014)
Nature
, vol.510
, pp. 167-171
-
-
Godinho, S.A.1
-
75
-
-
9144231853
-
Centrosome amplification and the origin of chromosomal instability in breast cancer
-
Salisbury, J. L., D'Assoro, A. B., & Lingle, W. L. Centrosome amplification and the origin of chromosomal instability in breast cancer. J. Mammary Gland Biol. Neoplasia 9, 275-283 (2004
-
(2004)
J. Mammary Gland Biol. Neoplasia
, vol.9
, pp. 275-283
-
-
Salisbury, J.L.1
D'Assoro, A.B.2
Lingle, W.L.3
-
76
-
-
70350228242
-
Primary microcephaly: Do all roads lead to Rome
-
Thornton, G. K., & Woods, C. G. Primary microcephaly: do all roads lead to Rome? Trends Genet. 25, 501-510 (2009
-
(2009)
Trends Genet
, vol.25
, pp. 501-510
-
-
Thornton, G.K.1
Woods, C.G.2
-
77
-
-
79960921403
-
Cdk5rap2 exposes the centrosomal root of microcephaly syndromes
-
Megraw, T. L., Sharkey, J. T., & Nowakowski, R. S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 21, 470-480 (2011
-
(2011)
Trends Cell Biol
, vol.21
, pp. 470-480
-
-
Megraw, T.L.1
Sharkey, J.T.2
Nowakowski, R.S.3
-
78
-
-
84919775810
-
Molecular and cellular basis of autosomal recessive primary microcephaly
-
Barbelanne, M., & Tsang, W. Y. Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed. Res. Int. 2014, 547986 (2014
-
(2014)
Biomed. Res. Int
, vol.2014
, pp. 547986
-
-
Barbelanne, M.1
Tsang, W.Y.2
-
79
-
-
84925883400
-
Small organelle, big responsibility: The role of centrosomes in development and disease
-
Chavali, P. L., Pütz, M., & Gergely, F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos. Trans. R. Soc. Lond. B 369, 20130468 (2014
-
(2014)
Philos. Trans. R. Soc. Lond
, vol.B369
, pp. 20130468
-
-
Chavali, P.L.1
Pütz, M.2
Gergely, F.3
-
80
-
-
84884414984
-
Cerebral organoids model human brain development and microcephaly
-
Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379 (2013
-
(2013)
Nature
, vol.501
, pp. 373-379
-
-
Lancaster, M.A.1
-
81
-
-
77952681049
-
Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex
-
Buchman, J. J., et al. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66, 386-402 (2010
-
(2010)
Neuron
, vol.66
, pp. 386-402
-
-
Buchman, J.J.1
-
82
-
-
77954952965
-
Neural stem cells: The need for a proper orientation
-
Lesage, B., Gutierrez, I., Martí, E., & González, C. Neural stem cells: the need for a proper orientation. Curr. Opin. Genet. Dev. 20, 5-5 (2010
-
(2010)
Curr. Opin. Genet. Dev
, vol.20
, pp. 5-5
-
-
Lesage, B.1
Gutierrez, I.2
Martí, E.3
González, C.4
-
83
-
-
84910062118
-
The cell biology of neurogenesis: Toward an understanding of the development and evolution of the neocortex
-
Taverna, E., Götz, M., & Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465-502 (2014
-
(2014)
Annu. Rev. Cell Dev. Biol
, vol.30
, pp. 465-502
-
-
Taverna, E.1
Götz, M.2
Huttner, W.B.3
-
84
-
-
78650828071
-
Male gametogenesis without centrioles
-
Riparbelli, M. G., & Callaini, G. Male gametogenesis without centrioles. Dev. Biol. 349, 427-439 (2011
-
(2011)
Dev. Biol
, vol.349
, pp. 427-439
-
-
Riparbelli, M.G.1
Callaini, G.2
-
85
-
-
80053642194
-
Mechanisms and pathways of growth failure in primordial dwarfism
-
Klingseisen, A., & Jackson, A. P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011-2024 (2011
-
(2011)
Genes Dev
, vol.25
, pp. 2011-2024
-
-
Klingseisen, A.1
Jackson, A.P.2
-
86
-
-
0032517865
-
Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells
-
Bobinnec, Y., et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575-1589 (1998
-
(1998)
J. Cell Biol
, vol.143
, pp. 1575-1589
-
-
Bobinnec, Y.1
-
87
-
-
33845250249
-
Centriole assembly in caenorhabditis elegans
-
Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A., & Müller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 444, 619-623 (2006
-
(2006)
Nature
, vol.444
, pp. 619-623
-
-
Pelletier, L.1
O'Toole, E.2
Schwager, A.3
Hyman, A.A.4
Müller-Reichert, T.5
-
88
-
-
33748440647
-
Sequential protein recruitment in c elegans centriole formation
-
Delattre, M., Canard, C., & Gönczy, P. Sequential protein recruitment in C elegans centriole formation. Curr. Biol. 16, 1844-1849 (2006
-
(2006)
Curr. Biol
, vol.16
, pp. 1844-1849
-
-
Delattre, M.1
Canard, C.2
Gönczy, P.3
-
89
-
-
84862765284
-
Towards a molecular architecture of centriole assembly
-
Gönczy, P. P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13, 425-435 (2012
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 425-435
-
-
Gönczy, P.P.1
-
90
-
-
84891056698
-
Mapping molecules to structure: Unveiling secrets of centriole and cilia assembly with near-Atomic resolution
-
Jana, S. C., Marteil, G., & Bettencourt-Dias, M. Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-Atomic resolution. Curr. Opin. Cell Biol. 26, 96-106 (2014
-
(2014)
Curr. Opin. Cell Biol
, vol.26
, pp. 96-106
-
-
Jana, S.C.1
Marteil, G.2
Bettencourt-Dias, M.3
-
93
-
-
0035907012
-
The c elegans zyg 1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo
-
O'Connell, K. F., et al. The C elegans zyg 1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547-558 (2001
-
(2001)
Cell
, vol.105
, pp. 547-558
-
-
O'Connell, K.F.1
-
94
-
-
84964866213
-
3d structured illumination microscopy provides novel insight into architecture of human centrosomes
-
