-
1
-
-
84894335402
-
STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification.
-
Arquint, C., and E.A. Nigg. 2014. STIL microcephaly mutations interfere with APC/C-mediated degradation and cause centriole amplification. Curr. Biol. 24:351-360. http://dx.doi.org/10.1016/j.cub.2013.12.016
-
(2014)
Curr. Biol.
, vol.24
, pp. 351-360
-
-
Arquint, C.1
Nigg, E.A.2
-
2
-
-
84861414443
-
Cell-cycle-regulated expression of STIL controls centriole number in human cells
-
Arquint, C., K.F. Sonnen, Y.D. Stierhof, and E.A. Nigg. 2012. Cell-cycle-regulated expression of STIL controls centriole number in human cells. J. Cell Sci. 125:1342-1352. http://dx.doi.org/10.1242/jcs.099887
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1342-1352
-
-
Arquint, C.1
Sonnen, K.F.2
Stierhof, Y.D.3
Nigg, E.A.4
-
3
-
-
44649117902
-
Centrosome amplification can initiate tumorigenesis in flies
-
Basto, R., K. Brunk, T. Vinadogrova, N. Peel, A. Franz, A. Khodjakov, and J.W. Raff. 2008. Centrosome amplification can initiate tumorigenesis in flies. Cell. 133:1032-1042. http://dx.doi.org/10.1016/j.cell.2008.05.039
-
(2008)
Cell.
, vol.133
, pp. 1032-1042
-
-
Basto, R.1
Brunk, K.2
Vinadogrova, T.3
Peel, N.4
Franz, A.5
Khodjakov, A.6
Raff, J.W.7
-
4
-
-
84898780186
-
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo
-
Bazzi, H., and K.V. Anderson. 2014. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc. Natl. Acad. Sci. USA. 111:E1491-E1500. http://dx.doi.org/10.1073/pnas.1400568111
-
(2014)
Proc. Natl. Acad. Sci. USA.
, vol.111
, pp. E1491-E1500
-
-
Bazzi, H.1
Anderson, K.V.2
-
5
-
-
49649092093
-
Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability
-
Castellanos, E., P. Dominguez, and C. Gonzalez. 2008. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr. Biol. 18:1209-1214. http://dx.doi.org/10.1016/j.cub.2008.07.029
-
(2008)
Curr. Biol.
, vol.18
, pp. 1209-1214
-
-
Castellanos, E.1
Dominguez, P.2
Gonzalez, C.3
-
6
-
-
80054814528
-
A clinical overview of centrosome amplification in human cancers
-
Chan, J.Y. 2011. A clinical overview of centrosome amplification in human cancers. Int. J. Biol. Sci. 7:1122-1144. http://dx.doi.org/10.7150/ijbs.7.1122
-
(2011)
Int. J. Biol. Sci.
, vol.7
, pp. 1122-1144
-
-
Chan, J.Y.1
-
7
-
-
78349263512
-
Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome
-
Cizmecioglu, O., M. Arnold, R. Bahtz, F. Settele, L. Ehret, U. Haselmann-Weiss, C. Antony, and I. Hoffmann. 2010. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191:731-739. http://dx.doi.org/10.1083/jcb.201007107
-
(2010)
J. Cell Biol.
, vol.191
, pp. 731-739
-
-
Cizmecioglu, O.1
Arnold, M.2
Bahtz, R.3
Settele, F.4
Ehret, L.5
Haselmann-Weiss, U.6
Antony, C.7
Hoffmann, I.8
-
8
-
-
58149159563
-
The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4
-
Cunha-Ferreira, I., A. Rodrigues-Martins, I. Bento, M. Riparbelli, W. Zhang, E. Laue, G. Callaini, D.M. Glover, and M. Bettencourt-Dias. 2009. The SCF/Slimb ubiquitin ligase limits centrosome amplification through degradation of SAK/PLK4. Curr. Biol. 19:43-49. http://dx.doi.org/10.1016/j.cub.2008.11.037
-
(2009)
Curr. Biol.
, vol.19
, pp. 43-49
-
-
Cunha-Ferreira, I.1
Rodrigues-Martins, A.2
Bento, I.3
Riparbelli, M.4
Zhang, W.5
Laue, E.6
Callaini, G.7
Glover, D.M.8
Bettencourt-Dias, M.9
-
9
-
-
84889103130
-
Regulation of autophosphorylation controls PLK4 self-destruction and centriole number
-
Cunha-Ferreira, I., I. Bento, A. Pimenta-Marques, S.C. Jana, M. Lince-Faria, P. Duarte, J. Borrego-Pinto, S. Gilberto, T. Amado, D. Brito, et al. 2013. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr. Biol. 23:2245-2254. http://dx.doi.org/10.1016/j.cub.2013.09.037
-
(2013)
Curr. Biol.
