메뉴 건너뛰기




Volumn 16, Issue 10, 2015, Pages 611-624

Centrosome function and assembly in animal cells

Author keywords

[No Author keywords available]

Indexed keywords

CYTOPLASM PROTEIN; PROTEIN P53;

EID: 84942296228     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm4062     Document Type: Article
Times cited : (396)

References (202)
  • 1
    • 84856290771 scopus 로고    scopus 로고
    • The centrosome in cells and organisms
    • Bornens, M. The centrosome in cells and organisms. Science 335, 422-426 (2012
    • (2012) Science , vol.335 , pp. 422-426
    • Bornens, M.1
  • 3
    • 84904548401 scopus 로고    scopus 로고
    • Exploring the evolutionary history of centrosomes
    • Azimzadeh, J. Exploring the evolutionary history of centrosomes. Philos. Trans. R. Soc. Lond. B 369, 20130453 (2014
    • (2014) Philos. Trans. R. Soc. Lond , vol.B369 , pp. 20130453
    • Azimzadeh, J.1
  • 5
    • 74049135504 scopus 로고    scopus 로고
    • Concerning the origin of malignant tumours by theodor boveri translated and annotated by henry harris
    • Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121 (Suppl. 1), 1-84 (2008
    • (2008) J. Cell Sci , vol.121 , pp. 1-84
    • Boveri, T.1
  • 6
    • 84904551854 scopus 로고    scopus 로고
    • How do cilia organize signalling cascades
    • Nachury, M. V. How do cilia organize signalling cascades? Philos. Trans. R. Soc. Lond. B 369, 20130465 (2014
    • (2014) Philos. Trans. R. Soc. Lond , vol.B369 , pp. 20130465
    • Nachury, M.V.1
  • 7
    • 84901432213 scopus 로고    scopus 로고
    • The primary cilium: Guardian of organ development and homeostasis
    • Fry, A. M., Leaper, M. J., & Bayliss, R. The primary cilium: guardian of organ development and homeostasis. Organogenesis 10, 62-68 (2014
    • (2014) Organogenesis , vol.10 , pp. 62-68
    • Fry, A.M.1    Leaper, M.J.2    Bayliss, R.3
  • 8
    • 84947899465 scopus 로고    scopus 로고
    • Recent advances in primary ciliary dyskinesia genetics
    • Kurkowiak, M., Zietkiewicz, E., & Witt, M. Recent advances in primary ciliary dyskinesia genetics. J. Med. Genet. 52, 1-9 (2015
    • (2015) J. Med. Genet , vol.52 , pp. 1-9
    • Kurkowiak, M.1    Zietkiewicz, E.2    Witt, M.3
  • 9
    • 0346874342 scopus 로고    scopus 로고
    • Proteomic characterization of the human centrosome by protein correlation profiling
    • Andersen, J. S., et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570-574 (2003
    • (2003) Nature , vol.426 , pp. 570-574
    • Andersen, J.S.1
  • 10
    • 84891816918 scopus 로고    scopus 로고
    • Centrosomedb: A new generation of the centrosomal proteins database for human and drosophila melanogaster
    • Alves-Cruzeiro, J. M., Nogales-Cadenas, R., & Pascual-Montano, A. D. CentrosomeDB: a new generation of the centrosomal proteins database for Human and Drosophila melanogaster. Nucleic Acids Res. 42, D430-D436 (2013
    • (2013) Nucleic Acids Res , vol.42 , pp. D430-D436
    • Alves-Cruzeiro, J.M.1    Nogales-Cadenas, R.2    Pascual-Montano, A.D.3
  • 11
    • 0035478337 scopus 로고    scopus 로고
    • The centrosome in vertebrates: More than a microtubule-organizing center
    • Rieder, C. L., Faruki, S., & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 11, 413-419 (2001
    • (2001) Trends Cell Biol , vol.11 , pp. 413-419
    • Rieder, C.L.1    Faruki, S.2    Khodjakov, A.3
  • 13
    • 34247643941 scopus 로고    scopus 로고
    • Centrosome duplication: Of rules and licenses
    • Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215-221 (2007
    • (2007) Trends Cell Biol , vol.17 , pp. 215-221
    • Nigg, E.A.1
  • 14
    • 80053553994 scopus 로고    scopus 로고
    • The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries
    • Nigg, E. A. E., & Stearns, T. T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154-1160 (2011
    • (2011) Nat. Cell Biol , vol.13 , pp. 1154-1160
    • Nigg, E.A.E.1    Stearns, T.T.2
  • 15
    • 0002768045 scopus 로고
    • Experiments concerning the cleavage stimulus in sand dollar eggs
    • Rappaport, R. Experiments concerning the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 148, 81-89 (1961
    • (1961) J. Exp. Zool , vol.148 , pp. 81-89
    • Rappaport, R.1
  • 16
    • 84860431066 scopus 로고    scopus 로고
    • Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis
    • Dumont, J., & Desai, A. Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol. 22, 241-249 (2012
    • (2012) Trends Cell Biol , vol.22 , pp. 241-249
    • Dumont, J.1    Desai, A.2
  • 17
    • 84879900092 scopus 로고    scopus 로고
    • Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells
    • Masoud, K., Herzog, E., Chabouté, M. E., & Schmit, A. C. Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. Plant J. 75, 245-257 (2013
    • (2013) Plant J. , vol.75 , pp. 245-257
    • Masoud, K.1    Herzog, E.2    Chabouté, M.E.3    Schmit, A.C.4
  • 18
    • 0029836330 scopus 로고    scopus 로고
    • Self-organization of microtubules into bipolar spindles around artificial chromosomes in xenopus egg extracts
    • Heald, R., et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420-425 (1996
    • (1996) Nature , vol.382 , pp. 420-425
    • Heald, R.1
  • 19
    • 0030059247 scopus 로고    scopus 로고
    • Morphogenetic properties of microtubules and mitotic spindle assembly
    • Hyman, A. A., & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401-410 (1996
    • (1996) Cell , vol.84 , pp. 401-410
    • Hyman, A.A.1    Karsenti, E.2
  • 20
    • 0035913964 scopus 로고    scopus 로고
    • The mitotic spindle: A self-made machine
    • Karsenti, E., & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543-547 (2001
    • (2001) Science , vol.294 , pp. 543-547
    • Karsenti, E.1    Vernos, I.2
  • 21
    • 4644233153 scopus 로고    scopus 로고
    • The mechanism of spindle assembly: Functions of ran and its target tpx2
    • Gruss, O. J., & Vernos, I. The mechanism of spindle assembly: functions of Ran and its target TPX2. J. Cell Biol. 166, 949-955 (2004
    • (2004) J Cell Biol , vol.166 , pp. 949-955
    • Gruss, O.J.1    Vernos, I.2
  • 22
    • 34250640194 scopus 로고    scopus 로고
    • Cooperative mechanisms of mitotic spindle formation
    • O'Connell, C. B., & Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717-1722 (2007
    • (2007) J. Cell Sci , vol.120 , pp. 1717-1722
    • O'Connell, C.B.1    Khodjakov, A.L.2
  • 23
    • 43149120217 scopus 로고    scopus 로고
    • Augmin: A protein complex required for centrosome-independent microtubule generation within the spindle
    • Goshima, G., Mayer, M., Zhang, N., Stuurman, N., & Vale, R. D. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181, 421-429 (2008
    • (2008) J. Cell Biol , vol.181 , pp. 421-429
    • Goshima, G.1    Mayer, M.2    Zhang, N.3    Stuurman, N.4    Vale, R.D.5
  • 24
    • 75749147658 scopus 로고    scopus 로고
    • New look inside the spindle: Microtubule-dependent microtubule generation within the spindle
    • Goshima, G., & Kimura, A. New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr. Opin. Cell Biol. 22, 6-6 (2010
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 6-6
    • Goshima, G.1    Kimura, A.2
  • 25
    • 84932608701 scopus 로고    scopus 로고
    • The augmin connection in the geometry of microtubule networks
    • Sánchez-Huertas, C., & Lüders, J. The augmin connection in the geometry of microtubule networks. Curr. Biol. 25, R294-R299 (2015
    • (2015) Curr. Biol , vol.25 , pp. R294-R299
    • Sánchez-Huertas, C.1    Lüders, J.2
  • 26
    • 67349230854 scopus 로고    scopus 로고
    • Haus, the 8 subunit human augmin complex, regulates centrosome and spindle integrity
    • Lawo, S. S., et al. HAUS, the 8 subunit human augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 19, 11-11 (2009
    • (2009) Curr. Biol , vol.19 , pp. 11-11
    • Lawo, S.S.1
  • 27
    • 34547611878 scopus 로고    scopus 로고
    • Self-organization of mtocs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes
    • Schuh, M., & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484-498 (2007
    • (2007) Cell , vol.130 , pp. 484-498
    • Schuh, M.1    Ellenberg, J.2
  • 28
    • 84930795923 scopus 로고    scopus 로고
    • Dissecting the function and assembly of acentriolar microtubule organizing centers in drosophila cells in vivo