Sonnen, K. F., Schermelleh, L., Leonhardt, H., & Nigg, E. A. 3D structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1, 965-976 (2012
-
(2012)
Biol. Open
, vol.1
, pp. 965-976
-
-
Sonnen, K.F.1
Schermelleh, L.2
Leonhardt, H.3
Nigg, E.A.4
-
95
-
-
1842583754
-
Centrosome maturation and duplication in c elegans require the coiled-coil protein spd 2
-
Kemp, C. A., Kopish, K. R., Zipperlen, P., Ahringer, J., & O'Connell, K. F. Centrosome maturation and duplication in C elegans require the coiled-coil protein SPD 2. Dev. Cell 6, 511-523 (2004
-
(2004)
Dev Cell
, vol.6
, pp. 511-523
-
-
Kemp, C.A.1
Kopish, K.R.2
Zipperlen, P.3
Ahringer, J.4
O'Connell, K.F.5
-
96
-
-
3042688773
-
The caenorhabditis elegans centrosomal protein spd 2 is required for both pericentriolar material recruitment and centriole duplication
-
Pelletier, L., et al. The Caenorhabditis elegans centrosomal protein SPD 2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863-873 (2004
-
(2004)
Curr. Biol
, vol.14
, pp. 863-873
-
-
Pelletier, L.1
-
97
-
-
61849092578
-
Drosophila asterless and vertebrate cep152 are orthologs essential for centriole duplication
-
Blachon, S., et al. Drosophila asterless and vertebrate Cep152 are orthologs essential for centriole duplication. Genetics 180, 2081-2094 (2008
-
(2008)
Genetics
, vol.180
, pp. 2081-2094
-
-
Blachon, S.1
-
98
-
-
77957982182
-
Asterless is a scaffold for the onset of centriole assembly
-
Dzhindzhev, N. S., et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714-718 (2010
-
(2010)
Nature
, vol.467
, pp. 714-718
-
-
Dzhindzhev, N.S.1
-
99
-
-
78349243322
-
Cep152 interacts with plk4 and is required for centriole duplication
-
Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W., & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721-729 (2010
-
(2010)
J. Cell Biol
, vol.191
, pp. 721-729
-
-
Hatch, E.M.1
Kulukian, A.2
Holland, A.J.3
Cleveland, D.W.4
Stearns, T.5
-
100
-
-
78349263512
-
Cep152 acts as a scaffold for recruitment of plk4 and cpap to the centrosome
-
Cizmecioglu, O., et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731-739 (2010
-
(2010)
J. Cell Biol
, vol.191
, pp. 731-739
-
-
Cizmecioglu, O.1
-
101
-
-
84880720569
-
Human cep192 and cep152 cooperate in plk4 recruitment and centriole duplication
-
Sonnen, K. F., Gabryjonczyk, A. M., Anselm, E., Stierhof, Y. D., & Nigg, E. A. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126, 3223-3233 (2013
-
(2013)
J. Cell Sci
, vol.126
, pp. 3223-3233
-
-
Sonnen, K.F.1
Gabryjonczyk, A.M.2
Anselm, E.3
Stierhof, Y.D.4
Nigg, E.A.5
-
102
-
-
84890282862
-
Hierarchical recruitment of plk4 and regulation of centriole biogenesis by two centrosomal scaffolds cep192 and cep152
-
Kim, T. S., et al. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl Acad. Sci. USA 110, E4849-E4857 (2013
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. E4849-E4857
-
-
Kim, T.S.1
-
103
-
-
84877804830
-
Direct binding of sas 6 to zyg 1 recruits sas 6 to the mother centriole for cartwheel assembly
-
Lettman, M. M., et al. Direct binding of SAS 6 to ZYG 1 recruits SAS 6 to the mother centriole for cartwheel assembly. Dev. Cell 25, 284-298 (2013
-
(2013)
Dev. Cell
, vol.25
, pp. 284-298
-
-
Lettman, M.M.1
-
104
-
-
84913582254
-
Plk4 phosphorylates ana2 to trigger sas6 recruitment and procentriole formation
-
Dzhindzhev, N. S., et al. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24, 2526-2532 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 2526-2532
-
-
Dzhindzhev, N.S.1
-
105
-
-
84929463214
-
Direct interaction of plk4 with stil ensures formation of a single procentriole per parental centriole
-
Ohta, M., et al. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5, 5267 (2014
-
(2014)
Nat. Commun
, vol.5
, pp. 5267
-
-
Ohta, M.1
-
106
-
-
84979691996
-
Plk4 dependent phosphorylation of stil is required for centriole duplication
-
Kratz, A. S., Bärenz, F., Richter, K. T., & Hoffmann, I. Plk4 dependent phosphorylation of STIL is required for centriole duplication. Biol. Open 4, 370-377 (2015
-
(2015)
Biol. Open
, vol.4
, pp. 370-377
-
-
Kratz, A.S.1
Bärenz, F.2
Richter, K.T.3
Hoffmann, I.4
-
107
-
-
79952280152
-
Structures of sas 6 suggest its organization in centrioles
-
van Breugel, M., et al. Structures of SAS 6 suggest its organization in centrioles. Science 331, 1196-1199 (2011
-
(2011)
Science
, vol.331
, pp. 1196-1199
-
-
Van Breugel, M.1
-
108
-
-
79651473154
-
Structural basis of the 9 fold symmetry of centrioles
-
Kitagawa, D., et al. Structural basis of the 9 fold symmetry of centrioles. Cell 144, 364-375 (2011
-
(2011)
Cell
, vol.144
, pp. 364-375
-
-
Kitagawa, D.1
-
109
-
-
67349279485
-
Cpap is a cell-cycle regulated protein that controls centriole length
-
Tang, C. J. C., Fu, R. H., Wu, K. S., Hsu, W. B., & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825-831 (2009
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 825-831
-
-
Tang, C.J.C.1
Fu, R.H.2
Wu, K.S.3
Hsu, W.B.4
Tang, T.K.5
-
110
-
-
82455187961
-
The human microcephaly protein stil interacts with cpap and is required for procentriole formation
-
Tang, C. J. C., et al. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J. 30, 4790-4804 (2011
-
(2011)
EMBO J.