, vol.23
, pp. 2245-2254
-
-
Cunha-Ferreira, I.1
Bento, I.2
Pimenta-Marques, A.3
Jana, S.C.4
Lince-Faria, M.5
Duarte, P.6
Borrego-Pinto, J.7
Gilberto, S.8
Amado, T.9
Brito, D.10
-
10
-
-
10644253531
-
Centriole assembly requires both centriolar and pericentriolar material proteins
-
Dammermann, A., T. Müller-Reichert, L. Pelletier, B. Habermann, A. Desai, and K. Oegema. 2004. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell. 7:815-829. http://dx.doi.org/10.1016/j.devcel.2004.10.015
-
(2004)
Dev. Cell.
, vol.7
, pp. 815-829
-
-
Dammermann, A.1
Müller-Reichert, T.2
Pelletier, L.3
Habermann, B.4
Desai, A.5
Oegema, K.6
-
11
-
-
77954040650
-
Centrioles: active players or passengers during mitosis?
-
Debec, A., W. Sullivan, and M. Bettencourt-Dias. 2010. Centrioles: active players or passengers during mitosis? Cell. Mol. Life Sci. 67:2173-2194. http://dx.doi.org/10.1007/s00018-010-0323-9
-
(2010)
Cell. Mol. Life Sci.
, vol.67
, pp. 2173-2194
-
-
Debec, A.1
Sullivan, W.2
Bettencourt-Dias, M.3
-
12
-
-
3242671694
-
Centriolar SAS-5 is required for centrosome duplication in C. elegans
-
Delattre, M., S. Leidel, K. Wani, K. Baumer, J. Bamat, H. Schnabel, R. Feichtinger, R. Schnabel, and P. Gönczy. 2004. Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nat. Cell Biol. 6:656-664. http://dx.doi.org/10.1038/ncb1146
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 656-664
-
-
Delattre, M.1
Leidel, S.2
Wani, K.3
Baumer, K.4
Bamat, J.5
Schnabel, H.6
Feichtinger, R.7
Schnabel, R.8
Gönczy, P.9
-
13
-
-
77957982182
-
Asterless is a scaffold for the onset of centriole assembly
-
Dzhindzhev, N.S., Q.D. Yu, K. Weiskopf, G. Tzolovsky, I. Cunha-Ferreira, M. Riparbelli, A. Rodrigues-Martins, M. Bettencourt-Dias, G. Callaini, and D.M. Glover. 2010. Asterless is a scaffold for the onset of centriole assembly. Nature. 467:714-718. http://dx.doi.org/10.1038/nature09445
-
(2010)
Nature.
, vol.467
, pp. 714-718
-
-
Dzhindzhev, N.S.1
Yu, Q.D.2
Weiskopf, K.3
Tzolovsky, G.4
Cunha-Ferreira, I.5
Riparbelli, M.6
Rodrigues-Martins, A.7
Bettencourt-Dias, M.8
Callaini, G.9
Glover, D.M.10
-
14
-
-
84913582254
-
Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation
-
Dzhindzhev, N.S., G. Tzolovsky, Z. Lipinszki, S. Schneider, R. Lattao, J. Fu, J. Debski, M. Dadlez, and D.M. Glover. 2014. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24:2526-2532. http://dx.doi.org/10.1016/j.cub.2014.08.061
-
(2014)
Curr. Biol.
, vol.24
, pp. 2526-2532
-
-
Dzhindzhev, N.S.1
Tzolovsky, G.2
Lipinszki, Z.3
Schneider, S.4
Lattao, R.5
Fu, J.6
Debski, J.7
Dadlez, M.8
Glover, D.M.9
-
15
-
-
84904873297
-
SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication
-
Fong, C.S., M. Kim, T.T. Yang, J.C. Liao, and M.F. Tsou. 2014. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication. Dev. Cell. 30:238-245. http://dx.doi.org/10.1016/j.devcel.2014.05.008
-
(2014)
Dev. Cell.
, vol.30
, pp. 238-245
-
-
Fong, C.S.1
Kim, M.2
Yang, T.T.3
Liao, J.C.4
Tsou, M.F.5
-
16
-
-
67649467032
-
A mechanism linking extra centrosomes to chromosomal instability
-
Ganem, N.J., S.A. Godinho, and D. Pellman. 2009. A mechanism linking extra centrosomes to chromosomal instability. Nature. 460:278-282. http://dx.doi.org/10.1038/nature08136
-
(2009)
Nature.