    • Baumbach, J., Novak, Z. A., Raff, J. W., & Wainman, A. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo. PLoS Genet. 11, e1005261 (2015
    • (2015) PLoS Genet , vol.11 , pp. e1005261
    • Baumbach, J.1    Novak, Z.A.2    Raff, J.W.3    Wainman, A.4
  • 29
    • 66349093062 scopus 로고    scopus 로고
    • Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in drosophila somatic cells
    • Moutinho-Pereira, S., Debec, A., & Maiato, H. Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in Drosophila somatic cells. Mol. Biol. Cell 20, 2796-2808 (2009
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2796-2808
    • Moutinho-Pereira, S.1    Debec, A.2    Maiato, H.3
  • 30
    • 84873536985 scopus 로고    scopus 로고
    • Acentrosomal spindle organization renders cancer cells dependent on the kinesin hset
    • Kleylein-Sohn, J., et al. Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J. Cell Sci. 125, 5391-5402 (2012
    • (2012) J. Cell Sci , vol.125 , pp. 5391-5402
    • Kleylein-Sohn, J.1
  • 31
    • 84892443919 scopus 로고    scopus 로고
    • Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation
    • Hayward, D., Metz, J., Pellacani, C., & Wakefield, J. G. Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation. Dev. Cell 28, 81-93 (2014
    • (2014) Dev. Cell , vol.28 , pp. 81-93
    • Hayward, D.1    Metz, J.2    Pellacani, C.3    Wakefield, J.G.4
  • 32
    • 0022579418 scopus 로고
    • A centriole-free drosophila cell line a high voltage em study
    • Szöllösi, A., Ris, H., Szöllösi, D., & Debec, A. A centriole-free Drosophila cell line. A high voltage EM study. Eur. J. Cell Biol. 40, 100-104 (1986
    • (1986) Eur. J. Cell Biol , vol.40 , pp. 100-104
    • Szöllösi, A.1    Ris, H.2    Szöllösi, D.3    Debec, A.4
  • 33
    • 0033971720 scopus 로고    scopus 로고
    • Centrosome-independent mitotic spindle formation in vertebrates
    • Khodjakov, A., Cole, R. W., Oakley, B. R., & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59-67 (2000
    • (2000) Curr. Biol , vol.10 , pp. 59-67
    • Khodjakov, A.1    Cole, R.W.2    Oakley, B.R.3    Rieder, C.L.4
  • 34
    • 0030751640 scopus 로고    scopus 로고
    • Spindle assembly in xenopus egg extracts: Respective roles of centrosomes and microtubule self-organization
    • Heald, R., Tournebize, R., Habermann, A., Karsenti, E., & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615-628 (1997
    • (1997) J. Cell Biol , vol.138 , pp. 615-628
    • Heald, R.1    Tournebize, R.2    Habermann, A.3    Karsenti, E.4    Hyman, A.5
  • 35
    • 84890838332 scopus 로고    scopus 로고
    • Loss of centrioles causes chromosomal instability in vertebrate somatic cells
    • Sir, J. H., et al. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J. Cell Biol. 203, 747-756 (2013
    • (2013) J. Cell Biol , vol.203 , pp. 747-756
    • Sir, J.H.1
  • 36
    • 33745255998 scopus 로고    scopus 로고
    • Flies without centrioles
    • Basto, R., et al. Flies without centrioles. Cell 125, 1375-1386 (2006
    • (2006) Cell , vol.125 , pp. 1375-1386
    • Basto, R.1
  • 38
    • 35348889541 scopus 로고    scopus 로고
    • Asterless is a centriolar protein required for centrosome function and embryo development in drosophila
    • Varmark, H., et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol. 17, 1735-1745 (2007
    • (2007) Curr. Biol , vol.17 , pp. 1735-1745
    • Varmark, H.1
  • 39
    • 84964912874 scopus 로고    scopus 로고
    • Centrosome loss or amplification does not dramatically perturb global gene expression in drosophila
    • Baumbach, J., Levesque, M. P., & Raff, J. W. Centrosome loss or amplification does not dramatically perturb global gene expression in Drosophila. Biol. Open 1, 983-993 (2012
    • (2012) Biol. Open , vol.1 , pp. 983-993
    • Baumbach, J.1    Levesque, M.P.2    Raff, J.W.3
  • 41
    • 42449118549 scopus 로고    scopus 로고
    • Mechanisms of asymmetric cell division: Flies and worms pave the way
    • Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355-366 (2008
    • (2008) Nat. Rev. Mol. Cell Biol , vol.9 , pp. 355-366
    • Gönczy, P.1
  • 42
    • 78649439321 scopus 로고    scopus 로고
    • Asymmetric cell division: Recent developments and their implications for tumour biology
    • Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11, 849-860 (2010
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 849-860
    • Knoblich, J.A.1
  • 43
    • 84908210152 scopus 로고    scopus 로고
    • Acentrosomal drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation
    • Poulton, J. S., Cuningham, J. C., & Peifer, M. Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation. Dev. Cell 30, 731-745 (2014
    • (2014) Dev. Cell , vol.30 , pp. 731-745
    • Poulton, J.S.1    Cuningham, J.C.2    Peifer, M.3
  • 44
    • 0035936898 scopus 로고    scopus 로고
    • Requirement of a centrosomal activity for cell cycle progression through g1 into s phase
    • Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A., & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547-1550 (2001
    • (2001) Science , vol.291 , pp. 1547-1550
    • Hinchcliffe, E.H.1    Miller, F.J.2    Cham, M.3    Khodjakov, A.4    Sluder, G.5
  • 45
    • 0035795415 scopus 로고    scopus 로고
    • Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression
    • Khodjakov, A., & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237-242 (2001
    • (2001) J. Cell Biol , vol.153 , pp. 237-242
    • Khodjakov, A.1    Rieder, C.L.2
  • 47
    • 29044431521 scopus 로고    scopus 로고
    • Sak/plk4 is required for centriole duplication and flagella development
    • Bettencourt-Dias, M., et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199-2207 (2005
    • (2005) Curr. Biol , vol.15 , pp. 2199-2207
    • Bettencourt-Dias, M.1
  • 48
    • 54749133489 scopus 로고    scopus 로고
    • A genome-wide rnai screen to dissect centriole duplication and centrosome maturation in drosophila
    • Dobbelaere, J., et al. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol. 6, e224 (2008
    • (2008) PLoS Biol , vol.6 , pp. e224
    • Dobbelaere, J.1
  • 49
    • 84898780186 scopus 로고    scopus 로고
    • Acentriolar mitosis activates a p53 dependent apoptosis pathway in the mouse embryo
    • Bazzi, H., & Anderson, K. V. Acentriolar mitosis activates a p53 dependent apoptosis pathway in the mouse embryo. Proc. Natl Acad. Sci. USA 111, E1491-E1500 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E1491-E1500
    • Bazzi, H.1    Anderson, K.V.2
  • 50
    • 84923085802 scopus 로고    scopus 로고
    • Lack of centrioles and primary cilia in stil-/-mouse embryos
    • David, A., et al. Lack of centrioles and primary cilia in STIL-/-mouse embryos. Cell Cycle 13, 2859-2868 (2014
    • (2014) Cell Cycle , vol.13 , pp. 2859-2868
    • David, A.1
  • 52
    • 84908356949 scopus 로고    scopus 로고
    • Stabilization of cartwheel-less centrioles for duplication requires cep295 mediated centriole-To centrosome conversion
    • Izquierdo, D., Wang, W. J., Uryu, K., & Tsou, M. F. B. Stabilization of cartwheel-less centrioles for duplication requires CEP295 mediated centriole-To centrosome conversion. Cell Rep. 8, 957-965 (2014
    • (2014) Cell Rep , vol.8 , pp. 957-965
    • Izquierdo, D.1    Wang, W.J.2    Uryu, K.3    Tsou, M.F.B.4
  • 53
    • 84930625795 scopus 로고    scopus 로고
    • Reversible centriole depletion with an inhibitor of polo-like kinase 4
    • Wong, Y L., et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155-1160 (2015
    • (2015) Science , vol.348 , pp. 1155-1160
    • Wong, Y.L.1
  • 54
    • 84942293631 scopus 로고    scopus 로고
    • P53 protects against genome instability following centriole duplication failure
    • Lambrus, B. G., et al. p53 protects against genome instability following centriole duplication failure. J. Cell Biol. 210, 63-77 (2015
    • (2015) J. Cell Biol , vol.210 , pp. 63-77
    • Lambrus, B.G.1
  • 55
    • 67649654451 scopus 로고    scopus 로고
    • Centrosome function in cancer: Guilty or innocent
    • Zyss, D., & Gergely, F. Centrosome function in cancer: guilty or innocent? Trends Cell Biol. 19, 334-346 (2009
    • (2009) Trends Cell Biol , vol.19 , pp. 334-346
    • Zyss, D.1    Gergely, F.2
  • 56