, vol.30
, pp. 4790-4804
-
-
Tang, C.J.C.1
-
111
-
-
2942633899
-
Bld10p, a novel protein essential for basal body assembly in chlamydomonas: Localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly
-
Matsuura, K., Lefebvre, P. A., Kamiya, R., & Hirono, M. Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165, 663-671 (2004
-
(2004)
J. Cell Biol
, vol.165
, pp. 663-671
-
-
Matsuura, K.1
Lefebvre, P.A.2
Kamiya, R.3
Hirono, M.4
-
112
-
-
35348893241
-
Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9 fold symmetry of the centriole
-
Hiraki, M., Nakazawa, Y., Kamiya, R., & Hirono, M. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9 fold symmetry of the centriole. Curr. Biol. 17, 1778-1783 (2007
-
(2007)
Curr. Biol
, vol.17
, pp. 1778-1783
-
-
Hiraki, M.1
Nakazawa, Y.2
Kamiya, R.3
Hirono, M.4
-
113
-
-
84876416327
-
Human microcephaly protein cep135 binds to hsas 6 and cpap, and is required for centriole assembly
-
Lin, Y. C., et al. Human microcephaly protein CEP135 binds to hSAS 6 and CPAP, and is required for centriole assembly. EMBO J. 32, 1141-1154 (2013
-
(2013)
EMBO J.
, vol.32
, pp. 1141-1154
-
-
Lin, Y.C.1
-
114
-
-
66249106747
-
Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly
-
Mottier-Pavie, V., & Megraw, T. L. Drosophila Bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. Mol. Biol. Cell 20, 2605-2614 (2009
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 2605-2614
-
-
Mottier-Pavie, V.1
Megraw, T.L.2
-
115
-
-
84865103367
-
Bld10/cep135 is a microtubule-Associated protein that controls the formation of the flagellum central microtubule pair
-
Carvalho-Santos, Z. Z., et al. BLD10/CEP135 is a microtubule-Associated protein that controls the formation of the flagellum central microtubule pair. Dev. Cell 23, 412-424 (2012
-
(2012)
Dev. Cell
, vol.23
, pp. 412-424
-
-
Carvalho-Santos, Z.Z.1
-
116
-
-
84871251253
-
Drosophila cep135/bld10 maintains proper centriole structure but is dispensable for cartwheel formation
-
Roque, H., et al. Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation. J. Cell Sci. 125, 5881-5886 (2012
-
(2012)
J. Cell Sci
, vol.125
, pp. 5881-5886
-
-
Roque, H.1
-
117
-
-
84883311901
-
Abnormal centrosomal structure and duplication in cep135 deficient vertebrate cells
-
Inanç, B., et al. Abnormal centrosomal structure and duplication in Cep135 deficient vertebrate cells. Mol. Biol. Cell 24, 2645-2654 (2013
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 2645-2654
-
-
Inanç, B.1
-
118
-
-
84902169026
-
Asterless licenses daughter centrioles to duplicate for the first time in drosophila embryos
-
Novak, Z. A., Conduit, P. T., Wainman, A., & Raff, J. W. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. Curr. Biol. 24, 1276-1282 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 1276-1282
-
-
Novak, Z.A.1
Conduit, P.T.2
Wainman, A.3
Raff, J.W.4
-
119
-
-
84879964275
-
Caenorhabditis elegans centriolar protein sas 6 forms a spiral that is consistent with imparting a ninefold symmetry
-
Hilbert, M., et al. Caenorhabditis elegans centriolar protein SAS 6 forms a spiral that is consistent with imparting a ninefold symmetry. Proc. Natl Acad. Sci. USA 110, 11373-11378 (2013
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 11373-11378
-
-
Hilbert, M.1
-
120
-
-
84898737594
-
Structure of the sas 6 cartwheel hub from leishmania major
-
van Breugel, M., Wilcken, R., McLaughlin, S. H., Rutherford, T. J., & Johnson, C. M. Structure of the SAS 6 cartwheel hub from Leishmania major. eLife 3, e01812 (2014
-
(2014)
ELife
, vol.3
, pp. e01812
-
-
Van Breugel, M.1
Wilcken, R.2
McLaughlin, S.H.3
Rutherford, T.J.4
Johnson, C.M.5
-
121
-
-
84930666695
-
The homo-oligomerisation of both sas 6 and ana2 is required for efficient centriole assembly in flies
-
Cottee, M. A., et al. The homo-oligomerisation of both Sas 6 and Ana2 is required for efficient centriole assembly in flies. eLife 4, e07236 (2015
-
(2015)
ELife
, vol.4
, pp. e07236
-
-
Cottee, M.A.1
-
122
-
-
84930618615
-
The caenorhabditis elegans protein sas 5 forms large oligomeric assemblies critical for centriole formation
-
Rogala, K. B., et al. The Caenorhabditis elegans protein SAS 5 forms large oligomeric assemblies critical for centriole formation. eLife 4, e07410 (2015
-
(2015)
ELife
, vol.4
, pp. e07410
-
-
Rogala, K.B.1
-
123
-
-
84905638127
-
Molecular basis for unidirectional scaffold switching of human plk4 in centriole biogenesis
-
Park, S. Y., et al. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat. Struct. Mol. Biol. 21, 696-703 (2014
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 696-703
-
-
Park, S.Y.1
-
124
-
-
84905683320
-
Structure of the c elegans zyg 1 cryptic polo box suggests a conserved mechanism for centriolar docking of plk4 kinases
-
Shimanovskaya, E., et al. Structure of the C elegans ZYG 1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases. Structure 22, 1090-1104 (2014
-
(2014)
Structure
, vol.22
, pp. 1090-1104
-
-
Shimanovskaya, E.1
-
125
-
-
84884683290
-
Crystal structures of the cpap/stil complex reveal its role in centriole assembly and human microcephaly
-
Cottee, M. A., et al. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. eLife 2, e01071 (2013