, vol.460
, pp. 278-282
-
-
Ganem, N.J.1
Godinho, S.A.2
Pellman, D.3
-
17
-
-
84901979739
-
Oncogene-like induction of cellular invasion from centrosome amplification
-
Godinho, S.A., R. Picone, M. Burute, R. Dagher, Y. Su, C.T. Leung, K. Polyak, J.S. Brugge, M. Théry, and D. Pellman. 2014. Oncogene-like induction of cellular invasion from centrosome amplification. Nature. 510:167-171. http://dx.doi.org/10.1038/nature13277
-
(2014)
Nature.
, vol.510
, pp. 167-171
-
-
Godinho, S.A.1
Picone, R.2
Burute, M.3
Dagher, R.4
Su, Y.5
Leung, C.T.6
Polyak, K.7
Brugge, J.S.8
Théry, M.9
Pellman, D.10
-
18
-
-
84862765284
-
Towards a molecular architecture of centriole assembly.
-
Gönczy, P. 2012. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13:425-435. http://dx.doi.org/10.1038/nrm3373
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 425-435
-
-
Gönczy, P.1
-
19
-
-
77954354411
-
Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation
-
Guderian, G., J. Westendorf, A. Uldschmid, and E.A. Nigg. 2010. Plk4 trans-autophosphorylation regulates centriole number by controlling betaTrCP-mediated degradation. J. Cell Sci. 123:2163-2169. http://dx.doi.org/10.1242/jcs.068502
-
(2010)
J. Cell Sci.
, vol.123
, pp. 2163-2169
-
-
Guderian, G.1
Westendorf, J.2
Uldschmid, A.3
Nigg, E.A.4
-
20
-
-
78349243322
-
Cep152 interacts with Plk4 and is required for centriole duplication
-
Hatch, E.M., A. Kulukian, A.J. Holland, D.W. Cleveland, and T. Stearns. 2010. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191:721-729. http://dx.doi.org/10.1083/jcb.201006049
-
(2010)
J. Cell Biol.
, vol.191
, pp. 721-729
-
-
Hatch, E.M.1
Kulukian, A.2
Holland, A.J.3
Cleveland, D.W.4
Stearns, T.5
-
21
-
-
33646485094
-
Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites
-
Hoffert, J.D., T. Pisitkun, G. Wang, R.F. Shen, and M.A. Knepper. 2006. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc. Natl. Acad. Sci. USA. 103:7159-7164. http://dx.doi.org/10.1073/pnas.0600895103
-
(2006)
Proc. Natl. Acad. Sci. USA.
, vol.103
, pp. 7159-7164
-
-
Hoffert, J.D.1
Pisitkun, T.2
Wang, G.3
Shen, R.F.4
Knepper, M.A.5
-
22
-
-
84905690496
-
Polo-like kinase 4 inhibition: a strategy for cancer therapy?
-
Holland, A.J., and D.W. Cleveland. 2014. Polo-like kinase 4 inhibition: a strategy for cancer therapy? Cancer Cell. 26:151-153. http://dx.doi.org/10.1016/j.ccr.2014.07.017
-
(2014)
Cancer Cell.
, vol.26
, pp. 151-153
-
-
Holland, A.J.1
Cleveland, D.W.2
-
23
-
-
76149140089
-
Pololike kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability
-
Holland, A.J., W. Lan, S. Niessen, H. Hoover, and D.W. Cleveland. 2010. Pololike kinase 4 kinase activity limits centrosome overduplication by autoregulating its own stability. J. Cell Biol. 188:191-198. http://dx.doi.org/10.1083/jcb.200911102
-
(2010)
J. Cell Biol.
, vol.188
, pp. 191-198
-
-
Holland, A.J.1
Lan, W.2
Niessen, S.3
Hoover, H.4
Cleveland, D.W.5
-
24
-
-
84871552330
-
The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle
-
Holland, A.J., D. Fachinetti, Q. Zhu, M. Bauer, I.M. Verma, E.A. Nigg, and D.W. Cleveland. 2012. The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes Dev. 26:2684-2689. http://dx.doi.org/10.1101/gad.207027.112
-
(2012)
Genes Dev.