    • 80054814528 scopus 로고    scopus 로고
    • A clinical overview of centrosome amplification in human cancers
    • Chan, J. Y. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7, 1122-1144 (2011
    • (2011) Int. J. Biol. Sci , vol.7 , pp. 1122-1144
    • Chan, J.Y.1
  • 57
    • 84904548348 scopus 로고    scopus 로고
    • Causes and consequences of centrosome abnormalities in cancer
    • Godinho, S. A., & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. Lond. B 369, 20130467 (2014
    • (2014) Philos. Trans. R. Soc. Lond , vol.B369 , pp. 20130467
    • Godinho, S.A.1    Pellman, D.2
  • 58
    • 44649117902 scopus 로고    scopus 로고
    • Centrosome amplification can initiate tumorigenesis in flies
    • Basto, R., et al. Centrosome amplification can initiate tumorigenesis in flies. Cell 133, 1032-1042 (2008
    • (2008) Cell , vol.133 , pp. 1032-1042
    • Basto, R.1
  • 59
    • 49649092093 scopus 로고    scopus 로고
    • Centrosome dysfunction in drosophila neural stem cells causes tumors that are not due to genome instability
    • Castellanos, E. E., Dominguez, P. P., & Gonzalez, C. C. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18, 1209-1214 (2008
    • (2008) Curr. Biol , vol.18 , pp. 1209-1214
    • Castellanos, E.E.1    Dominguez, P.P.2    Gonzalez, C.C.3
  • 60
    • 0032539868 scopus 로고    scopus 로고
    • Centrosome hypertrophy in human breast tumors: Implications for genomic stability and cell polarity
    • Lingle, W. L., Lutz, W. H., Ingle, J. N., Maihle, N. J., & Salisbury, J. L. Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl Acad. Sci. USA 95, 2950-2955 (1998
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 2950-2955
    • Lingle, W.L.1    Lutz, W.H.2    Ingle, J.N.3    Maihle, N.J.4    Salisbury, J.L.5
  • 61
    • 0037133211 scopus 로고    scopus 로고
    • Centrosome amplification drives chromosomal instability in breast tumor development
    • Lingle, W. L., et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl Acad. Sci. USA 99, 1978-1983 (2002
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 1978-1983
    • Lingle, W.L.1
  • 62
    • 0032170033 scopus 로고    scopus 로고
    • Centrosome defects and genetic instability in malignant tumors
    • Pihan, G. A., et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res. 58, 3974-3985 (1998
    • (1998) Cancer Res , vol.58 , pp. 3974-3985
    • Pihan, G.A.1
  • 63
    • 84871935248 scopus 로고    scopus 로고
    • Centrosomes chromosome instability (cin) and aneuploidy
    • Vitre, B. D., & Cleveland, D. W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 24, 809-815 (2012
    • (2012) Curr. Opin. Cell Biol , vol.24 , pp. 809-815
    • Vitre, B.D.1    Cleveland, D.W.2
  • 65
    • 75149140916 scopus 로고    scopus 로고
    • Mitotic chromosomal instability and cancer: Mouse modelling of the human disease
    • Schvartzman, J. M., Sotillo, R., & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102-115 (2010
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 102-115
    • Schvartzman, J.M.1    Sotillo, R.2    Benezra, R.3
  • 67
    • 50049085789 scopus 로고    scopus 로고
    • Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes
    • Kwon, M. M., et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189-2203 (2008
    • (2008) Genes Dev , vol.22 , pp. 2189-2203
    • Kwon, M.M.1
  • 68
    • 67649467032 scopus 로고    scopus 로고
    • A mechanism linking extra centrosomes to chromosomal instability
    • Ganem, N. J. N., Godinho, S. A. S., & Pellman, D. D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278-282 (2009
    • (2009) Nature , vol.460 , pp. 278-282
    • Ganem, N.J.N.1    Godinho, S.A.S.2    Pellman, D.D.3
  • 69
    • 68749084849 scopus 로고    scopus 로고
    • Multipolar spindle pole coalescence is a major source of kinetochore mis-Attachment and chromosome mis-segregation in cancer cells
    • Silkworth, W. T., Nardi, I. K., Scholl, L. M., & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-Attachment and chromosome mis-segregation in cancer cells. PLoS ONE 4, e6564 (2009
    • (2009) PLoS ONE , vol.4 , pp. e6564
    • Silkworth, W.T.1    Nardi, I.K.2    Scholl, L.M.3    Cimini, D.4
  • 70
    • 84880332168 scopus 로고    scopus 로고
    • Centrosome amplification causes microcephaly
    • Marthiens, V., et al. Centrosome amplification causes microcephaly. Nat. Cell Biol. 15, 731-740 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 731-740
    • Marthiens, V.1
  • 71
    • 84871552330 scopus 로고    scopus 로고
    • The autoregulated instability of polo-like kinase 4 limits centrosome duplication to once per cell cycle
    • Holland, A. J., et al. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26, 2684-2689 (2012
    • (2012) Genes Dev , vol.26 , pp. 2684-2689
    • Holland, A.J.1
  • 72
    • 84907510557 scopus 로고    scopus 로고
    • Cytokinesis failure triggers hippo tumor suppressor pathway activation
    • Ganem, N. J., et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833-848 (2014
    • (2014) Cell , vol.158 , pp. 833-848
    • Ganem, N.J.1
  • 73
    • 36448987217 scopus 로고    scopus 로고
    • Oncogenes and tumour suppressors take on centrosomes
    • Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nat. Rev. Cancer 7, 911-924 (2007
    • (2007) Nat. Rev. Cancer , vol.7 , pp. 911-924
    • Fukasawa, K.1
  • 74
    • 84901979739 scopus 로고    scopus 로고
    • Oncogene-like induction of cellular invasion from centrosome amplification
    • Godinho, S. A., et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167-171 (2014
    • (2014) Nature , vol.510 , pp. 167-171
    • Godinho, S.A.1
  • 75
    • 9144231853 scopus 로고    scopus 로고
    • Centrosome amplification and the origin of chromosomal instability in breast cancer
    • Salisbury, J. L., D'Assoro, A. B., & Lingle, W. L. Centrosome amplification and the origin of chromosomal instability in breast cancer. J. Mammary Gland Biol. Neoplasia 9, 275-283 (2004
    • (2004) J. Mammary Gland Biol. Neoplasia , vol.9 , pp. 275-283
    • Salisbury, J.L.1    D'Assoro, A.B.2    Lingle, W.L.3
  • 76
    • 70350228242 scopus 로고    scopus 로고
    • Primary microcephaly: Do all roads lead to Rome
    • Thornton, G. K., & Woods, C. G. Primary microcephaly: do all roads lead to Rome? Trends Genet. 25, 501-510 (2009
    • (2009) Trends Genet , vol.25 , pp. 501-510
    • Thornton, G.K.1    Woods, C.G.2
  • 77
    • 79960921403 scopus 로고    scopus 로고
    • Cdk5rap2 exposes the centrosomal root of microcephaly syndromes
    • Megraw, T. L., Sharkey, J. T., & Nowakowski, R. S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 21, 470-480 (2011
    • (2011) Trends Cell Biol , vol.21 , pp. 470-480
    • Megraw, T.L.1    Sharkey, J.T.2    Nowakowski, R.S.3
  • 78
    • 84919775810 scopus 로고    scopus 로고
    • Molecular and cellular basis of autosomal recessive primary microcephaly
    • Barbelanne, M., & Tsang, W. Y. Molecular and cellular basis of autosomal recessive primary microcephaly. Biomed. Res. Int. 2014, 547986 (2014
    • (2014) Biomed. Res. Int , vol.2014 , pp. 547986
    • Barbelanne, M.1    Tsang, W.Y.2
  • 79
    • 84925883400 scopus 로고    scopus 로고
    • Small organelle, big responsibility: The role of centrosomes in development and disease
    • Chavali, P. L., Pütz, M., & Gergely, F. Small organelle, big responsibility: the role of centrosomes in development and disease. Philos. Trans. R. Soc. Lond. B 369, 20130468 (2014
    • (2014) Philos. Trans. R. Soc. Lond , vol.B369 , pp. 20130468
    • Chavali, P.L.1    Pütz, M.2    Gergely, F.3
  • 80
    • 84884414984 scopus 로고    scopus 로고
    • Cerebral organoids model human brain development and microcephaly
    • Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379 (2013
    • (2013) Nature , vol.501 , pp. 373-379
    • Lancaster, M.A.1
  • 81
    • 77952681049 scopus 로고    scopus 로고
    • Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex
    • Buchman, J. J., et al. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66, 386-402 (2010
    • (2010) Neuron , vol.66 , pp. 386-402
    • Buchman, J.J.1
  • 83
    • 84910062118 scopus 로고    scopus 로고
    • The cell biology of neurogenesis: Toward an understanding of the development and evolution of the neocortex
