-
1
-
-
84856290771
-
The centrosome in cells and organisms
-
Bornens M. The centrosome in cells and organisms. Science 2012, 335:422-426.
-
(2012)
Science
, vol.335
, pp. 422-426
-
-
Bornens, M.1
-
2
-
-
80053553994
-
The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries
-
Nigg E., Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 2011, 13:1154-1160.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1154-1160
-
-
Nigg, E.1
Stearns, T.2
-
3
-
-
64849086311
-
From zero to many: control of centriole number in development and disease
-
Cunha-Ferreira I., et al. From zero to many: control of centriole number in development and disease. Traffic 2009, 10:482-498.
-
(2009)
Traffic
, vol.10
, pp. 482-498
-
-
Cunha-Ferreira, I.1
-
4
-
-
0036468420
-
Centrosome composition and microtubule anchoring mechanisms
-
Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 2002, 14:25-34.
-
(2002)
Curr. Opin. Cell Biol.
, vol.14
, pp. 25-34
-
-
Bornens, M.1
-
5
-
-
84865301025
-
Centrosome asymmetry and inheritance during animal development
-
Pelletier L., Yamashita Y.M. Centrosome asymmetry and inheritance during animal development. Curr. Opin. Cell Biol. 2012, 24:541-546.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 541-546
-
-
Pelletier, L.1
Yamashita, Y.M.2
-
6
-
-
79956193249
-
Regulating the transition from centriole to basal body
-
Kobayashi T., Dynlacht B.D. Regulating the transition from centriole to basal body. J. Cell Biol. 2011, 193:435-444.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 435-444
-
-
Kobayashi, T.1
Dynlacht, B.D.2
-
8
-
-
21044442747
-
Centrioles resist forces applied on centrosomes during G2/M transition
-
Abal M., et al. Centrioles resist forces applied on centrosomes during G2/M transition. Biol. Cell 2005, 97:425-434.
-
(2005)
Biol. Cell
, vol.97
, pp. 425-434
-
-
Abal, M.1
-
9
-
-
0037459108
-
SAS-4 is a C. elegans centriolar protein that controls centrosome size
-
Kirkham M., et al. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 2003, 112:575-587.
-
(2003)
Cell
, vol.112
, pp. 575-587
-
-
Kirkham, M.1
-
10
-
-
33745255998
-
Flies without centrioles
-
Basto R., et al. Flies without centrioles. Cell 2006, 125:1375-1386.
-
(2006)
Cell
, vol.125
, pp. 1375-1386
-
-
Basto, R.1
-
11
-
-
80054901400
-
Microtubule nucleation by γ-tubulin complexes
-
Kollman J.M., et al. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011, 12:709-721.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 709-721
-
-
Kollman, J.M.1
-
12
-
-
10644253531
-
Centriole assembly requires both centriolar and pericentriolar material proteins
-
Dammermann A., et al. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 2004, 7:815-829.
-
(2004)
Dev. Cell
, vol.7
, pp. 815-829
-
-
Dammermann, A.1
-
13
-
-
40249107653
-
Control of daughter centriole formation by the pericentriolar material
-
Loncarek J., et al. Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 2008, 10:322-328.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 322-328
-
-
Loncarek, J.1
-
14
-
-
2942692444
-
The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis
-
Martinez-Campos M., et al. The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell Biol. 2004, 165:673-683.
-
(2004)
J. Cell Biol.
, vol.165
, pp. 673-683
-
-
Martinez-Campos, M.1
-
15
-
-
77049101182
-
The PCM-basal body/primary cilium coalition
-
Moser J.J., et al. The PCM-basal body/primary cilium coalition. Semin. Cell Dev. Biol. 2010, 21:148-155.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 148-155
-
-
Moser, J.J.1
-
16
-
-
0034568928
-
Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles
-
Zimmerman W., Doxsey S.J. Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic 2000, 1:927-934.
-
(2000)
Traffic
, vol.1
, pp. 927-934
-
-
Zimmerman, W.1
Doxsey, S.J.2
-
17
-
-
84864319735
-
+TIPs: SxIPping along microtubule ends
-
Kumar P., Wittmann T. +TIPs: SxIPping along microtubule ends. Trends Cell Biol. 2012, 22:418-428.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 418-428
-
-
Kumar, P.1
Wittmann, T.2
-
18
-
-
0037418835
-
Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity
-
Takada S., et al. Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 2003, 113:87-99.