-
(2013)
ELife
, vol.2
, pp. e01071
-
-
Cottee, M.A.1
-
126
-
-
84887405871
-
Structural analysis of the g box domain of the microcephaly protein cpap suggests a role in centriole architecture
-
Hatzopoulos, G. N., et al. Structural analysis of the G box domain of the microcephaly protein CPAP suggests a role in centriole architecture. Structure 21, 2069-2077 (2013
-
(2013)
Structure
, vol.21
, pp. 2069-2077
-
-
Hatzopoulos, G.N.1
-
127
-
-
84938916626
-
Stil binding to polo-box 3 of plk4 regulates centriole duplication
-
Arquint, C., et al. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 4, e07888 (2015
-
(2015)
ELife
, vol.4
, pp. e07888
-
-
Arquint, C.1
-
128
-
-
84938946263
-
Binding of stil to plk4 activates kinase activity to promote centriole assembly
-
Moyer, T. C., Clutario, K. M., Lambrus, B. G., Daggubati, V., & Holland, A. J. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol. 209, 863-878 (2015
-
(2015)
J. Cell Biol
, vol.209
, pp. 863-878
-
-
Moyer, T.C.1
Clutario, K.M.2
Lambrus, B.G.3
Daggubati, V.4
Holland, A.J.5
-
129
-
-
77954887874
-
Plk2 phosphorylation is critical for cpap function in procentriole formation during the centrosome cycle
-
Chang, J., Cizmecioglu, O., Hoffmann, I., & Rhee, K. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 29, 2395-2406 (2010
-
(2010)
EMBO J.
, vol.29
, pp. 2395-2406
-
-
Chang, J.1
Cizmecioglu, O.2
Hoffmann, I.3
Rhee, K.4
-
130
-
-
84858116946
-
Gcp6 is a substrate of plk4 and required for centriole duplication
-
Bahtz, R., et al. GCP6 is a substrate of Plk4 and required for centriole duplication. J. Cell Sci. 125, 486-496 (2012
-
(2012)
J. Cell Sci
, vol.125
, pp. 486-496
-
-
Bahtz, R.1
-
131
-
-
51349104215
-
A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase drosophila cells
-
Rogers, G. C., Rusan, N. M., Peifer, M., & Rogers, S. L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163-3178 (2008
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3163-3178
-
-
Rogers, G.C.1
Rusan, N.M.2
Peifer, M.3
Rogers, S.L.4
-
132
-
-
0024811663
-
The subcellular organization of madin-darby canine kidney cells during the formation of a polarized epithelium
-
Bacallao, R., et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109, 2817-2832 (1989
-
(1989)
J. Cell Biol
, vol.109
, pp. 2817-2832
-
-
Bacallao, R.1
-
133
-
-
0031924052
-
Nucleation and capture of large cell surface-Associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells
-
Tucker, J. B., et al. Nucleation and capture of large cell surface-Associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. J. Anat. 192, 119-130 (1998
-
(1998)
J. Anat
, vol.192
, pp. 119-130
-
-
Tucker, J.B.1
-
134
-
-
77952916818
-
A developmentally regulated two-step process generates a noncentrosomal microtubule network in drosophila tracheal cells
-
Brodu, V., Baffet, A. D., Le Droguen, P. M., Casanova, J., & Guichet, A. A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells. Dev. Cell 18, 790-801 (2010
-
(2010)
Dev. Cell
, vol.18
, pp. 790-801
-
-
Brodu, V.1
Baffet, A.D.2
Le Droguen, P.M.3
Casanova, J.4
Guichet, A.5
-
135
-
-
84859612495
-
A role for the centrosome and par 3 in the hand-off of mtoc function during epithelial polarization
-
Feldman, J. L., & Priess, J. R. A role for the centrosome and PAR 3 in the hand-off of MTOC function during epithelial polarization. Curr. Biol. 22, 575-582 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. 575-582
-
-
Feldman, J.L.1
Priess, J.R.2
-
136
-
-
0021991238
-
Fate of microtubule-organizing centers during myogenesis in vitro
-
Tassin, A. M., Maro, B., & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35-46 (1985
-
(1985)
J. Cell Biol
, vol.100
, pp. 35-46
-
-
Tassin, A.M.1
Maro, B.2
Bornens, M.3
-
137
-
-
65749098780
-
Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation
-
Srsen, V., Fant, X., Heald, R., Rabouille, C., & Merdes, A. Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. BMC Cell Biol. 10, 28 (2009
-
(2009)
BMC Cell Biol
, vol.10
, pp. 28
-
-
Srsen, V.1
Fant, X.2
Heald, R.3
Rabouille, C.4
Merdes, A.5
-
138
-
-
76249129860
-
Axon extension occurs independently of centrosomal microtubule nucleation
-
Stiess, M., et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704-707 (2010
-
(2010)
Science
, vol.327
, pp. 704-707
-
-
Stiess, M.1
-
139
-
-
38349050936
-
The mammalian spd 2 ortholog cep192 regulates centrosome biogenesis
-
Zhu, F., et al. The mammalian SPD 2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136-141 (2008
-
(2008)
Curr. Biol
, vol.18
, pp. 136-141
-
-
Zhu, F.1
-
140
-
-
67650128400
-
Plk1 dependent recruitment of γ-Tubulin complexes to mitotic centrosomes involves multiple pcm components
-
Haren, L., Stearns, T., & L?ders, J. Plk1 dependent recruitment of γ-Tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 4, e5976 (2009
-
(2009)
PLoS ONE
, vol.4
, pp. e5976
-
-
Haren, L.1
Stearns, T.2
Lüders, J.3
-
141
-
-
0037672151
-
Polo-like kinase 1 regulates nlp, a centrosome protein involved in microtubule nucleation
-
Casenghi, M., et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113-125 (2003
-
(2003)
Dev. Cell
, vol.5
, pp. 113-125
-
-
Casenghi, M.1