    • Taverna, E., Götz, M., & Huttner, W. B. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 30, 465-502 (2014
    • (2014) Annu. Rev. Cell Dev. Biol , vol.30 , pp. 465-502
    • Taverna, E.1    Götz, M.2    Huttner, W.B.3
  • 84
    • 78650828071 scopus 로고    scopus 로고
    • Male gametogenesis without centrioles
    • Riparbelli, M. G., & Callaini, G. Male gametogenesis without centrioles. Dev. Biol. 349, 427-439 (2011
    • (2011) Dev. Biol , vol.349 , pp. 427-439
    • Riparbelli, M.G.1    Callaini, G.2
  • 85
    • 80053642194 scopus 로고    scopus 로고
    • Mechanisms and pathways of growth failure in primordial dwarfism
    • Klingseisen, A., & Jackson, A. P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011-2024 (2011
    • (2011) Genes Dev , vol.25 , pp. 2011-2024
    • Klingseisen, A.1    Jackson, A.P.2
  • 86
    • 0032517865 scopus 로고    scopus 로고
    • Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells
    • Bobinnec, Y., et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575-1589 (1998
    • (1998) J. Cell Biol , vol.143 , pp. 1575-1589
    • Bobinnec, Y.1
  • 88
    • 33748440647 scopus 로고    scopus 로고
    • Sequential protein recruitment in c elegans centriole formation
    • Delattre, M., Canard, C., & Gönczy, P. Sequential protein recruitment in C elegans centriole formation. Curr. Biol. 16, 1844-1849 (2006
    • (2006) Curr. Biol , vol.16 , pp. 1844-1849
    • Delattre, M.1    Canard, C.2    Gönczy, P.3
  • 89
    • 84862765284 scopus 로고    scopus 로고
    • Towards a molecular architecture of centriole assembly
    • Gönczy, P. P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13, 425-435 (2012
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 425-435
    • Gönczy, P.P.1
  • 90
    • 84891056698 scopus 로고    scopus 로고
    • Mapping molecules to structure: Unveiling secrets of centriole and cilia assembly with near-Atomic resolution
    • Jana, S. C., Marteil, G., & Bettencourt-Dias, M. Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-Atomic resolution. Curr. Opin. Cell Biol. 26, 96-106 (2014
    • (2014) Curr. Opin. Cell Biol , vol.26 , pp. 96-106
    • Jana, S.C.1    Marteil, G.2    Bettencourt-Dias, M.3
  • 93
    • 0035907012 scopus 로고    scopus 로고
    • The c elegans zyg 1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo
    • O'Connell, K. F., et al. The C elegans zyg 1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547-558 (2001
    • (2001) Cell , vol.105 , pp. 547-558
    • O'Connell, K.F.1
  • 94
    • 84964866213 scopus 로고    scopus 로고
    • 3d structured illumination microscopy provides novel insight into architecture of human centrosomes
    • Sonnen, K. F., Schermelleh, L., Leonhardt, H., & Nigg, E. A. 3D structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1, 965-976 (2012
    • (2012) Biol. Open , vol.1 , pp. 965-976
    • Sonnen, K.F.1    Schermelleh, L.2    Leonhardt, H.3    Nigg, E.A.4
  • 95
    • 1842583754 scopus 로고    scopus 로고
    • Centrosome maturation and duplication in c elegans require the coiled-coil protein spd 2
    • Kemp, C. A., Kopish, K. R., Zipperlen, P., Ahringer, J., & O'Connell, K. F. Centrosome maturation and duplication in C elegans require the coiled-coil protein SPD 2. Dev. Cell 6, 511-523 (2004
    • (2004) Dev Cell , vol.6 , pp. 511-523
    • Kemp, C.A.1    Kopish, K.R.2    Zipperlen, P.3    Ahringer, J.4    O'Connell, K.F.5
  • 96
    • 3042688773 scopus 로고    scopus 로고
    • The caenorhabditis elegans centrosomal protein spd 2 is required for both pericentriolar material recruitment and centriole duplication
    • Pelletier, L., et al. The Caenorhabditis elegans centrosomal protein SPD 2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863-873 (2004
    • (2004) Curr. Biol , vol.14 , pp. 863-873
    • Pelletier, L.1
  • 97
    • 61849092578 scopus 로고    scopus 로고
    • Drosophila asterless and vertebrate cep152 are orthologs essential for centriole duplication
    • Blachon, S., et al. Drosophila asterless and vertebrate Cep152 are orthologs essential for centriole duplication. Genetics 180, 2081-2094 (2008
    • (2008) Genetics , vol.180 , pp. 2081-2094
    • Blachon, S.1
  • 98
    • 77957982182 scopus 로고    scopus 로고
    • Asterless is a scaffold for the onset of centriole assembly
    • Dzhindzhev, N. S., et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714-718 (2010
    • (2010) Nature , vol.467 , pp. 714-718
    • Dzhindzhev, N.S.1
  • 99
  • 100
    • 78349263512 scopus 로고    scopus 로고
    • Cep152 acts as a scaffold for recruitment of plk4 and cpap to the centrosome
    • Cizmecioglu, O., et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731-739 (2010
    • (2010) J. Cell Biol , vol.191 , pp. 731-739
    • Cizmecioglu, O.1
  • 101
    • 84880720569 scopus 로고    scopus 로고
    • Human cep192 and cep152 cooperate in plk4 recruitment and centriole duplication
    • Sonnen, K. F., Gabryjonczyk, A. M., Anselm, E., Stierhof, Y. D., & Nigg, E. A. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126, 3223-3233 (2013
    • (2013) J. Cell Sci , vol.126 , pp. 3223-3233
    • Sonnen, K.F.1    Gabryjonczyk, A.M.2    Anselm, E.3    Stierhof, Y.D.4    Nigg, E.A.5
  • 102
    • 84890282862 scopus 로고    scopus 로고
    • Hierarchical recruitment of plk4 and regulation of centriole biogenesis by two centrosomal scaffolds cep192 and cep152
    • Kim, T. S., et al. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl Acad. Sci. USA 110, E4849-E4857 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. E4849-E4857
    • Kim, T.S.1
  • 103
    • 84877804830 scopus 로고    scopus 로고
    • Direct binding of sas 6 to zyg 1 recruits sas 6 to the mother centriole for cartwheel assembly
    • Lettman, M. M., et al. Direct binding of SAS 6 to ZYG 1 recruits SAS 6 to the mother centriole for cartwheel assembly. Dev. Cell 25, 284-298 (2013
    • (2013) Dev. Cell , vol.25 , pp. 284-298
    • Lettman, M.M.1
  • 104
    • 84913582254 scopus 로고    scopus 로고
    • Plk4 phosphorylates ana2 to trigger sas6 recruitment and procentriole formation
    • Dzhindzhev, N. S., et al. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24, 2526-2532 (2014
    • (2014) Curr. Biol , vol.24 , pp. 2526-2532
    • Dzhindzhev, N.S.1
  • 105
    • 84929463214 scopus 로고    scopus 로고
    • Direct interaction of plk4 with stil ensures formation of a single procentriole per parental centriole
    • Ohta, M., et al. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5, 5267 (2014
    • (2014) Nat. Commun , vol.5 , pp. 5267
    • Ohta, M.1
  • 106
    • 84979691996 scopus 로고    scopus 로고
    • Plk4 dependent phosphorylation of stil is required for centriole duplication
    • Kratz, A. S., Bärenz, F., Richter, K. T., & Hoffmann, I. Plk4 dependent phosphorylation of STIL is required for centriole duplication. Biol. Open 4, 370-377 (2015
    • (2015) Biol. Open , vol.4 , pp. 370-377
    • Kratz, A.S.1    Bärenz, F.2    Richter, K.T.3    Hoffmann, I.4
  • 107
    • 79952280152 scopus 로고    scopus 로고
    • Structures of sas 6 suggest its organization in centrioles
    • van Breugel, M., et al. Structures of SAS 6 suggest its organization in centrioles. Science 331, 1196-1199 (2011
    • (2011) Science , vol.331 , pp. 1196-1199
    • Van Breugel, M.1
  • 108
    • 79651473154 scopus 로고    scopus 로고
    • Structural basis of the 9 fold symmetry of centrioles
    • Kitagawa, D., et al. Structural basis of the 9 fold symmetry of centrioles. Cell 144, 364-375 (2011
    • (2011) Cell , vol.144 , pp. 364-375
    • Kitagawa, D.1
  • 109
    • 67349279485 scopus 로고    scopus 로고
    • Cpap is a cell-cycle regulated protein that controls centriole length
    • Tang, C. J. C., Fu, R. H., Wu, K. S., Hsu, W. B., & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825-831 (2009
    • (2009) Nat. Cell Biol , vol.11 , pp. 825-831
    • Tang, C.J.C.1    Fu, R.H.2    Wu, K.S.3    Hsu, W.B.4    Tang, T.K.5
  • 110
    • 82455187961 scopus 로고    scopus 로고
    • The human microcephaly protein stil interacts with cpap and is required for procentriole formation
    • Tang, C. J. C., et al. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J. 30, 4790-4804 (2011
    • (2011) EMBO J. , vol.30 , pp. 4790-4804
    • Tang, C.J.C.1
  • 111
    • 2942633899 scopus 로고    scopus 로고