-
(2003)
Cell
, vol.113
, pp. 87-99
-
-
Takada, S.1
-
19
-
-
34248170142
-
Hsp90 is required to localise cyclin B and Msps/ch-TOG to the mitotic spindle in Drosophila and humans
-
Basto R., et al. Hsp90 is required to localise cyclin B and Msps/ch-TOG to the mitotic spindle in Drosophila and humans. J. Cell Sci. 2007, 120:1278-1287.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 1278-1287
-
-
Basto, R.1
-
20
-
-
84874359079
-
GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas
-
Atwood S.X., et al. GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas. Nature 2013, 494:484-488.
-
(2013)
Nature
, vol.494
, pp. 484-488
-
-
Atwood, S.X.1
-
21
-
-
38649092988
-
Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling
-
Griffith E., et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 2008, 40:232-236.
-
(2008)
Nat. Genet.
, vol.40
, pp. 232-236
-
-
Griffith, E.1
-
22
-
-
20444407162
-
Centrosome control of the cell cycle
-
Doxsey S., et al. Centrosome control of the cell cycle. Trends Cell Biol. 2005, 15:303-311.
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 303-311
-
-
Doxsey, S.1
-
23
-
-
77954240714
-
SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation
-
D'Angiolella V., et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 2010, 466:138-142.
-
(2010)
Nature
, vol.466
, pp. 138-142
-
-
D'Angiolella, V.1
-
24
-
-
70350771277
-
Centrioles, centrosomes, and cilia in health and disease
-
Nigg E., Raff J.W. Centrioles, centrosomes, and cilia in health and disease. Cell 2009, 139:663-678.
-
(2009)
Cell
, vol.139
, pp. 663-678
-
-
Nigg, E.1
Raff, J.W.2
-
25
-
-
79960921403
-
Cdk5rap2 exposes the centrosomal root of microcephaly syndromes
-
Megraw T.L., et al. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol. 2011, 21:470-480.
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 470-480
-
-
Megraw, T.L.1
-
26
-
-
79960629889
-
Centrosomes and cilia in human disease
-
Bettencourt-Dias M., et al. Centrosomes and cilia in human disease. Trends Genet. 2011, 27:307-315.
-
(2011)
Trends Genet.
, vol.27
, pp. 307-315
-
-
Bettencourt-Dias, M.1
-
27
-
-
84871935248
-
Centrosomes, chromosome instability (CIN) and aneuploidy
-
Vitre B.D., Cleveland D.W. Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol. 2012, 24:809-815.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 809-815
-
-
Vitre, B.D.1
Cleveland, D.W.2
-
28
-
-
84862507047
-
The ciliopathies: a transitional model into systems biology of human genetic disease
-
Davis E.E., Katsanis N. The ciliopathies: a transitional model into systems biology of human genetic disease. Curr. Opin. Genet. Dev. 2012, 22:290-303.
-
(2012)
Curr. Opin. Genet. Dev.
, vol.22
, pp. 290-303
-
-
Davis, E.E.1
Katsanis, N.2
-
29
-
-
0346874342
-
Proteomic characterization of the human centrosome by protein correlation profiling
-
Andersen J.S., et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426:570-574.
-
(2003)
Nature
, vol.426
, pp. 570-574
-
-
Andersen, J.S.1
-
30
-
-
77957810181
-
Proteomic and functional analysis of the mitotic Drosophila centrosome
-
Müller H., et al. Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J. 2010, 29:3344-3357.
-
(2010)
EMBO J.
, vol.29
, pp. 3344-3357
-
-
Müller, H.1
-
31
-
-
84867772494
-
New insights into subcomplex assembly and modifications of centrosomal proteins
-
Habermann K., Lange B.M. New insights into subcomplex assembly and modifications of centrosomal proteins. Cell Div. 2012, 7:17.
-
(2012)
Cell Div.
, vol.7
, pp. 17
-
-
Habermann, K.1
Lange, B.M.2
-
32
-
-
79651473154
-
Structural basis of the 9-fold symmetry of centrioles
-
Kitagawa D., et al. Structural basis of the 9-fold symmetry of centrioles. Cell 2011, 144:364-375.