, vol.26
, pp. 2684-2689
-
-
Holland, A.J.1
Fachinetti, D.2
Zhu, Q.3
Bauer, M.4
Verma, I.M.5
Nigg, E.A.6
Cleveland, D.W.7
-
25
-
-
0036714596
-
Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis
-
Hussein, D., and S.S. Taylor. 2002. Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. J. Cell Sci. 115:3403-3414.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 3403-3414
-
-
Hussein, D.1
Taylor, S.S.2
-
26
-
-
78650466243
-
A tissue-specific atlas of mouse protein phosphorylation and expression
-
Huttlin, E.L., M.P. Jedrychowski, J.E. Elias, T. Goswami, R. Rad, S.A. Beausoleil, J. Villén, W. Haas, M.E. Sowa, and S.P. Gygi. 2010. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 143:1174-1189. http://dx.doi.org/10.1016/j.cell.2010.12.001
-
(2010)
Cell.
, vol.143
, pp. 1174-1189
-
-
Huttlin, E.L.1
Jedrychowski, M.P.2
Elias, J.E.3
Goswami, T.4
Rad, R.5
Beausoleil, S.A.6
Villén, J.7
Haas, W.8
Sowa, M.E.9
Gygi, S.P.10
-
27
-
-
84908356949
-
Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion
-
Izquierdo, D., W.J. Wang, K. Uryu, and M.F. Tsou. 2014. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Reports. 8:957-965. http://dx.doi.org/10.1016/j.celrep.2014.07.022
-
(2014)
Cell Reports.
, vol.8
, pp. 957-965
-
-
Izquierdo, D.1
Wang, W.J.2
Uryu, K.3
Tsou, M.F.4
-
28
-
-
34548058372
-
Pharmacological and functional comparison of the polo-like kinase family: insight into inhibitor and substrate specificity
-
Johnson, E.F., K.D. Stewart, K.W. Woods, V.L. Giranda, and Y. Luo. 2007. Pharmacological and functional comparison of the polo-like kinase family: insight into inhibitor and substrate specificity. Biochemistry. 46:9551-9563. http://dx.doi.org/10.1021/bi7008745
-
(2007)
Biochemistry.
, vol.46
, pp. 9551-9563
-
-
Johnson, E.F.1
Stewart, K.D.2
Woods, K.W.3
Giranda, V.L.4
Luo, Y.5
-
29
-
-
1842583754
-
Centrosome maturation and duplication in C. elegans require the coiledcoil protein SPD-2
-
Kemp, C.A., K.R. Kopish, P. Zipperlen, J. Ahringer, and K.F. O'Connell. 2004. Centrosome maturation and duplication in C. elegans require the coiledcoil protein SPD-2. Dev. Cell. 6:511-523. http://dx.doi.org/10.1016/S1534-5807(04)00066-8
-
(2004)
Dev. Cell.
, vol.6
, pp. 511-523
-
-
Kemp, C.A.1
Kopish, K.R.2
Zipperlen, P.3
Ahringer, J.4
O'Connell, K.F.5
-
30
-
-
84861592048
-
Rapid determination of multiple linear kinase substrate motifs by mass spectrometry
-
Kettenbach, A.N., T. Wang, B.K. Faherty, D.R. Madden, S. Knapp, C. Bailey-Kellogg, and S.A. Gerber. 2012. Rapid determination of multiple linear kinase substrate motifs by mass spectrometry. Chem. Biol. 19:608-618. http://dx.doi.org/10.1016/j.chembiol.2012.04.011
-
(2012)
Chem. Biol.
, vol.19
, pp. 608-618
-
-
Kettenbach, A.N.1
Wang, T.2
Faherty, B.K.3
Madden, D.R.4
Knapp, S.5
Bailey-Kellogg, C.6
Gerber, S.A.7
-
31
-
-
0035795415
-
Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression
-
Khodjakov, A., and C.L. Rieder. 2001. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153:237-242. http://dx.doi.org/10.1083/jcb.153.1.237
-
(2001)
J. Cell Biol.
, vol.153
, pp. 237-242
-
-
Khodjakov, A.1
Rieder, C.L.2
-
32
-
-
84890282862
-
Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152
-
Kim, T.S., J.E. Park, A. Shukla, S. Choi, R.N. Murugan, J.H. Lee, M. Ahn, K. Rhee, J.K. Bang, B.Y. Kim, et al. 2013. Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc. Natl. Acad. Sci. USA. 110:E4849-E4857. http://dx.doi.org/10.1073/pnas.1319656110
-
(2013)
Proc. Natl. Acad. Sci. USA.