    • Bld10p, a novel protein essential for basal body assembly in chlamydomonas: Localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly
    • Matsuura, K., Lefebvre, P. A., Kamiya, R., & Hirono, M. Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165, 663-671 (2004
    • (2004) J. Cell Biol , vol.165 , pp. 663-671
    • Matsuura, K.1    Lefebvre, P.A.2    Kamiya, R.3    Hirono, M.4
  • 112
    • 35348893241 scopus 로고    scopus 로고
    • Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9 fold symmetry of the centriole
    • Hiraki, M., Nakazawa, Y., Kamiya, R., & Hirono, M. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9 fold symmetry of the centriole. Curr. Biol. 17, 1778-1783 (2007
    • (2007) Curr. Biol , vol.17 , pp. 1778-1783
    • Hiraki, M.1    Nakazawa, Y.2    Kamiya, R.3    Hirono, M.4
  • 113
    • 84876416327 scopus 로고    scopus 로고
    • Human microcephaly protein cep135 binds to hsas 6 and cpap, and is required for centriole assembly
    • Lin, Y. C., et al. Human microcephaly protein CEP135 binds to hSAS 6 and CPAP, and is required for centriole assembly. EMBO J. 32, 1141-1154 (2013
    • (2013) EMBO J. , vol.32 , pp. 1141-1154
    • Lin, Y.C.1
  • 114
    • 66249106747 scopus 로고    scopus 로고
    • Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly
    • Mottier-Pavie, V., & Megraw, T. L. Drosophila Bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. Mol. Biol. Cell 20, 2605-2614 (2009
    • (2009) Mol. Biol. Cell , vol.20 , pp. 2605-2614
    • Mottier-Pavie, V.1    Megraw, T.L.2
  • 115
    • 84865103367 scopus 로고    scopus 로고
    • Bld10/cep135 is a microtubule-Associated protein that controls the formation of the flagellum central microtubule pair
    • Carvalho-Santos, Z. Z., et al. BLD10/CEP135 is a microtubule-Associated protein that controls the formation of the flagellum central microtubule pair. Dev. Cell 23, 412-424 (2012
    • (2012) Dev. Cell , vol.23 , pp. 412-424
    • Carvalho-Santos, Z.Z.1
  • 116
    • 84871251253 scopus 로고    scopus 로고
    • Drosophila cep135/bld10 maintains proper centriole structure but is dispensable for cartwheel formation
    • Roque, H., et al. Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation. J. Cell Sci. 125, 5881-5886 (2012
    • (2012) J. Cell Sci , vol.125 , pp. 5881-5886
    • Roque, H.1
  • 117
    • 84883311901 scopus 로고    scopus 로고
    • Abnormal centrosomal structure and duplication in cep135 deficient vertebrate cells
    • Inanç, B., et al. Abnormal centrosomal structure and duplication in Cep135 deficient vertebrate cells. Mol. Biol. Cell 24, 2645-2654 (2013
    • (2013) Mol. Biol. Cell , vol.24 , pp. 2645-2654
    • Inanç, B.1
  • 118
    • 84902169026 scopus 로고    scopus 로고
    • Asterless licenses daughter centrioles to duplicate for the first time in drosophila embryos
    • Novak, Z. A., Conduit, P. T., Wainman, A., & Raff, J. W. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos. Curr. Biol. 24, 1276-1282 (2014
    • (2014) Curr. Biol , vol.24 , pp. 1276-1282
    • Novak, Z.A.1    Conduit, P.T.2    Wainman, A.3    Raff, J.W.4
  • 119
    • 84879964275 scopus 로고    scopus 로고
    • Caenorhabditis elegans centriolar protein sas 6 forms a spiral that is consistent with imparting a ninefold symmetry
    • Hilbert, M., et al. Caenorhabditis elegans centriolar protein SAS 6 forms a spiral that is consistent with imparting a ninefold symmetry. Proc. Natl Acad. Sci. USA 110, 11373-11378 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 11373-11378
    • Hilbert, M.1
  • 121
    • 84930666695 scopus 로고    scopus 로고
    • The homo-oligomerisation of both sas 6 and ana2 is required for efficient centriole assembly in flies
    • Cottee, M. A., et al. The homo-oligomerisation of both Sas 6 and Ana2 is required for efficient centriole assembly in flies. eLife 4, e07236 (2015
    • (2015) ELife , vol.4 , pp. e07236
    • Cottee, M.A.1
  • 122
    • 84930618615 scopus 로고    scopus 로고
    • The caenorhabditis elegans protein sas 5 forms large oligomeric assemblies critical for centriole formation
    • Rogala, K. B., et al. The Caenorhabditis elegans protein SAS 5 forms large oligomeric assemblies critical for centriole formation. eLife 4, e07410 (2015
    • (2015) ELife , vol.4 , pp. e07410
    • Rogala, K.B.1
  • 123
    • 84905638127 scopus 로고    scopus 로고
    • Molecular basis for unidirectional scaffold switching of human plk4 in centriole biogenesis
    • Park, S. Y., et al. Molecular basis for unidirectional scaffold switching of human Plk4 in centriole biogenesis. Nat. Struct. Mol. Biol. 21, 696-703 (2014
    • (2014) Nat. Struct. Mol. Biol , vol.21 , pp. 696-703
    • Park, S.Y.1
  • 124
    • 84905683320 scopus 로고    scopus 로고
    • Structure of the c elegans zyg 1 cryptic polo box suggests a conserved mechanism for centriolar docking of plk4 kinases
    • Shimanovskaya, E., et al. Structure of the C elegans ZYG 1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases. Structure 22, 1090-1104 (2014
    • (2014) Structure , vol.22 , pp. 1090-1104
    • Shimanovskaya, E.1
  • 125
    • 84884683290 scopus 로고    scopus 로고
    • Crystal structures of the cpap/stil complex reveal its role in centriole assembly and human microcephaly
    • Cottee, M. A., et al. Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. eLife 2, e01071 (2013
    • (2013) ELife , vol.2 , pp. e01071
    • Cottee, M.A.1
  • 126
    • 84887405871 scopus 로고    scopus 로고
    • Structural analysis of the g box domain of the microcephaly protein cpap suggests a role in centriole architecture
    • Hatzopoulos, G. N., et al. Structural analysis of the G box domain of the microcephaly protein CPAP suggests a role in centriole architecture. Structure 21, 2069-2077 (2013
    • (2013) Structure , vol.21 , pp. 2069-2077
    • Hatzopoulos, G.N.1
  • 127
    • 84938916626 scopus 로고    scopus 로고
    • Stil binding to polo-box 3 of plk4 regulates centriole duplication
    • Arquint, C., et al. STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. eLife 4, e07888 (2015
    • (2015) ELife , vol.4 , pp. e07888
    • Arquint, C.1
  • 128
    • 84938946263 scopus 로고    scopus 로고
    • Binding of stil to plk4 activates kinase activity to promote centriole assembly
    • Moyer, T. C., Clutario, K. M., Lambrus, B. G., Daggubati, V., & Holland, A. J. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol. 209, 863-878 (2015
    • (2015) J. Cell Biol , vol.209 , pp. 863-878
    • Moyer, T.C.1    Clutario, K.M.2    Lambrus, B.G.3    Daggubati, V.4    Holland, A.J.5
  • 129
    • 77954887874 scopus 로고    scopus 로고
    • Plk2 phosphorylation is critical for cpap function in procentriole formation during the centrosome cycle
    • Chang, J., Cizmecioglu, O., Hoffmann, I., & Rhee, K. PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 29, 2395-2406 (2010
    • (2010) EMBO J. , vol.29 , pp. 2395-2406
    • Chang, J.1    Cizmecioglu, O.2    Hoffmann, I.3    Rhee, K.4
  • 130
    • 84858116946 scopus 로고    scopus 로고
    • Gcp6 is a substrate of plk4 and required for centriole duplication
    • Bahtz, R., et al. GCP6 is a substrate of Plk4 and required for centriole duplication. J. Cell Sci. 125, 486-496 (2012
    • (2012) J. Cell Sci , vol.125 , pp. 486-496
    • Bahtz, R.1
  • 131
    • 51349104215 scopus 로고    scopus 로고
    • A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase drosophila cells
    • Rogers, G. C., Rusan, N. M., Peifer, M., & Rogers, S. L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163-3178 (2008
    • (2008) Mol. Biol. Cell , vol.19 , pp. 3163-3178
    • Rogers, G.C.1    Rusan, N.M.2    Peifer, M.3    Rogers, S.L.4
  • 132
    • 0024811663 scopus 로고
    • The subcellular organization of madin-darby canine kidney cells during the formation of a polarized epithelium
    • Bacallao, R., et al. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109, 2817-2832 (1989
    • (1989) J. Cell Biol , vol.109 , pp. 2817-2832
    • Bacallao, R.1
  • 133
    • 0031924052 scopus 로고    scopus 로고
    • Nucleation and capture of large cell surface-Associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells
    • Tucker, J. B., et al. Nucleation and capture of large cell surface-Associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells. J. Anat. 192, 119-130 (1998