-
(2011)
Cell
, vol.144
, pp. 364-375
-
-
Kitagawa, D.1
-
33
-
-
79952280152
-
Structures of SAS-6 suggest its organization in centrioles
-
Van Breugel M., et al. Structures of SAS-6 suggest its organization in centrioles. Science 2011, 331:1196-1199.
-
(2011)
Science
, vol.331
, pp. 1196-1199
-
-
Van Breugel, M.1
-
34
-
-
33845250249
-
Centriole assembly in Caenorhabditis elegans
-
Pelletier L., et al. Centriole assembly in Caenorhabditis elegans. Nature 2006, 444:619-623.
-
(2006)
Nature
, vol.444
, pp. 619-623
-
-
Pelletier, L.1
-
35
-
-
77951979181
-
Procentriole assembly revealed by cryo-electron tomography
-
Guichard P., et al. Procentriole assembly revealed by cryo-electron tomography. EMBO J. 2010, 29:1565-1572.
-
(2010)
EMBO J.
, vol.29
, pp. 1565-1572
-
-
Guichard, P.1
-
36
-
-
0029124180
-
Three-dimensional structural characterization of centrosomes from early Drosophila embryos
-
Moritz M., et al. Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell Biol. 1995, 130:1149-1159.
-
(1995)
J. Cell Biol.
, vol.130
, pp. 1149-1159
-
-
Moritz, M.1
-
37
-
-
84869001801
-
Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization
-
Mennella V., et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 2012, 14:1159-1168.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1159-1168
-
-
Mennella, V.1
-
38
-
-
84869050846
-
Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material
-
Lawo S., et al. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 2012, 14:1148-1158.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1148-1158
-
-
Lawo, S.1
-
39
-
-
84964866213
-
3D-structured illumination microscopy provides novel insight into architecture of human centrosomes
-
Sonnen K.F., et al. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 2013, 1:965-976.
-
(2013)
Biol. Open
, vol.1
, pp. 965-976
-
-
Sonnen, K.F.1
-
40
-
-
84869051288
-
Structured illumination of the interface between centriole and peri-centriolar material
-
Fu J., Glover D.M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2012, 2:120104.
-
(2012)
Open Biol.
, vol.2
, pp. 120104
-
-
Fu, J.1
Glover, D.M.2
-
41
-
-
84856411124
-
Three-dimensional structure of basal body triplet revealed by electron cryo-tomography
-
Li S., et al. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J. 2012, 31:552-562.
-
(2012)
EMBO J.
, vol.31
, pp. 552-562
-
-
Li, S.1
-
42
-
-
0017402701
-
The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation
-
Gould R.R., Borisy G.G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J. Cell Biol. 1977, 73:601-615.
-
(1977)
J. Cell Biol.
, vol.73
, pp. 601-615
-
-
Gould, R.R.1
Borisy, G.G.2
-
43
-
-
0026606831
-
Centrosome organization: their sensitivity and centriole architecture to divalent cations
-
Paintrand M., et al. Centrosome organization: their sensitivity and centriole architecture to divalent cations. J. Struct. Biol. 1992, 108:107-128.
-
(1992)
J. Struct. Biol.
, vol.108
, pp. 107-128
-
-
Paintrand, M.1
-
44
-
-
0031854868
-
Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds
-
Moritz M., et al. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 1998, 142:775-786.
-
(1998)
J. Cell Biol.
, vol.142
, pp. 775-786
-
-
Moritz, M.1
-
45
-
-
0034126839
-
Reconstitution of microtubule nucleation potential in centrosomes isolated from Spisula solidissima oocytes
-
Schnackenberg B.J., et al. Reconstitution of microtubule nucleation potential in centrosomes isolated from Spisula solidissima oocytes. J. Cell Sci. 2000, 113:943-953.
-
(2000)
J. Cell Sci.
, vol.113
, pp. 943-953
-
-
Schnackenberg, B.J.1
-
46
-
-
0032489799
-
Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome
-
Dictenberg J.B., et al. Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 1998, 141:163-174.
-
(1998)
J. Cell Biol.
, vol.141
, pp. 163-174
-
-
Dictenberg, J.B.1
-
47
-
-
0038778635
-
Higher order structure of the PCM adjacent to the centriole
-
Ou Y.Y., et al. Higher order structure of the PCM adjacent to the centriole. Cell Motil. Cytoskeleton 2003, 55:125-133.