-
142
-
-
84874630046
-
Centrobin controls mother-daughter centriole asymmetry in drosophila neuroblasts
-
Januschke, J., et al. Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nat. Cell Biol. 15, 241-248 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 241-248
-
-
Januschke, J.1
-
143
-
-
84869001801
-
Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization
-
Mennella, V., et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159-1168 (2012
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 1159-1168
-
-
Mennella, V.1
-
144
-
-
84869050846
-
Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material
-
Lawo, S., Hasegan, M., Gupta, G. D., & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148-1158 (2012
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 1148-1158
-
-
Lawo, S.1
Hasegan, M.2
Gupta, G.D.3
Pelletier, L.4
-
145
-
-
84869051288
-
Structured illumination of the interface between centriole and peri-centriolar material
-
Fu, J., & Glover, D. M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2, 120104 (2012
-
(2012)
Open Biol
, vol.2
, pp. 120104
-
-
Fu, J.1
Glover, D.M.2
-
146
-
-
80054849116
-
Centriolar satellites: Busy orbits around the centrosome
-
Bdrenz, F., Mayilo, D., & Gruss, O. J. Centriolar satellites: busy orbits around the centrosome. Eur. J. Cell Biol. 90, 983-989 (2011
-
(2011)
Eur. J. Cell Biol
, vol.90
, pp. 983-989
-
-
Bdrenz, F.1
Mayilo, D.2
Gruss, O.J.3
-
147
-
-
79951829447
-
Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1
-
Lopes, C. A. M., et al. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J. Cell Sci. 124, 600-612 (2011
-
(2011)
J Cell Sci
, vol.124
, pp. 600-612
-
-
Lopes, C.A.M.1
-
148
-
-
0034565442
-
Centrosome maturation
-
Palazzo, R. E., Vogel, J. M., Schnackenberg, B. J., Hull, D. R., & Wu, X. Centrosome maturation. Curr. Top. Dev. Biol. 49, 449-470 (2000
-
(2000)
Curr. Top. Dev. Biol
, vol.49
, pp. 449-470
-
-
Palazzo, R.E.1
Vogel, J.M.2
Schnackenberg, B.J.3
Hull, D.R.4
Wu, X.5
-
150
-
-
84894335584
-
Amorphous no more: Subdiffraction view of the pericentriolar material architecture
-
Mennella, V., Agard, D. A., Huang, B., & Pelletier, L. Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol. 24, 188-197 (2013
-
(2013)
Trends Cell Biol
, vol.24
, pp. 188-197
-
-
Mennella, V.1
Agard, D.A.2
Huang, B.3
Pelletier, L.4
-
151
-
-
84904563499
-
Pericentriolar material structure and dynamics
-
Woodruff, J. B., Wueseke, O., & Hyman, A. A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond. B 369, 20130459 (2014
-
(2014)
Philos. Trans. R. Soc. Lond
, vol.B369
, pp. 20130459
-
-
Woodruff, J.B.1
Wueseke, O.2
Hyman, A.A.3
-
152
-
-
84863037821
-
Plk1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis
-
Lee, K., & Rhee, K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093-1101 (2011
-
(2011)
J. Cell Biol
, vol.195
, pp. 1093-1101
-
-
Lee, K.1
Rhee, K.2
-
153
-
-
84897030805
-
The centrosome-specific phosphorylation of cnn by polo/plk1 drives cnn scaffold assembly and centrosome maturation
-
Conduit, P. T., et al. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28, 659-669 (2014
-
(2014)
Dev. Cell
, vol.28
, pp. 659-669
-
-
Conduit, P.T.1
-
154
-
-
33749165420
-
The plk1 target kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity
-
Oshimori, N., Ohsugi, M., & Yamamoto, T. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat. Cell Biol. 8, 1095-1101 (2006
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 1095-1101
-
-
Oshimori, N.1
Ohsugi, M.2
Yamamoto, T.3
-
155
-
-
25444493845
-
Aurora a phosphorylation of tacc3/maskin is required for centrosome-dependent microtubule assembly in mitosis
-
Kinoshita, K., et al. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J. Cell Biol. 170, 1047-1055 (2005
-
(2005)
J. Cell Biol
, vol.170
, pp. 1047-1055
-
-
Kinoshita, K.1
-
156
-
-
25444485717
-
Aurora a activates d tacc-msps complexes exclusively at centrosomes to stabilize centrosomal microtubules
-
Barros, T. P., Kinoshita, K., Hyman, A. A., & Raff, J. W. Aurora A activates D TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. J. Cell Biol. 170, 1039-1046 (2005
-
(2005)
J. Cell Biol
, vol.170
, pp. 1039-1046
-
-
Barros, T.P.1
Kinoshita, K.2
Hyman, A.A.3
Raff, J.W.4
-
157
-
-
84865207918
-
Nek9 phosphorylation of nedd1/gcp wd contributes to plk1 control of γ tubulin recruitment to the mitotic centrosome
-
Sdelci, S., et al. Nek9 phosphorylation of NEDD1/GCP WD contributes to Plk1 control of γ tubulin recruitment to the mitotic centrosome. Curr. Biol. 22, 1516-1523 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. 1516-1523
-
-
Sdelci, S.1
-
158
-
-
84867238166
-
Novel nedd1 phosphorylation sites regulate γ-Tubulin binding and mitotic spindle assembly
-
Gomez-Ferreria, M. A., et al. Novel NEDD1 phosphorylation sites regulate γ-Tubulin binding and mitotic spindle assembly. J. Cell Sci. 125, 3745-3751 (2012
-
(2012)
J. Cell Sci
, vol.125
, pp. 3745-3751
-
-
Gomez-Ferreria, M.A.1
-
159
-
-
77955657138
-
Microtubule nucleating γ-Tusc assembles structures with 13 fold microtubule-like symmetry
-
Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N., & Agard, D. A. Microtubule nucleating γ-TuSC assembles structures with 13 fold microtubule-like symmetry. Nature 466, 879-882 (2010