    • (1998) J. Anat , vol.192 , pp. 119-130
    • Tucker, J.B.1
  • 134
    • 77952916818 scopus 로고    scopus 로고
    • A developmentally regulated two-step process generates a noncentrosomal microtubule network in drosophila tracheal cells
    • Brodu, V., Baffet, A. D., Le Droguen, P. M., Casanova, J., & Guichet, A. A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells. Dev. Cell 18, 790-801 (2010
    • (2010) Dev. Cell , vol.18 , pp. 790-801
    • Brodu, V.1    Baffet, A.D.2    Le Droguen, P.M.3    Casanova, J.4    Guichet, A.5
  • 135
    • 84859612495 scopus 로고    scopus 로고
    • A role for the centrosome and par 3 in the hand-off of mtoc function during epithelial polarization
    • Feldman, J. L., & Priess, J. R. A role for the centrosome and PAR 3 in the hand-off of MTOC function during epithelial polarization. Curr. Biol. 22, 575-582 (2012
    • (2012) Curr. Biol , vol.22 , pp. 575-582
    • Feldman, J.L.1    Priess, J.R.2
  • 136
    • 0021991238 scopus 로고
    • Fate of microtubule-organizing centers during myogenesis in vitro
    • Tassin, A. M., Maro, B., & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35-46 (1985
    • (1985) J. Cell Biol , vol.100 , pp. 35-46
    • Tassin, A.M.1    Maro, B.2    Bornens, M.3
  • 137
    • 65749098780 scopus 로고    scopus 로고
    • Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation
    • Srsen, V., Fant, X., Heald, R., Rabouille, C., & Merdes, A. Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. BMC Cell Biol. 10, 28 (2009
    • (2009) BMC Cell Biol , vol.10 , pp. 28
    • Srsen, V.1    Fant, X.2    Heald, R.3    Rabouille, C.4    Merdes, A.5
  • 138
    • 76249129860 scopus 로고    scopus 로고
    • Axon extension occurs independently of centrosomal microtubule nucleation
    • Stiess, M., et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704-707 (2010
    • (2010) Science , vol.327 , pp. 704-707
    • Stiess, M.1
  • 139
    • 38349050936 scopus 로고    scopus 로고
    • The mammalian spd 2 ortholog cep192 regulates centrosome biogenesis
    • Zhu, F., et al. The mammalian SPD 2 ortholog Cep192 regulates centrosome biogenesis. Curr. Biol. 18, 136-141 (2008
    • (2008) Curr. Biol , vol.18 , pp. 136-141
    • Zhu, F.1
  • 140
    • 67650128400 scopus 로고    scopus 로고
    • Plk1 dependent recruitment of γ-Tubulin complexes to mitotic centrosomes involves multiple pcm components
    • Haren, L., Stearns, T., & L?ders, J. Plk1 dependent recruitment of γ-Tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 4, e5976 (2009
    • (2009) PLoS ONE , vol.4 , pp. e5976
    • Haren, L.1    Stearns, T.2    Lüders, J.3
  • 141
    • 0037672151 scopus 로고    scopus 로고
    • Polo-like kinase 1 regulates nlp, a centrosome protein involved in microtubule nucleation
    • Casenghi, M., et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113-125 (2003
    • (2003) Dev. Cell , vol.5 , pp. 113-125
    • Casenghi, M.1
  • 142
    • 84874630046 scopus 로고    scopus 로고
    • Centrobin controls mother-daughter centriole asymmetry in drosophila neuroblasts
    • Januschke, J., et al. Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts. Nat. Cell Biol. 15, 241-248 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 241-248
    • Januschke, J.1
  • 143
    • 84869001801 scopus 로고    scopus 로고
    • Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization
    • Mennella, V., et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159-1168 (2012
    • (2012) Nat. Cell Biol , vol.14 , pp. 1159-1168
    • Mennella, V.1
  • 144
    • 84869050846 scopus 로고    scopus 로고
    • Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material
    • Lawo, S., Hasegan, M., Gupta, G. D., & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148-1158 (2012
    • (2012) Nat. Cell Biol , vol.14 , pp. 1148-1158
    • Lawo, S.1    Hasegan, M.2    Gupta, G.D.3    Pelletier, L.4
  • 145
    • 84869051288 scopus 로고    scopus 로고
    • Structured illumination of the interface between centriole and peri-centriolar material
    • Fu, J., & Glover, D. M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2, 120104 (2012
    • (2012) Open Biol , vol.2 , pp. 120104
    • Fu, J.1    Glover, D.M.2
  • 146
    • 80054849116 scopus 로고    scopus 로고
    • Centriolar satellites: Busy orbits around the centrosome
    • Bdrenz, F., Mayilo, D., & Gruss, O. J. Centriolar satellites: busy orbits around the centrosome. Eur. J. Cell Biol. 90, 983-989 (2011
    • (2011) Eur. J. Cell Biol , vol.90 , pp. 983-989
    • Bdrenz, F.1    Mayilo, D.2    Gruss, O.J.3
  • 147
    • 79951829447 scopus 로고    scopus 로고
    • Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1
    • Lopes, C. A. M., et al. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J. Cell Sci. 124, 600-612 (2011
    • (2011) J Cell Sci , vol.124 , pp. 600-612
    • Lopes, C.A.M.1
  • 149
    • 84857687584 scopus 로고    scopus 로고
    • Pattern formation in centrosome assembly
    • Mahen, R., & Venkitaraman, A. R. Pattern formation in centrosome assembly. Curr. Opin. Cell Biol. 24, 14-23 (2012
    • (2012) Curr. Opin. Cell Biol , vol.24 , pp. 14-23
    • Mahen, R.1    Venkitaraman, A.R.2
  • 150
    • 84894335584 scopus 로고    scopus 로고
    • Amorphous no more: Subdiffraction view of the pericentriolar material architecture
    • Mennella, V., Agard, D. A., Huang, B., & Pelletier, L. Amorphous no more: subdiffraction view of the pericentriolar material architecture. Trends Cell Biol. 24, 188-197 (2013
    • (2013) Trends Cell Biol , vol.24 , pp. 188-197
    • Mennella, V.1    Agard, D.A.2    Huang, B.3    Pelletier, L.4
  • 152
    • 84863037821 scopus 로고    scopus 로고
    • Plk1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis
    • Lee, K., & Rhee, K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 195, 1093-1101 (2011
    • (2011) J. Cell Biol , vol.195 , pp. 1093-1101
    • Lee, K.1    Rhee, K.2
  • 153
    • 84897030805 scopus 로고    scopus 로고
    • The centrosome-specific phosphorylation of cnn by polo/plk1 drives cnn scaffold assembly and centrosome maturation
    • Conduit, P. T., et al. The centrosome-specific phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Dev. Cell 28, 659-669 (2014
    • (2014) Dev. Cell , vol.28 , pp. 659-669
    • Conduit, P.T.1
  • 154
    • 33749165420 scopus 로고    scopus 로고
    • The plk1 target kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity
    • Oshimori, N., Ohsugi, M., & Yamamoto, T. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat. Cell Biol. 8, 1095-1101 (2006
    • (2006) Nat. Cell Biol , vol.8 , pp. 1095-1101
    • Oshimori, N.1    Ohsugi, M.2    Yamamoto, T.3
  • 155
    • 25444493845 scopus 로고    scopus 로고
    • Aurora a phosphorylation of tacc3/maskin is required for centrosome-dependent microtubule assembly in mitosis
    • Kinoshita, K., et al. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J. Cell Biol. 170, 1047-1055 (2005
    • (2005) J. Cell Biol , vol.170 , pp. 1047-1055
    • Kinoshita, K.1
  • 156
    • 25444485717 scopus 로고    scopus 로고
    • Aurora a activates d tacc-msps complexes exclusively at centrosomes to stabilize centrosomal microtubules
    • Barros, T. P., Kinoshita, K., Hyman, A. A., & Raff, J. W. Aurora A activates D TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. J. Cell Biol. 170, 1039-1046 (2005
    • (2005) J. Cell Biol , vol.170 , pp. 1039-1046
    • Barros, T.P.1    Kinoshita, K.2    Hyman, A.A.3    Raff, J.W.4
  • 157
    • 84865207918 scopus 로고    scopus 로고
    • Nek9 phosphorylation of nedd1/gcp wd contributes to plk1 control of γ tubulin recruitment to the mitotic centrosome
    • Sdelci, S., et al. Nek9 phosphorylation of NEDD1/GCP WD contributes to Plk1 control of γ tubulin recruitment to the mitotic centrosome. Curr. Biol. 22, 1516-1523 (2012
    • (2012) Curr. Biol , vol.22 , pp. 1516-1523
    • Sdelci, S.1
  • 158
    • 84867238166 scopus 로고    scopus 로고
    • Novel nedd1 phosphorylation sites regulate γ-Tubulin binding and mitotic spindle assembly
    • Gomez-Ferreria, M. A., et al. Novel NEDD1 phosphorylation sites regulate γ-Tubulin binding and mitotic spindle assembly. J. Cell Sci. 125, 3745-3751 (2012
    • (2012) J. Cell Sci , vol.125 , pp. 3745-3751
    • Gomez-Ferreria, M.A.1