-
(2003)
Cell Motil. Cytoskeleton
, vol.55
, pp. 125-133
-
-
Ou, Y.Y.1
-
48
-
-
42149143016
-
Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination
-
Gustafsson M.G.L., et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 2008, 94:4957-4970.
-
(2008)
Biophys. J.
, vol.94
, pp. 4957-4970
-
-
Gustafsson, M.G.L.1
-
49
-
-
0034682512
-
Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission
-
Klar T., et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:8206-8210.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 8206-8210
-
-
Klar, T.1
-
50
-
-
33747179417
-
Imaging intracellular fluorescent proteins at nanometer resolution
-
Betzig E., et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313:1642-1645.
-
(2006)
Science
, vol.313
, pp. 1642-1645
-
-
Betzig, E.1
-
51
-
-
33749026335
-
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
-
Rust M.J., et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3:793-795.
-
(2006)
Nat. Methods
, vol.3
, pp. 793-795
-
-
Rust, M.J.1
-
52
-
-
84862665108
-
STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein
-
Lau L., et al. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 2012, 102:2926-2935.
-
(2012)
Biophys. J.
, vol.102
, pp. 2926-2935
-
-
Lau, L.1
-
53
-
-
0034574615
-
The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin
-
Gillingham K., Munro S. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep. 2000, 1:524-529.
-
(2000)
EMBO Rep.
, vol.1
, pp. 524-529
-
-
Gillingham, K.1
Munro, S.2
-
54
-
-
67349230854
-
HAUS, the 8-subunit human augmin complex, regulates centrosome and spindle integrity
-
Lawo S., et al. HAUS, the 8-subunit human augmin complex, regulates centrosome and spindle integrity. Curr. Biol. 2009, 19:816-826.
-
(2009)
Curr. Biol.
, vol.19
, pp. 816-826
-
-
Lawo, S.1
-
55
-
-
66349104548
-
The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells
-
Uehara R., et al. The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:6998-7003.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 6998-7003
-
-
Uehara, R.1
-
56
-
-
67650128400
-
Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components
-
Haren L., et al. Plk1-dependent recruitment of gamma-tubulin complexes to mitotic centrosomes involves multiple PCM components. PLoS ONE 2009, 4:e5976.
-
(2009)
PLoS ONE
, vol.4
-
-
Haren, L.1
-
57
-
-
36049016731
-
Human Cep192 is required for mitotic centrosome and spindle assembly
-
Gomez-Ferreria M.A., et al. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 2007, 17:1960-1966.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1960-1966
-
-
Gomez-Ferreria, M.A.1
-
58
-
-
84863037821
-
PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis
-
Lee K., Rhee K. PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J. Cell Biol. 2011, 195:1093-1101.
-
(2011)
J. Cell Biol.
, vol.195
, pp. 1093-1101
-
-
Lee, K.1
Rhee, K.2
-
59
-
-
54749133489
-
A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila
-
Dobbelaere J., et al. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol. 2008, 6:e224.
-
(2008)
PLoS Biol.
, vol.6
-
-
Dobbelaere, J.1
-
60
-
-
38749152785
-
CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex
-
Fong K., et al. CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the γ-tubulin ring complex. Mol. Biol. Cell 2008, 19:115-125.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 115-125
-
-
Fong, K.1
-
61
-
-
38349078475
-
Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion
-
Graser S., et al. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J. Cell Sci. 2007, 120:4321-4431.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 4321-4431
-
-
Graser, S.1
-
62
-
-
0347360338
-
Characterization of a Drosophila centrosome protein CP309 that shares homology with kendrin and CG-NAP
-
Kawaguchi S., Zheng Y. Characterization of a Drosophila centrosome protein CP309 that shares homology with kendrin and CG-NAP. Mol. Biol. Cell 2004, 15:37-45.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 37-45
-
-
Kawaguchi, S.1
Zheng, Y.2
-
63
-
-
0036736094
-
Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex
-
Takahashi M., et al. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 2002, 13:3235-3245.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 3235-3245
-
-
Takahashi, M.1
-
64
-
-
3042688773
-
The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication
-
Pelletier L., et al. The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 2004, 14:863-873.