-
(2010)
Nature
, vol.466
, pp. 879-882
-
-
Kollman, J.M.1
Polka, J.K.2
Zelter, A.3
Davis, T.N.4
Agard, D.A.5
-
160
-
-
84926417647
-
Ring closure activates yeast γturc for species-specific microtubule nucleation
-
Kollman, J. M., et al. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22, 132-137 (2015
-
(2015)
Nat. Struct. Mol. Biol
, vol.22
, pp. 132-137
-
-
Kollman, J.M.1
-
161
-
-
84899828543
-
Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ tusc-mediated microtubule nucleation
-
Lin, T. C., et al. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ TuSC-mediated microtubule nucleation. eLife 3, e02208 (2014
-
(2014)
ELife
, vol.3
, pp. e02208
-
-
Lin, T.C.1
-
162
-
-
84928066350
-
Targeting of γ tubulin complexes to microtubule organizing centers: Conservation and divergence
-
Lin, T. C., Neuner, A., & Schiebel, E. Targeting of γ tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25, 296-307 (2015
-
(2015)
Trends Cell Biol
, vol.25
, pp. 296-307
-
-
Lin, T.C.1
Neuner, A.2
Schiebel, E.3
-
163
-
-
0032482982
-
The disassembly and reassembly of functional centrosomes in vitro
-
Schnackenberg, B. J., Khodjakov, A., Rieder, C. L., & Palazzo, R. E. The disassembly and reassembly of functional centrosomes in vitro. Proc. Natl Acad. Sci. USA 95, 9295-9300 (1998
-
(1998)
Proc. Natl Acad. Sci. USA
, vol.95
, pp. 9295-9300
-
-
Schnackenberg, B.J.1
Khodjakov, A.2
Rieder, C.L.3
Palazzo, R.E.4
-
164
-
-
0028973450
-
Microtubule nucleation by γ-Tubulin-containing rings in the centrosome
-
Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B., & Agard, D. A. Microtubule nucleation by γ-Tubulin-containing rings in the centrosome. Nature 378, 638-640 (1995
-
(1995)
Nature
, vol.378
, pp. 638-640
-
-
Moritz, M.1
Braunfeld, M.B.2
Sedat, J.W.3
Alberts, B.4
Agard, D.A.5
-
165
-
-
0031854868
-
Recruitment of the γ-Tubulin ring complex to drosophila salt-stripped centrosome scaffolds
-
Moritz, M., Zheng, Y., Alberts, B. M., & Oegema, K. Recruitment of the γ-Tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775-786 (1998
-
(1998)
J. Cell Biol
, vol.142
, pp. 775-786
-
-
Moritz, M.1
Zheng, Y.2
Alberts, B.M.3
Oegema, K.4
-
166
-
-
84922508583
-
A molecular mechanism of mitotic centrosome assembly in drosophila
-
Conduit, P. T., et al. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 3, e03399 (2014
-
(2014)
ELife
, vol.3
, pp. e03399
-
-
Conduit, P.T.1
-
167
-
-
84929347451
-
Regulated assembly of a supramolecular centrosome scaffold in vitro
-
Woodruff, J. B., et al. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348, 808-812 (2015
-
(2015)
Science
, vol.348
, pp. 808-812
-
-
Woodruff, J.B.1
-
168
-
-
0032765262
-
The centrosomin protein is required for centrosome assembly and function during cleavage in drosophila
-
Megraw, T. L., Li, K., Kao, L. R., & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829-2839 (1999
-
(1999)
Development
, vol.126
, pp. 2829-2839
-
-
Megraw, T.L.1
Li, K.2
Kao, L.R.3
Kaufman, T.C.4
-
169
-
-
34548331136
-
Maintaining the proper connection between the centrioles and the pericentriolar matrix requires drosophila centrosomin
-
Lucas, E. P., & Raff, J. W. Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila centrosomin. J. Cell Biol. 178, 725-732 (2007
-
(2007)
J. Cell Biol
, vol.178
, pp. 725-732
-
-
Lucas, E.P.1
Raff, J.W.2
-
170
-
-
0036849151
-
Centrosome maturation and mitotic spindle assembly in c elegans require spd 5, a protein with multiple coiled-coil domains
-
Hamill, D. R., Severson, A. F., Carter, J. C., & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C elegans require SPD 5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673-684 (2002
-
(2002)
Dev. Cell
, vol.3
, pp. 673-684
-
-
Hamill, D.R.1
Severson, A.F.2
Carter, J.C.3
Bowerman, B.4
-
171
-
-
2942692444
-
The drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis
-
Martinez-Campos, M., Basto, R., Baker, J., Kernan, M., & Raff, J. W. The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell Biol. 165, 673-683 (2004
-
(2004)
J. Cell Biol
, vol.165
, pp. 673-683
-
-
Martinez-Campos, M.1
Basto, R.2
Baker, J.3
Kernan, M.4
Raff, J.W.5
-
172
-
-
84982825236
-
The drosophila pericentrin-like-protein (plp) cooperates with cnn to maintain the integrity of the outer pcm
-
Richens, J. H., et al. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM. Biol. Open 4, 1052-1056 (2015
-
(2015)
Biol. Open
, vol.4
, pp. 1052-1056
-
-
Richens, J.H.1
-
173
-
-
84942301855
-
Interphase centrosome organization by the plp-cnn scaffold is required for centrosome function
-
Lerit, D. A., et al. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function. J. Cell Biol. 210, 79-97 (2015
-
(2015)
J. Cell Biol
, vol.210
, pp. 79-97
-
-
Lerit, D.A.1
-
174
-
-
0028984693
-
γ-Tubulin is required for the structure and function of the microtubule organizing centre in drosophila neuroblasts
-
Sunkel, C. E., Gomes, R., Sampaio, P., Perdigao, J., & Gonzalez, C. γ-Tubulin is required for the structure and function of the microtubule organizing centre in Drosophila neuroblasts. EMBO J. 14, 28-36 (1995
-
(1995)
EMBO J.