  • 159
    • 77955657138 scopus 로고    scopus 로고
    • Microtubule nucleating γ-Tusc assembles structures with 13 fold microtubule-like symmetry
    • Kollman, J. M., Polka, J. K., Zelter, A., Davis, T. N., & Agard, D. A. Microtubule nucleating γ-TuSC assembles structures with 13 fold microtubule-like symmetry. Nature 466, 879-882 (2010
    • (2010) Nature , vol.466 , pp. 879-882
    • Kollman, J.M.1    Polka, J.K.2    Zelter, A.3    Davis, T.N.4    Agard, D.A.5
  • 160
    • 84926417647 scopus 로고    scopus 로고
    • Ring closure activates yeast γturc for species-specific microtubule nucleation
    • Kollman, J. M., et al. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 22, 132-137 (2015
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 132-137
    • Kollman, J.M.1
  • 161
    • 84899828543 scopus 로고    scopus 로고
    • Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ tusc-mediated microtubule nucleation
    • Lin, T. C., et al. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ TuSC-mediated microtubule nucleation. eLife 3, e02208 (2014
    • (2014) ELife , vol.3 , pp. e02208
    • Lin, T.C.1
  • 162
    • 84928066350 scopus 로고    scopus 로고
    • Targeting of γ tubulin complexes to microtubule organizing centers: Conservation and divergence
    • Lin, T. C., Neuner, A., & Schiebel, E. Targeting of γ tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol. 25, 296-307 (2015
    • (2015) Trends Cell Biol , vol.25 , pp. 296-307
    • Lin, T.C.1    Neuner, A.2    Schiebel, E.3
  • 164
    • 0028973450 scopus 로고
    • Microtubule nucleation by γ-Tubulin-containing rings in the centrosome
    • Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B., & Agard, D. A. Microtubule nucleation by γ-Tubulin-containing rings in the centrosome. Nature 378, 638-640 (1995
    • (1995) Nature , vol.378 , pp. 638-640
    • Moritz, M.1    Braunfeld, M.B.2    Sedat, J.W.3    Alberts, B.4    Agard, D.A.5
  • 165
    • 0031854868 scopus 로고    scopus 로고
    • Recruitment of the γ-Tubulin ring complex to drosophila salt-stripped centrosome scaffolds
    • Moritz, M., Zheng, Y., Alberts, B. M., & Oegema, K. Recruitment of the γ-Tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775-786 (1998
    • (1998) J. Cell Biol , vol.142 , pp. 775-786
    • Moritz, M.1    Zheng, Y.2    Alberts, B.M.3    Oegema, K.4
  • 166
    • 84922508583 scopus 로고    scopus 로고
    • A molecular mechanism of mitotic centrosome assembly in drosophila
    • Conduit, P. T., et al. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 3, e03399 (2014
    • (2014) ELife , vol.3 , pp. e03399
    • Conduit, P.T.1
  • 167
    • 84929347451 scopus 로고    scopus 로고
    • Regulated assembly of a supramolecular centrosome scaffold in vitro
    • Woodruff, J. B., et al. Regulated assembly of a supramolecular centrosome scaffold in vitro. Science 348, 808-812 (2015
    • (2015) Science , vol.348 , pp. 808-812
    • Woodruff, J.B.1
  • 168
    • 0032765262 scopus 로고    scopus 로고
    • The centrosomin protein is required for centrosome assembly and function during cleavage in drosophila
    • Megraw, T. L., Li, K., Kao, L. R., & Kaufman, T. C. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829-2839 (1999
    • (1999) Development , vol.126 , pp. 2829-2839
    • Megraw, T.L.1    Li, K.2    Kao, L.R.3    Kaufman, T.C.4
  • 169
    • 34548331136 scopus 로고    scopus 로고
    • Maintaining the proper connection between the centrioles and the pericentriolar matrix requires drosophila centrosomin
    • Lucas, E. P., & Raff, J. W. Maintaining the proper connection between the centrioles and the pericentriolar matrix requires Drosophila centrosomin. J. Cell Biol. 178, 725-732 (2007
    • (2007) J. Cell Biol , vol.178 , pp. 725-732
    • Lucas, E.P.1    Raff, J.W.2
  • 170
    • 0036849151 scopus 로고    scopus 로고
    • Centrosome maturation and mitotic spindle assembly in c elegans require spd 5, a protein with multiple coiled-coil domains
    • Hamill, D. R., Severson, A. F., Carter, J. C., & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C elegans require SPD 5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673-684 (2002
    • (2002) Dev. Cell , vol.3 , pp. 673-684
    • Hamill, D.R.1    Severson, A.F.2    Carter, J.C.3    Bowerman, B.4
  • 171
    • 2942692444 scopus 로고    scopus 로고
    • The drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis
    • Martinez-Campos, M., Basto, R., Baker, J., Kernan, M., & Raff, J. W. The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell Biol. 165, 673-683 (2004
    • (2004) J. Cell Biol , vol.165 , pp. 673-683
    • Martinez-Campos, M.1    Basto, R.2    Baker, J.3    Kernan, M.4    Raff, J.W.5
  • 172
    • 84982825236 scopus 로고    scopus 로고
    • The drosophila pericentrin-like-protein (plp) cooperates with cnn to maintain the integrity of the outer pcm
    • Richens, J. H., et al. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM. Biol. Open 4, 1052-1056 (2015
    • (2015) Biol. Open , vol.4 , pp. 1052-1056
    • Richens, J.H.1
  • 173
    • 84942301855 scopus 로고    scopus 로고
    • Interphase centrosome organization by the plp-cnn scaffold is required for centrosome function
    • Lerit, D. A., et al. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function. J. Cell Biol. 210, 79-97 (2015
    • (2015) J. Cell Biol , vol.210 , pp. 79-97
    • Lerit, D.A.1
  • 174
    • 0028984693 scopus 로고
    • γ-Tubulin is required for the structure and function of the microtubule organizing centre in drosophila neuroblasts
    • Sunkel, C. E., Gomes, R., Sampaio, P., Perdigao, J., & Gonzalez, C. γ-Tubulin is required for the structure and function of the microtubule organizing centre in Drosophila neuroblasts. EMBO J. 14, 28-36 (1995
    • (1995) EMBO J. , vol.14 , pp. 28-36
    • Sunkel, C.E.1    Gomes, R.2    Sampaio, P.3    Perdigao, J.4    Gonzalez, C.5
  • 175
    • 0037071539 scopus 로고    scopus 로고
    • The kinetically dominant assembly pathway for centrosomal asters in caenorhabditis elegans is γ-Tubulin dependent
    • Hannak, E., et al. The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-Tubulin dependent. J. Cell Biol. 157, 591-602 (2002
    • (2002) J. Cell Biol , vol.157 , pp. 591-602
    • Hannak, E.1
  • 176
    • 79959547445 scopus 로고    scopus 로고
    • Sas 4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome
    • Gopalakrishnan, J., et al. Sas 4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat. Commun. 2, 359 (2011
    • (2011) Nat. Commun , vol.2 , pp. 359
    • Gopalakrishnan, J.1
  • 177
    • 84864884285 scopus 로고    scopus 로고
    • Tubulin nucleotide status controls sas 4 dependent pericentriolar material recruitment
    • Gopalakrishnan, J., et al. Tubulin nucleotide status controls Sas 4 dependent pericentriolar material recruitment. Nat. Cell Biol. 14, 865-873 (2012
    • (2012) Nat. Cell Biol , vol.14 , pp. 865-873
    • Gopalakrishnan, J.1
  • 178
    • 0037459108 scopus 로고    scopus 로고
    • Sas 4 is a c elegans centriolar protein that controls centrosome size
    • Kirkham, M., Müller-Reichert, T., Oegema, K., Grill, S., & Hyman, A. A. SAS 4 is a C elegans centriolar protein that controls centrosome size. Cell 112, 575-587 (2003
    • (2003) Cell , vol.112 , pp. 575-587
    • Kirkham, M.1    Müller-Reichert, T.2    Oegema, K.3    Grill, S.4    Hyman, A.A.5
  • 179
    • 84929253710 scopus 로고    scopus 로고
    • The caenorhabditis elegans pericentriolar material components spd 2 and spd 5 are monomeric in the cytoplasm before incorporation into the pcm matrix
    • Wueseke, O., et al. The Caenorhabditis elegans pericentriolar material components SPD 2 and SPD 5 are monomeric in the cytoplasm before incorporation into the PCM matrix. Mol. Biol. Cell 25, 2984-2992 (2014
    • (2014) Mol. Biol. Cell , vol.25 , pp. 2984-2992
    • Wueseke, O.1
  • 180
    • 78650501049 scopus 로고    scopus 로고
    • Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in drosophila neuroblasts
    • Conduit, P. T., & Raff, J. W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187-2192 (2010
    • (2010) Curr. Biol , vol.20 , pp. 2187-2192
    • Conduit, P.T.1    Raff, J.W.2
  • 181
    • 84897101480 scopus 로고    scopus 로고