-
(2004)
Curr. Biol.
, vol.14
, pp. 863-873
-
-
Pelletier, L.1
-
65
-
-
39549095614
-
Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation
-
Giansanti M.G., et al. Drosophila SPD-2 is an essential centriole component required for PCM recruitment and astral-microtubule nucleation. Curr. Biol. 2008, 18:303-309.
-
(2008)
Curr. Biol.
, vol.18
, pp. 303-309
-
-
Giansanti, M.G.1
-
66
-
-
79961243037
-
Limiting amounts of centrosome material set centrosome size in C. elegans embryos
-
Decker M., et al. Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr. Biol. 2011, 21:1259-1267.
-
(2011)
Curr. Biol.
, vol.21
, pp. 1259-1267
-
-
Decker, M.1
-
67
-
-
35348889541
-
Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila
-
Varmark H., et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol. 2007, 17:1735-1745.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1735-1745
-
-
Varmark, H.1
-
69
-
-
78650437294
-
Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM
-
Conduit P.T., et al. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr. Biol. 2010, 20:2178-2186.
-
(2010)
Curr. Biol.
, vol.20
, pp. 2178-2186
-
-
Conduit, P.T.1
-
70
-
-
0035945342
-
Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans
-
Hannak E., et al. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 2001, 155:1109-1116.
-
(2001)
J. Cell Biol.
, vol.155
, pp. 1109-1116
-
-
Hannak, E.1
-
71
-
-
0037117408
-
Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis
-
Berdnik D., Knoblich J. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol. 2002, 12:640-647.
-
(2002)
Curr. Biol.
, vol.12
, pp. 640-647
-
-
Berdnik, D.1
Knoblich, J.2
-
72
-
-
0141429171
-
Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells
-
Hirota T., et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 2003, 114:585-598.
-
(2003)
Cell
, vol.114
, pp. 585-598
-
-
Hirota, T.1
-
73
-
-
46249084662
-
Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry
-
Seki A., et al. Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008, 320:1655-1658.
-
(2008)
Science
, vol.320
, pp. 1655-1658
-
-
Seki, A.1
-
74
-
-
33746544622
-
Mitotic activation of the kinase Aurora-A requires its binding partner Bora
-
Hutterer A., et al. Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev. Cell 2006, 11:147-157.
-
(2006)
Dev. Cell
, vol.11
, pp. 147-157
-
-
Hutterer, A.1
-
75
-
-
51349144633
-
Polo-like kinase-1 is activated by Aurora A to promote checkpoint recovery
-
Macůrek L., et al. Polo-like kinase-1 is activated by Aurora A to promote checkpoint recovery. Nature 2008, 455:119-123.
-
(2008)
Nature
, vol.455
, pp. 119-123
-
-
Macůrek, L.1
-
76
-
-
0041885288
-
Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells
-
Terada Y., et al. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol. 2003, 162:757-763.
-
(2003)
J. Cell Biol.
, vol.162
, pp. 757-763
-
-
Terada, Y.1
-
77
-
-
25444485717
-
Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules
-
Barros T.P., et al. Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. J. Cell Biol. 2005, 170:1039-1046.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 1039-1046
-
-
Barros, T.P.1
-
78
-
-
0037017398
-
Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules
-
Giet R., et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 2002, 156:437-451.
-
(2002)
J. Cell Biol.
, vol.156
, pp. 437-451
-
-
Giet, R.1
-
79
-
-
84864884285
-
Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment
-
Gopalakrishnan J., et al. Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment. Nat. Cell Biol. 2012, 14:865-873.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 865-873
-
-
Gopalakrishnan, J.1
-
80
-
-
79959547445
-
Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome
-
Gopalakrishnan J., et al. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat. Commun. 2011, 2:359.
-
(2011)
Nat. Commun.
, vol.2
, pp. 359
-
-
Gopalakrishnan, J.1
-
81
-
-
0035086902
-
Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1
-
Li Q., et al. Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. J. Cell Sci. 2001, 114:797-809.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 797-809
-
-
Li, Q.1
-
82
-
-
77957982182
-
Asterless is a scaffold for the onset of centriole assembly
-
Dzhindzhev N.S., et al. Asterless is a scaffold for the onset of centriole assembly. Nature 2010, 467:714-718.