, vol.14
, pp. 28-36
-
-
Sunkel, C.E.1
Gomes, R.2
Sampaio, P.3
Perdigao, J.4
Gonzalez, C.5
-
175
-
-
0037071539
-
The kinetically dominant assembly pathway for centrosomal asters in caenorhabditis elegans is γ-Tubulin dependent
-
Hannak, E., et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-Tubulin dependent. J. Cell Biol. 157, 591-602 (2002
-
(2002)
J. Cell Biol
, vol.157
, pp. 591-602
-
-
Hannak, E.1
-
176
-
-
79959547445
-
Sas 4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome
-
Gopalakrishnan, J., et al. Sas 4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat. Commun. 2, 359 (2011
-
(2011)
Nat. Commun
, vol.2
, pp. 359
-
-
Gopalakrishnan, J.1
-
177
-
-
84864884285
-
Tubulin nucleotide status controls sas 4 dependent pericentriolar material recruitment
-
Gopalakrishnan, J., et al. Tubulin nucleotide status controls Sas 4 dependent pericentriolar material recruitment. Nat. Cell Biol. 14, 865-873 (2012
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 865-873
-
-
Gopalakrishnan, J.1
-
178
-
-
0037459108
-
Sas 4 is a c elegans centriolar protein that controls centrosome size
-
Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S., & Hyman, A. A. SAS 4 is a C elegans centriolar protein that controls centrosome size. Cell 112, 575-587 (2003
-
(2003)
Cell
, vol.112
, pp. 575-587
-
-
Kirkham, M.1
Müller-Reichert, T.2
Oegema, K.3
Grill, S.4
Hyman, A.A.5
-
179
-
-
84929253710
-
The caenorhabditis elegans pericentriolar material components spd 2 and spd 5 are monomeric in the cytoplasm before incorporation into the pcm matrix
-
Wueseke, O., et al. The Caenorhabditis elegans pericentriolar material components SPD 2 and SPD 5 are monomeric in the cytoplasm before incorporation into the PCM matrix. Mol. Biol. Cell 25, 2984-2992 (2014
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 2984-2992
-
-
Wueseke, O.1
-
180
-
-
78650501049
-
Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in drosophila neuroblasts
-
Conduit, P. T., & Raff, J. W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187-2192 (2010
-
(2010)
Curr. Biol
, vol.20
, pp. 2187-2192
-
-
Conduit, P.T.1
Raff, J.W.2
-
181
-
-
84897101480
-
Importance of the cep215-pericentrin interaction for centrosome maturation during mitosis
-
Kim, S., & Rhee, K. Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis. PLoS ONE 9, e87016 (2014
-
(2014)
PLoS ONE
, vol.9
, pp. e87016
-
-
Kim, S.1
Rhee, K.2
-
182
-
-
36049016731
-
Human cep192 is required for mitotic centrosome and spindle assembly
-
Gomez-Ferreria, M. A., et al. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960-1966 (2007
-
(2007)
Curr. Biol
, vol.17
, pp. 1960-1966
-
-
Gomez-Ferreria, M.A.1
-
183
-
-
84906791372
-
The cep192 organized aurora a-plk1 cascade is essential for centrosome cycle and bipolar spindle assembly
-
Joukov, V., Walter, J. C., & De Nicolo, A. The Cep192 organized Aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell 55, 578-591 (2014
-
(2014)
Mol. Cell
, vol.55
, pp. 578-591
-
-
Joukov, V.1
Walter, J.C.2
De Nicolo, A.3
-
184
-
-
77950566340
-
Cdk5rap2 functions in centrosome to spindle pole attachment and DNA damage response
-
Barr, A. R., Kilmartin, J. V., & Gergely, F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J. Cell Biol. 189, 23-39 (2010
-
(2010)
J. Cell Biol
, vol.189
, pp. 23-39
-
-
Barr, A.R.1
Kilmartin, J.V.2
Gergely, F.3
-
185
-
-
78650115459
-
Cdk5rap2 stimulates microtubule nucleation by the γ-Tubulin ring complex
-
Choi, Y. K., Liu, P., Sze, S. K., Dai, C., & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the γ-Tubulin ring complex. J. Cell Biol. 191, 1089-1095 (2010
-
(2010)
J. Cell Biol
, vol.191
, pp. 1089-1095
-
-
Choi, Y.K.1
Liu, P.2
Sze, S.K.3
Dai, C.4
Qi, R.Z.5
-
186
-
-
3343008017
-
Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry
-
Zimmerman, W. C., Sillibourne, J., Rosa, J., & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642-3657 (2004
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 3642-3657
-
-
Zimmerman, W.C.1
Sillibourne, J.2
Rosa, J.3
Doxsey, S.J.4
-
187
-
-
38749152785
-
Cdk5rap2 is a pericentriolar protein that functions in centrosomal attachment of the γ-Tubulin ring complex
-
Fong, K. W., Choi, Y. K., Rattner, J. B., & Qi, R. Z. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-Tubulin ring complex. Mol. Biol. Cell 19, 115-125 (2008
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 115-125
-
-
Fong, K.W.1
Choi, Y.K.2
Rattner, J.B.3
Qi, R.Z.4
-
188
-
-
0041885288
-
Interaction of aurora a and centrosomin at the microtubule-nucleating site in drosophila and mammalian cells
-
Terada, Y., Uetake, Y., & Kuriyama, R. Interaction of Aurora A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol. 162, 757-763 (2003