, vol.110
, pp. E4849-E4857
-
-
Kim, T.S.1
Park, J.E.2
Shukla, A.3
Choi, S.4
Murugan, R.N.5
Lee, J.H.6
Ahn, M.7
Rhee, K.8
Bang, J.K.9
Kim, B.Y.10
-
33
-
-
0037459108
-
SAS-4 is a C. elegans centriolar protein that controls centrosome size
-
Kirkham, M., T. Müller-Reichert, K. Oegema, S. Grill, and A.A. Hyman. 2003. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell. 112:575-587. http://dx.doi.org/10.1016/S0092-8674(03)00117-X
-
(2003)
Cell.
, vol.112
, pp. 575-587
-
-
Kirkham, M.1
Müller-Reichert, T.2
Oegema, K.3
Grill, S.4
Hyman, A.A.5
-
34
-
-
79651473154
-
Structural basis of the 9-fold symmetry of centrioles
-
Kitagawa, D., I. Vakonakis, N. Olieric, M. Hilbert, D. Keller, V. Olieric, M. Bortfeld, M.C. Erat, I. Flückiger, P. Gönczy, and M.O. Steinmetz. 2011. Structural basis of the 9-fold symmetry of centrioles. Cell. 144:364-375. http://dx.doi.org/10.1016/j.cell.2011.01.008
-
(2011)
Cell.
, vol.144
, pp. 364-375
-
-
Kitagawa, D.1
Vakonakis, I.2
Olieric, N.3
Hilbert, M.4
Keller, D.5
Olieric, V.6
Bortfeld, M.7
Erat, M.C.8
Flückiger, I.9
Gönczy, P.10
Steinmetz, M.O.11
-
35
-
-
84889084229
-
Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron
-
Klebba, J.E., D.W. Buster, A.L. Nguyen, S. Swatkoski, M. Gucek, N.M. Rusan, and G.C. Rogers. 2013. Polo-like kinase 4 autodestructs by generating its Slimb-binding phosphodegron. Curr. Biol. 23:2255-2261. http://dx.doi.org/10.1016/j.cub.2013.09.019
-
(2013)
Curr. Biol.
, vol.23
, pp. 2255-2261
-
-
Klebba, J.E.1
Buster, D.W.2
Nguyen, A.L.3
Swatkoski, S.4
Gucek, M.5
Rusan, N.M.6
Rogers, G.C.7
-
36
-
-
84979691996
-
Plk4-dependent phosphorylation of STIL is required for centriole duplication
-
Kratz, A.S., F. Bärenz, K.T. Richter, and I. Hoffmann. 2015. Plk4-dependent phosphorylation of STIL is required for centriole duplication. Biol. Open. 4:370-377. http://dx.doi.org/10.1242/bio.201411023
-
(2015)
Biol. Open.
, vol.4
, pp. 370-377
-
-
Kratz, A.S.1
Bärenz, F.2
Richter, K.T.3
Hoffmann, I.4
-
37
-
-
84881425734
-
The discovery of PLK4 inhibitors: (E)-3-((1H-Indazol-6-yl)methylene)indolin-2-ones as novel antiproliferative agents
-
Laufer, R., B. Forrest, S.W. Li, Y. Liu, P. Sampson, L. Edwards, Y. Lang, D.E. Awrey, G. Mao, O. Plotnikova, et al. 2013. The discovery of PLK4 inhibitors: (E)-3-((1H-Indazol-6-yl)methylene)indolin-2-ones as novel antiproliferative agents. J. Med. Chem. 56:6069-6087. http://dx.doi.org/10.1021/jm400380m
-
(2013)
J. Med. Chem.
, vol.56
, pp. 6069-6087
-
-
Laufer, R.1
Forrest, B.2
Li, S.W.3
Liu, Y.4
Sampson, P.5
Edwards, L.6
Lang, Y.7
Awrey, D.E.8
Mao, G.9
Plotnikova, O.10
-
38
-
-
0037343945
-
SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle
-
Leidel, S., and P. Gönczy. 2003. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell. 4:431-439. http://dx.doi.org/10.1016/S1534-5807(03)00062-5
-
(2003)
Dev. Cell.
, vol.4
, pp. 431-439
-
-
Leidel, S.1
Gönczy, P.2
-
39
-
-
13944278891
-
SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells
-
Leidel, S., M. Delattre, L. Cerutti, K. Baumer, and P. Gönczy. 2005. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat. Cell Biol. 7:115-125. http://dx.doi.org/10.1038/ncb1220
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 115-125
-
-
Leidel, S.1
Delattre, M.2
Cerutti, L.3
Baumer, K.4
Gönczy, P.5
-
40
-
-
84877804830
-
Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly
-
Lettman, M.M., Y.L. Wong, V. Viscardi, S. Niessen, S.H. Chen, A.K. Shiau, H. Zhou, A. Desai, and K. Oegema. 2013. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev. Cell. 25:284-298. http://dx.doi.org/10.1016/j.devcel.2013.03.011
-
(2013)
Dev. Cell.