-
(2010)
Nature
, vol.467
, pp. 714-718
-
-
Dzhindzhev, N.S.1
-
83
-
-
78349263512
-
Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome
-
Cizmecioglu O., et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 2010, 191:731-739.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 731-739
-
-
Cizmecioglu, O.1
-
84
-
-
78349243322
-
Cep152 interacts with Plk4 and is required for centriole duplication
-
Hatch E.M., et al. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 2010, 191:721-729.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 721-729
-
-
Hatch, E.M.1
-
85
-
-
33748440647
-
Sequential protein recruitment in C. elegans centriole formation
-
Delattre M., et al. Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 2006, 16:1844-1849.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1844-1849
-
-
Delattre, M.1
-
86
-
-
84880720569
-
Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication
-
Sonnen K.F., et al. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J. Cell Sci. 2013, 126:3223-3233.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 3223-3233
-
-
Sonnen, K.F.1
-
87
-
-
78649483796
-
Nanoscale architecture of integrin-based cell adhesions
-
Kanchanawong P., et al. Nanoscale architecture of integrin-based cell adhesions. Nature 2010, 468:580-584.
-
(2010)
Nature
, vol.468
, pp. 580-584
-
-
Kanchanawong, P.1
-
88
-
-
78649927344
-
Superresolution imaging of chemical synapses in the brain
-
Dani A., et al. Superresolution imaging of chemical synapses in the brain. Neuron 2010, 68:843-856.
-
(2010)
Neuron
, vol.68
, pp. 843-856
-
-
Dani, A.1
-
89
-
-
84881241505
-
Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging
-
Szymborska A., et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 2013, 341:655-658.
-
(2013)
Science
, vol.341
, pp. 655-658
-
-
Szymborska, A.1
-
90
-
-
0033775854
-
Structure of the γ-tubulin ring complex: a template for microtubule nucleation
-
Moritz M., et al. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat. Cell Biol. 2000, 2:365-370.
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 365-370
-
-
Moritz, M.1
-
91
-
-
0033771941
-
A new function for the γ-tubulin ring complex as a microtubule minus-end cap
-
Wiese C., Zheng Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2000, 2:358-364.
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 358-364
-
-
Wiese, C.1
Zheng, Y.2
-
92
-
-
0033771535
-
Immunostructural evidence for the template mechanism of microtubule nucleation
-
Keating T.J., Borisy G.G. Immunostructural evidence for the template mechanism of microtubule nucleation. Nat. Cell Biol. 2000, 2:352-357.
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 352-357
-
-
Keating, T.J.1
Borisy, G.G.2
-
93
-
-
19544384914
-
Insights into microtubule nucleation from the crystal structure of human gamma-tubulin
-
Aldaz H. Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature 2005, 435:523-527.
-
(2005)
Nature
, vol.435
, pp. 523-527
-
-
Aldaz, H.1
-
94
-
-
0037340137
-
Characterization of a new gammaTuRC subunit with WD repeats
-
Gunawardane R.N., et al. Characterization of a new gammaTuRC subunit with WD repeats. Mol. Biol. Cell 2003, 14:1017-1026.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1017-1026
-
-
Gunawardane, R.N.1
-
95
-
-
33645151303
-
GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation
-
Lüders J., et al. GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat. Cell Biol. 2006, 8:137-147.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 137-147
-
-
Lüders, J.1
-
96
-
-
84964845020
-
Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the γ-TuRC
-
Reschen R.F., et al. Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the γ-TuRC. Biol. Open 2012, 1:422-429.
-
(2012)
Biol. Open
, vol.1
, pp. 422-429
-
-
Reschen, R.F.1
-
97
-
-
0032765262
-
The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila
-
Megraw T.L., et al. The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 1999, 126:2829-2839.
-
(1999)
Development
, vol.126
, pp. 2829-2839
-
-
Megraw, T.L.1
-
98
-
-
0036849151
-
Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains
-
Hamill D.R., et al. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 2002, 3:673-684.