-
(2003)
J. Cell Biol
, vol.162
, pp. 757-763
-
-
Terada, Y.1
Uetake, Y.2
Kuriyama, R.3
-
189
-
-
84936085707
-
Bimodal interaction of mammalian polo-like kinase 1 and a centrosomal scaffold, cep192, in the regulation of bipolar spindle formation
-
Meng, L., et al. Bimodal interaction of mammalian Polo-like kinase 1 and a centrosomal scaffold, Cep192, in the regulation of bipolar spindle formation. Mol Cell. Biol. http://dx.doi.org/10.1128/MCB.00068-15 (2015
-
(2015)
Mol Cell. Biol
-
-
Meng, L.1
-
190
-
-
77955962579
-
Cdk5rap2 regulates centriole engagement and cohesion in mice
-
Barrera, J. A., et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913-926 (2010
-
(2010)
Dev. Cell
, vol.18
, pp. 913-926
-
-
Barrera, J.A.1
-
191
-
-
84863794110
-
Separase-dependent cleavage of pericentrin b is necessary and sufficient for centriole disengagement during mitosis
-
Lee, K., & Rhee, K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11, 2476-2485 (2012
-
(2012)
Cell Cycle
, vol.11
, pp. 2476-2485
-
-
Lee, K.1
Rhee, K.2
-
192
-
-
84991383582
-
Degradation of cep68 and pcnt cleavage mediate cep215 removal from the pcm to allow centriole separation, disengagement and licensing
-
Pagan, J. K., et al. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat. Cell Biol. 17, 31-43 (2015
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 31-43
-
-
Pagan, J.K.1
-
193
-
-
38349078475
-
Cep68 and cep215 (cdk5rap2) are required for centrosome cohesion
-
Graser, S. S., Stierhof, Y. D. Y., & Nigg, E. A. E. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 120, 4321-4331 (2007
-
(2007)
J. Cell Sci
, vol.120
, pp. 4321-4331
-
-
Graser, S.S.1
Stierhof, Y.D.Y.2
Nigg, E.A.E.3
-
194
-
-
0033538844
-
The sudden recruitment of γ-Tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules
-
Khodjakov, A., & Rieder, C. L. The sudden recruitment of γ-Tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585-596 (1999
-
(1999)
J. Cell Biol
, vol.146
, pp. 585-596
-
-
Khodjakov, A.1
Rieder, C.L.2
-
195
-
-
16344379858
-
Dynamic recruitment of nek2 kinase to the centrosome involves microtubules pcm 1, and localized proteasomal degradation
-
Hames, R. S., et al. Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM 1, and localized proteasomal degradation. Mol. Biol. Cell 16, 1711-1724 (2005
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1711-1724
-
-
Hames, R.S.1
-
196
-
-
78650437294
-
Centrioles regulate centrosome size by controlling the rate of cnn incorporation into the pcm
-
Conduit, P. T., et al. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr. Biol. 20, 2178-2186 (2010
-
(2010)
Curr. Biol
, vol.20
, pp. 2178-2186
-
-
Conduit, P.T.1
-
197
-
-
84938592605
-
Different drosophila cell types exhibit important differences in mitotic centrosome assembly dynamics
-
Conduit, P. T., & Raff, J. W. Different Drosophila cell types exhibit important differences in mitotic centrosome assembly dynamics. Curr. Biol. 25, R650-R651 (2015
-
(2015)
Curr. Biol
, vol.25
, pp. R650-R651
-
-
Conduit, P.T.1
Raff, J.W.2
-
198
-
-
84903710066
-
Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles
-
Zwicker, D., Decker, M., Jaensch, S., Hyman, A. A., & Julicher, F. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl Acad. Sci. 111, E2636-E2645 (2014
-
(2014)
Proc. Natl Acad. Sci
, vol.111
, pp. E2636-E2645
-
-
Zwicker, D.1
Decker, M.2
Jaensch, S.3
Hyman, A.A.4
Julicher, F.5
-
199
-
-
84938571115
-
Isotropic incorporation of spd 5 underlies centrosome assembly in c elegans
-
Laos, T., Cabral, G., & Dammermann, A. Isotropic incorporation of SPD 5 underlies centrosome assembly in C elegans. Curr. Biol. 25, R648-R649 (2015
-
(2015)
Curr. Biol
, vol.25
, pp. R648-R649
-
-
Laos, T.1
Cabral, G.2
Dammermann, A.3
-
200
-
-
84904576048
-
Separate to operate: Control of centrosome positioning and separation
-
Agircan, F. G., Schiebel, E., & Mardin, B. R. Separate to operate: control of centrosome positioning and separation. Philos. Trans. R. Soc. Lond. B 369, 20130461 (2014
-
(2014)
Philos. Trans. R. Soc. Lond
, vol.B369
, pp. 20130461
-
-
Agircan, F.G.1
Schiebel, E.2
Mardin, B.R.3
-
201
-
-
30844463905
-
Controlling centrosome number: Licenses and blocks
-
Tsou, M. F. B., & Stearns, T. Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74-78 (2006
-
(2006)
Curr. Opin. Cell Biol
, vol.18
, pp. 74-78
-
-
Tsou, M.F.B.1
Stearns, T.2
-
202
-
-
0036905276
-
The centrosome is a dynamic structure that ejects pcm flares
-
Megraw, T. L., Kilaru, S., Turner, F. R., & Kaufman, T. C. The centrosome is a dynamic structure that ejects PCM flares. J. Cell Sci. 115, 4707-4718 (2002
-
(2002)
J. Cell Sci
, vol.115
, pp. 4707-4718
-
-
Megraw, T.L.1
Kilaru, S.2
Turner, F.R.3
Kaufman, T.C.4
|