, vol.25
, pp. 284-298
-
-
Lettman, M.M.1
Wong, Y.L.2
Viscardi, V.3
Niessen, S.4
Chen, S.H.5
Shiau, A.K.6
Zhou, H.7
Desai, A.8
Oegema, K.9
-
41
-
-
84905709109
-
Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent
-
Mason, J.M., D.C. Lin, X. Wei, Y. Che, Y. Yao, R. Kiarash, D.W. Cescon, G.C. Fletcher, D.E. Awrey, M.R. Bray, et al. 2014. Functional characterization of CFI-400945, a Polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell. 26:163-176. http://dx.doi.org/10.1016/j.ccr.2014.05.00625043604
-
(2014)
Cancer Cell.
, vol.26
, pp. 163-176
-
-
Mason, J.M.1
Lin, D.C.2
Wei, X.3
Che, Y.4
Yao, Y.5
Kiarash, R.6
Cescon, D.W.7
Fletcher, G.C.8
Awrey, D.E.9
Bray, M.R.10
-
42
-
-
84877732723
-
SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress
-
Nakamura, T., H. Saito, and M. Takekawa. 2013. SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress. Nat. Commun. 4:1775. http://dx.doi.org/10.1038/ncomms2752
-
(2013)
Nat. Commun.
, vol.4
, pp. 1775
-
-
Nakamura, T.1
Saito, H.2
Takekawa, M.3
-
43
-
-
70350771277
-
Centrioles, centrosomes, and cilia in health and disease
-
Nigg, E.A., and J.W. Raff. 2009. Centrioles, centrosomes, and cilia in health and disease. Cell. 139:663-678. http://dx.doi.org/10.1016/j.cell.2009.10.036
-
(2009)
Cell.
, vol.139
, pp. 663-678
-
-
Nigg, E.A.1
Raff, J.W.2
-
44
-
-
0035907012
-
The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo
-
O'Connell, K.F., C. Caron, K.R. Kopish, D.D. Hurd, K.J. Kemphues, Y. Li, and J.G. White. 2001. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell. 105:547-558. http://dx.doi.org/10.1016/S0092-8674(01)00338-5
-
(2001)
Cell.
, vol.105
, pp. 547-558
-
-
O'Connell, K.F.1
Caron, C.2
Kopish, K.R.3
Hurd, D.D.4
Kemphues, K.J.5
Li, Y.6
White, J.G.7
-
45
-
-
84929463214
-
Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole
-
Ohta, M., T. Ashikawa, Y. Nozaki, H. Kozuka-Hata, H. Goto, M. Inagaki, M. Oyama, and D. Kitagawa. 2014. Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole. Nat. Commun. 5:5267. http://dx.doi.org/10.1038/ncomms6267
-
(2014)
Nat. Commun.
, vol.5
, pp. 5267
-
-
Ohta, M.1
Ashikawa, T.2
Nozaki, Y.3
Kozuka-Hata, H.4
Goto, H.5
Inagaki, M.6
Oyama, M.7
Kitagawa, D.8
-
46
-
-
3042688773
-
The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication
-
Pelletier, L., N. Ozlü, E. Hannak, C. Cowan, B. Habermann, M. Ruer, T. Müller-Reichert, and A.A. Hyman. 2004. The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14:863-873. http://dx.doi.org/10.1016/j.cub.2004.04.012
-
(2004)
Curr. Biol.
, vol.14
, pp. 863-873
-
-
Pelletier, L.1
Ozlü, N.2
Hannak, E.3
Cowan, C.4
Habermann, B.5
Ruer, M.6
Müller-Reichert, T.7
Hyman, A.A.8
-
47
-
-
60849113138
-
The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication
-
Rogers, G.C., N.M. Rusan, D.M. Roberts, M. Peifer, and S.L. Rogers. 2009. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J. Cell Biol. 184:225-239. http://dx.doi.org/10.1083/jcb.200808049
-
(2009)
J. Cell Biol.
, vol.184
, pp. 225-239
-
-
Rogers, G.C.1
Rusan, N.M.2
Roberts, D.M.3
Peifer, M.4
Rogers, S.L.5
-
48
-
-
39749193861
-
A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins
-
Rothbauer, U., K. Zolghadr, S. Muyldermans, A. Schepers, M.C. Cardoso, and H. Leonhardt. 2008. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteomics. 7:282-289. http://dx.doi.org/10.1074/mcp.M700342-MCP200
-
(2008)
Mol. Cell. Proteomics.