-
(2002)
Dev. Cell
, vol.3
, pp. 673-684
-
-
Hamill, D.R.1
-
99
-
-
78650115459
-
CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex
-
Choi Y-K., et al. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin ring complex. J. Cell Biol. 2010, 191:1089-1095.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 1089-1095
-
-
Choi, Y.-K.1
-
100
-
-
1842583754
-
Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2
-
Kemp C.A., et al. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 2004, 6:511-523.
-
(2004)
Dev. Cell
, vol.6
, pp. 511-523
-
-
Kemp, C.A.1
-
101
-
-
0028218025
-
Pericentrin, a highly conserved centrosome protein involved in microtubule organization
-
Doxsey S.J., et al. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 1994, 76:639-650.
-
(1994)
Cell
, vol.76
, pp. 639-650
-
-
Doxsey, S.J.1
-
102
-
-
0042622508
-
The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene
-
Flory M.R., Davis T.N. The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. Genomics 2003, 82:401-405.
-
(2003)
Genomics
, vol.82
, pp. 401-405
-
-
Flory, M.R.1
Davis, T.N.2
-
103
-
-
0031857307
-
Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster
-
Bonaccorsi S., et al. Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J. Cell Biol. 1998, 142:751-761.
-
(1998)
J. Cell Biol.
, vol.142
, pp. 751-761
-
-
Bonaccorsi, S.1
-
104
-
-
61849092578
-
Drosophila asterless and vertebrate Cep152 are orthologs essential for centriole duplication
-
Blachon S., et al. Drosophila asterless and vertebrate Cep152 are orthologs essential for centriole duplication. Genetics 2008, 180:2081-2094.
-
(2008)
Genetics
, vol.180
, pp. 2081-2094
-
-
Blachon, S.1
-
105
-
-
0030462914
-
Antibody microinjection reveals an essential role for human Polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes
-
Lane H.A., Nigg E.A. Antibody microinjection reveals an essential role for human Polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 1996, 1:1701-1713.
-
(1996)
J. Cell Biol.
, vol.1
, pp. 1701-1713
-
-
Lane, H.A.1
Nigg, E.A.2
-
106
-
-
0023804548
-
Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles
-
Sunkel C.E., Glover D.M. Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 1988, 89:25-38.
-
(1988)
J. Cell Sci.
, vol.89
, pp. 25-38
-
-
Sunkel, C.E.1
Glover, D.M.2
-
107
-
-
25444506600
-
Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis
-
Peset I., et al. Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis. J. Cell Biol. 2005, 170:1057-1066.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 1057-1066
-
-
Peset, I.1
-
108
-
-
0037343945
-
SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle
-
Leidel S., Gonczy P. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 2003, 4:431-439.
-
(2003)
Dev. Cell
, vol.4
, pp. 431-439
-
-
Leidel, S.1
Gonczy, P.2
-
109
-
-
67349279485
-
CPAP is a cell-cycle regulated protein that controls centriole length
-
Tang C-J.C., et al. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 2009, 11:825-831.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 825-831
-
-
Tang, C.-J.C.1
-
110
-
-
67349233018
-
Control of centriole length by CPAP and CP110
-
Schmidt T.I., et al. Control of centriole length by CPAP and CP110. Curr. Biol. 2009, 19:1005-1011.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1005-1011
-
-
Schmidt, T.I.1
-
111
-
-
84867238166
-
Novel NEDD1 phosphorylation sites regulate γ-tubulin binding and mitotic spindle assembly
-
Gomez-Ferreria M.A., et al. Novel NEDD1 phosphorylation sites regulate γ-tubulin binding and mitotic spindle assembly. J. Cell Sci. 2012, 125:3745-3751.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 3745-3751
-
-
Gomez-Ferreria, M.A.1
-
113
-
-
80054978334
-
A primary microcephaly protein complex forms a ring around parental centrioles
-
Sir J.-H., et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet. 2011, 43:1147-1153.
-
(2011)
Nat. Genet.
, vol.43
, pp. 1147-1153
-
-
Sir, J.-H.1
-
114
-
-
84886941391
-
PLP inhibits the activity of interphase centrosomes to ensure their proper segregation in stem cells
-
Lerit D., et al. PLP inhibits the activity of interphase centrosomes to ensure their proper segregation in stem cells. J. Cell. Biol. 2013, 202:1013-1022.
-
(2013)
J. Cell. Biol.
, vol.202
, pp. 1013-1022
-
-
Lerit, D.1
|