    • Importance of the cep215-pericentrin interaction for centrosome maturation during mitosis
    • Kim, S., & Rhee, K. Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis. PLoS ONE 9, e87016 (2014
    • (2014) PLoS ONE , vol.9 , pp. e87016
    • Kim, S.1    Rhee, K.2
  • 182
    • 36049016731 scopus 로고    scopus 로고
    • Human cep192 is required for mitotic centrosome and spindle assembly
    • Gomez-Ferreria, M. A., et al. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 17, 1960-1966 (2007
    • (2007) Curr. Biol , vol.17 , pp. 1960-1966
    • Gomez-Ferreria, M.A.1
  • 183
    • 84906791372 scopus 로고    scopus 로고
    • The cep192 organized aurora a-plk1 cascade is essential for centrosome cycle and bipolar spindle assembly
    • Joukov, V., Walter, J. C., & De Nicolo, A. The Cep192 organized Aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol. Cell 55, 578-591 (2014
    • (2014) Mol. Cell , vol.55 , pp. 578-591
    • Joukov, V.1    Walter, J.C.2    De Nicolo, A.3
  • 184
    • 77950566340 scopus 로고    scopus 로고
    • Cdk5rap2 functions in centrosome to spindle pole attachment and DNA damage response
    • Barr, A. R., Kilmartin, J. V., & Gergely, F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J. Cell Biol. 189, 23-39 (2010
    • (2010) J. Cell Biol , vol.189 , pp. 23-39
    • Barr, A.R.1    Kilmartin, J.V.2    Gergely, F.3
  • 185
    • 78650115459 scopus 로고    scopus 로고
    • Cdk5rap2 stimulates microtubule nucleation by the γ-Tubulin ring complex
    • Choi, Y. K., Liu, P., Sze, S. K., Dai, C., & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the γ-Tubulin ring complex. J. Cell Biol. 191, 1089-1095 (2010
    • (2010) J. Cell Biol , vol.191 , pp. 1089-1095
    • Choi, Y.K.1    Liu, P.2    Sze, S.K.3    Dai, C.4    Qi, R.Z.5
  • 186
    • 3343008017 scopus 로고    scopus 로고
    • Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry
    • Zimmerman, W. C., Sillibourne, J., Rosa, J., & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642-3657 (2004
    • (2004) Mol. Biol. Cell , vol.15 , pp. 3642-3657
    • Zimmerman, W.C.1    Sillibourne, J.2    Rosa, J.3    Doxsey, S.J.4
  • 187
    • 38749152785 scopus 로고    scopus 로고
    • Cdk5rap2 is a pericentriolar protein that functions in centrosomal attachment of the γ-Tubulin ring complex
    • Fong, K. W., Choi, Y. K., Rattner, J. B., & Qi, R. Z. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-Tubulin ring complex. Mol. Biol. Cell 19, 115-125 (2008
    • (2008) Mol. Biol. Cell , vol.19 , pp. 115-125
    • Fong, K.W.1    Choi, Y.K.2    Rattner, J.B.3    Qi, R.Z.4
  • 188
    • 0041885288 scopus 로고    scopus 로고
    • Interaction of aurora a and centrosomin at the microtubule-nucleating site in drosophila and mammalian cells
    • Terada, Y., Uetake, Y., & Kuriyama, R. Interaction of Aurora A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol. 162, 757-763 (2003
    • (2003) J. Cell Biol , vol.162 , pp. 757-763
    • Terada, Y.1    Uetake, Y.2    Kuriyama, R.3
  • 189
    • 84936085707 scopus 로고    scopus 로고
    • Bimodal interaction of mammalian polo-like kinase 1 and a centrosomal scaffold, cep192, in the regulation of bipolar spindle formation
    • Meng, L., et al. Bimodal interaction of mammalian Polo-like kinase 1 and a centrosomal scaffold, Cep192, in the regulation of bipolar spindle formation. Mol Cell. Biol. http://dx.doi.org/10.1128/MCB.00068-15 (2015
    • (2015) Mol Cell. Biol
    • Meng, L.1
  • 190
    • 77955962579 scopus 로고    scopus 로고
    • Cdk5rap2 regulates centriole engagement and cohesion in mice
    • Barrera, J. A., et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913-926 (2010
    • (2010) Dev. Cell , vol.18 , pp. 913-926
    • Barrera, J.A.1
  • 191
    • 84863794110 scopus 로고    scopus 로고
    • Separase-dependent cleavage of pericentrin b is necessary and sufficient for centriole disengagement during mitosis
    • Lee, K., & Rhee, K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell Cycle 11, 2476-2485 (2012
    • (2012) Cell Cycle , vol.11 , pp. 2476-2485
    • Lee, K.1    Rhee, K.2
  • 192
    • 84991383582 scopus 로고    scopus 로고
    • Degradation of cep68 and pcnt cleavage mediate cep215 removal from the pcm to allow centriole separation, disengagement and licensing
    • Pagan, J. K., et al. Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nat. Cell Biol. 17, 31-43 (2015
    • (2015) Nat. Cell Biol , vol.17 , pp. 31-43
    • Pagan, J.K.1
  • 193
    • 38349078475 scopus 로고    scopus 로고
    • Cep68 and cep215 (cdk5rap2) are required for centrosome cohesion
    • Graser, S. S., Stierhof, Y. D. Y., & Nigg, E. A. E. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 120, 4321-4331 (2007
    • (2007) J. Cell Sci , vol.120 , pp. 4321-4331
    • Graser, S.S.1    Stierhof, Y.D.Y.2    Nigg, E.A.E.3
  • 194
    • 0033538844 scopus 로고    scopus 로고
    • The sudden recruitment of γ-Tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules
    • Khodjakov, A., & Rieder, C. L. The sudden recruitment of γ-Tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585-596 (1999
    • (1999) J. Cell Biol , vol.146 , pp. 585-596
    • Khodjakov, A.1    Rieder, C.L.2
  • 195
    • 16344379858 scopus 로고    scopus 로고
    • Dynamic recruitment of nek2 kinase to the centrosome involves microtubules pcm 1, and localized proteasomal degradation
    • Hames, R. S., et al. Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM 1, and localized proteasomal degradation. Mol. Biol. Cell 16, 1711-1724 (2005
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1711-1724
    • Hames, R.S.1
  • 196
    • 78650437294 scopus 로고    scopus 로고
    • Centrioles regulate centrosome size by controlling the rate of cnn incorporation into the pcm
    • Conduit, P. T., et al. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr. Biol. 20, 2178-2186 (2010
    • (2010) Curr. Biol , vol.20 , pp. 2178-2186
    • Conduit, P.T.1
  • 197
    • 84938592605 scopus 로고    scopus 로고
    • Different drosophila cell types exhibit important differences in mitotic centrosome assembly dynamics
    • Conduit, P. T., & Raff, J. W. Different Drosophila cell types exhibit important differences in mitotic centrosome assembly dynamics. Curr. Biol. 25, R650-R651 (2015
    • (2015) Curr. Biol , vol.25 , pp. R650-R651
    • Conduit, P.T.1    Raff, J.W.2
  • 198
    • 84903710066 scopus 로고    scopus 로고
    • Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles
    • Zwicker, D., Decker, M., Jaensch, S., Hyman, A. A., & Julicher, F. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl Acad. Sci. 111, E2636-E2645 (2014
    • (2014) Proc. Natl Acad. Sci , vol.111 , pp. E2636-E2645
    • Zwicker, D.1    Decker, M.2    Jaensch, S.3    Hyman, A.A.4    Julicher, F.5
  • 199
    • 84938571115 scopus 로고    scopus 로고
    • Isotropic incorporation of spd 5 underlies centrosome assembly in c elegans
    • Laos, T., Cabral, G., & Dammermann, A. Isotropic incorporation of SPD 5 underlies centrosome assembly in C elegans. Curr. Biol. 25, R648-R649 (2015
    • (2015) Curr. Biol , vol.25 , pp. R648-R649
    • Laos, T.1    Cabral, G.2    Dammermann, A.3
  • 200
    • 84904576048 scopus 로고    scopus 로고
    • Separate to operate: Control of centrosome positioning and separation
    • Agircan, F. G., Schiebel, E., & Mardin, B. R. Separate to operate: control of centrosome positioning and separation. Philos. Trans. R. Soc. Lond. B 369, 20130461 (2014
    • (2014) Philos. Trans. R. Soc. Lond , vol.B369 , pp. 20130461
    • Agircan, F.G.1    Schiebel, E.2    Mardin, B.R.3
  • 201
    • 30844463905 scopus 로고    scopus 로고
    • Controlling centrosome number: Licenses and blocks
    • Tsou, M. F. B., & Stearns, T. Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18, 74-78 (2006
    • (2006) Curr. Opin. Cell Biol , vol.18 , pp. 74-78
    • Tsou, M.F.B.1    Stearns, T.2
  • 202
    • 0036905276 scopus 로고    scopus 로고
    • The centrosome is a dynamic structure that ejects pcm flares
    • Megraw, T. L., Kilaru, S., Turner, F. R., & Kaufman, T. C. The centrosome is a dynamic structure that ejects PCM flares. J. Cell Sci. 115, 4707-4718 (2002
    • (2002) J. Cell Sci , vol.115 , pp. 4707-4718
    • Megraw, T.L.1    Kilaru, S.2    Turner, F.R.3    Kaufman, T.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.