, vol.7
, pp. 282-289
-
-
Rothbauer, U.1
Zolghadr, K.2
Muyldermans, S.3
Schepers, A.4
Cardoso, M.C.5
Leonhardt, H.6
-
49
-
-
68749084849
-
Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells
-
Silkworth, W.T., I.K. Nardi, L.M. Scholl, and D. Cimini. 2009. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS ONE. 4:e6564. http://dx.doi.org/10.1371/journal.pone.0006564
-
(2009)
PLoS ONE.
, vol.4
-
-
Silkworth, W.T.1
Nardi, I.K.2
Scholl, L.M.3
Cimini, D.4
-
50
-
-
84890838332
-
Loss of centrioles causes chromosomal instability in vertebrate somatic cells
-
Sir, J.H., M. Pütz, O. Daly, C.G. Morrison, M. Dunning, J.V. Kilmartin, and F. Gergely. 2013. Loss of centrioles causes chromosomal instability in vertebrate somatic cells. J. Cell Biol. 203:747-756. http://dx.doi.org/10.1083/jcb.201309038
-
(2013)
J. Cell Biol.
, vol.203
, pp. 747-756
-
-
Sir, J.H.1
Pütz, M.2
Daly, O.3
Morrison, C.G.4
Dunning, M.5
Kilmartin, J.V.6
Gergely, F.7
-
51
-
-
84964866213
-
3D-structured illumination microscopy provides novel insight into architecture of human centrosomes
-
Sonnen, K.F., L. Schermelleh, H. Leonhardt, and E.A. Nigg. 2012. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open. 1:965-976. http://dx.doi.org/10.1242/bio.20122337
-
(2012)
Biol. Open
, vol.1
, pp. 965-976
-
-
Sonnen, K.F.1
Schermelleh, L.2
Leonhardt, H.3
Nigg, E.A.4
-
52
-
-
84880720569
-
Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication
-
Sonnen, K.F., A.M. Gabryjonczyk, E. Anselm, Y.D. Stierhof, and E.A. Nigg. 2013. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 126:3223-3233. http://dx.doi.org/10.1242/jcs.129502
-
(2013)
J. Cell Sci.
, vol.126
, pp. 3223-3233
-
-
Sonnen, K.F.1
Gabryjonczyk, A.M.2
Anselm, E.3
Stierhof, Y.D.4
Nigg, E.A.5
-
53
-
-
76349104200
-
Drosophila Ana2 is a conserved centriole duplication factor
-
Stevens, N.R., J. Dobbelaere, K. Brunk, A. Franz, and J.W. Raff. 2010a. Drosophila Ana2 is a conserved centriole duplication factor. J. Cell Biol. 188:313-323. http://dx.doi.org/10.1083/jcb.200910016
-
(2010)
J. Cell Biol.
, vol.188
, pp. 313-323
-
-
Stevens, N.R.1
Dobbelaere, J.2
Brunk, K.3
Franz, A.4
Raff, J.W.5
-
54
-
-
78649954376
-
DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement
-
Stevens, N.R., H. Roque, and J.W. Raff. 2010b. DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement. Dev. Cell. 19:913-919. http://dx.doi.org/10.1016/j.devcel.2010.11.010
-
(2010)
Dev. Cell.
, vol.19
, pp. 913-919
-
-
Stevens, N.R.1
Roque, H.2
Raff, J.W.3
-
55
-
-
62649112876
-
A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53
-
Sur, S., R. Pagliarini, F. Bunz, C. Rago, L.A. Diaz Jr., K.W. Kinzler, B. Vogelstein, and N. Papadopoulos. 2009. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl. Acad. Sci. USA. 106:3964-3969. http://dx.doi.org/10.1073/pnas.0813333106
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 3964-3969
-
-
Sur, S.1
Pagliarini, R.2
Bunz, F.3
Rago, C.4
Diaz, L.A.5
Kinzler, K.W.6
Vogelstein, B.7
Papadopoulos, N.8
-
56
-
-
13244255264
-
Sak/Plk4 and mitotic fidelity
-
Swallow, C.J., M.A. Ko, N.U. Siddiqui, J.W. Hudson, and J.W. Dennis. 2005. Sak/Plk4 and mitotic fidelity. Oncogene. 24:306-312. http://dx.doi.org/10.1038/sj.onc.1208275
-
(2005)
Oncogene.
, vol.24
, pp. 306-312
-
-
Swallow, C.J.1
Ko, M.A.2
Siddiqui, N.U.3
Hudson, J.W.4
Dennis, J.W.5
-
57
-
-
82455187961
-
The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation
-
Tang, C.J.C., S.Y. Lin, W.B. Hsu, Y.N. Lin, C.T. Wu, Y.C. Lin, C.W. Chang, K.S. Wu, and T.K. Tang. 2011. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J. 30:4790-4804. http://dx.doi.org/10.1038/emboj.2011.378
-
(2011)
EMBO J.
, vol.30
, pp. 4790-4804
-
-
Tang, C.J.C.1
Lin, S.Y.2
Hsu, W.B.3
Lin, Y.N.4
Wu, C.T.5
Lin, Y.C.6
Chang, C.W.7
Wu, K.S.8
Tang, T.K.9
-
58
-
-
82755182013
-
Universal and confident phosphorylation site localization using phosphoRS
-
Taus, T., T. Köcher, P. Pichler, C. Paschke, A. Schmidt, C. Henrich, and K. Mechtler. 2011. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10:5354-5362. http://dx.doi.org/10.1021/pr200611n
-
(2011)
J. Proteome Res.
, vol.10
, pp. 5354-5362
-
-
Taus, T.1
Köcher, T.2
Pichler, P.3
Paschke, C.4
Schmidt, A.5
Henrich, C.6
Mechtler, K.7
-
59
-
-
30844463905
-
Controlling centrosome number: licenses and blocks
-
Tsou, M.F., and T. Stearns. 2006. Controlling centrosome number: licenses and blocks. Curr. Opin. Cell Biol. 18:74-78. http://dx.doi.org/10.1016/j.ceb.2005.12.008
-
(2006)
Curr. Opin. Cell Biol.
, vol.18
, pp. 74-78
-
-
Tsou, M.F.1
Stearns, T.2
-
60
-
-
79952280152
-
Structures of SAS-6 suggest its organization in centrioles
-
van Breugel, M., M. Hirono, A. Andreeva, H.A. Yanagisawa, S. Yamaguchi, Y. Nakazawa, N. Morgner, M. Petrovich, I.O. Ebong, C.V. Robinson, et al. 2011. Structures of SAS-6 suggest its organization in centrioles. Science. 331:1196-1199. http://dx.doi.org/10.1126/science.1199325
-
(2011)
Science
, vol.331
, pp. 1196-1199
-
-
van Breugel, M.1
Hirono, M.2
Andreeva, A.3
Yanagisawa, H.A.4
Yamaguchi, S.5
Nakazawa, Y.6
Morgner, N.7
Petrovich, M.8
Ebong, I.O.9
Robinson, C.V.10
-
61
-
-
84898737594
-
Structure of the SAS-6 cartwheel hub from Leishmania major
-
van Breugel, M., R. Wilcken, S.H. McLaughlin, T.J. Rutherford, and C.M. Johnson. 2014. Structure of the SAS-6 cartwheel hub from Leishmania major. eLife. 3:e01812. http://dx.doi.org/10.7554/eLife.01812
-
(2014)
eLife
, vol.3
-
-
van Breugel, M.1
Wilcken, R.2
McLaughlin, S.H.3
Rutherford, T.J.4
Johnson, C.M.5
-
62
-
-
84861401641
-
STIL is required for centriole duplication in human cells
-
Vulprecht, J., A. David, A. Tibelius, A. Castiel, G. Konotop, F. Liu, F. Bestvater, M.S. Raab, H. Zentgraf, S. Izraeli, and A. Krämer. 2012. STIL is required for centriole duplication in human cells. J. Cell Sci. 125:1353-1362. http://dx.doi.org/10.1242/jcs.104109
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1353-1362
-
-
Vulprecht, J.1
David, A.2
Tibelius, A.3
Castiel, A.4
Konotop, G.5
Liu, F.6
Bestvater, F.7
Raab, M.S.8
Zentgraf, H.9
Izraeli, S.10
Krämer, A.11
-
63
-
-
67349266694
-
Universal sample preparation method for proteome analysis
-
Wisniewski, J.R., A. Zougman, N. Nagaraj, and M. Mann. 2009. Universal sample preparation method for proteome analysis. Nat. Methods. 6:359-362. http://dx.doi.org/10.1038/nmeth.1322
-
(2009)
Nat. Methods.
, vol.6
, pp. 359-362
-
-
Wisniewski, J.R.1
Zougman, A.2
Nagaraj, N.3
Mann, M.4
|